
CICS as a Web Service
Provider or Requester

Ezriel Gross
Circle Software Incorporated

August 9, 2012 (Thu)
11:00am – 12:00am

Session 11446

Agenda

• Introduction to web services in general, and in CICS
• Four methods for creating a web service provider in CICS:

1. CICS web services assistant
2. Rational Developer for System z (RDz) with interpretive

runtime XML conversion
3. RDz, with compiled runtime XML conversion
4. RDz Service Flow Modeler (SFM)

• Two methods for creating a web service requester in CICS:
1. CICS web services assistant
2. RDz

• Diagnosing web services in CICS

Presenter
Presentation Notes
You don't have to use HTTP as the message transport. You can, for example, use:
WebSphere MQ
Java EE Connector Architecture (JCA)

Terms

Web service
• A software system designed to

support interoperable machine-
to-machine interaction over a
network

• It has an interface described in a
machine-processable format
(specifically WSDL)

• Other systems interact with [it
...] using SOAP messages,
typically conveyed using HTTP
[...]

WSDL
• [Web Service Description

Language is an XML vocabulary
that] describes [...] the
messages that are exchanged
between the requester and
provider

SOAP
• [A ...] framework for packaging

and exchanging XML messages

Source: Web Services Architecture
http://www.w3.org/TR/ws-arch/

or MQ, JCA... in the examples
presented here, we will use HTTP

Presenter
Presentation Notes
A WSDL file contains, or refers to, schemas that describe the format of the SOAP message bodies.
For brevity, we are deliberately covering only basic terms and concepts here. We will not, for example, be describing web service registries or security.

Basic concept

Web service requester

Web service provider

SOAP

SOAP

Network
(Often, the Internet, or a

corporate IP network)

Request

Response

Example SOAP request

<soapenv:Envelope
 xmlns="http://www. PAYBUS.PAYCOM1.Request.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <PAYBUSOperation>
 <ws_payroll_data>
 <ws_request>DISP</ws_request>
 <ws_key>
 <ws_department>1</ws_department>
 <ws_employee_no>00001</ws_employee_no>
 </ws_key>
 </ws_payroll_data>
 ...some markup omitted for brevity...
 </PAYBUS1Operation>
 </soapenv:Body>
</soapenv:Envelope>

In plain English:
Please “display” payroll data for
employee number 1
in department 1

Web service-specific XML
(contents of the SOAP Body) is
described in a WSDL file

XML defined by the SOAP standard

Presenter
Presentation Notes
This is a simple example: the SOAP standard also defines other XML elements, such as Header

Example SOAP response
<soapenv:Envelope
 xmlns="http://www. PAYBUS.PAYCOM1.Request.com"
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">
 <soapenv:Body>
 <PAYBUSOperationResponse>
 <ws_payroll_data>
 <ws_request>DISP</ws_request>
 <ws_key>
 <ws_department>1</ws_department>
 <ws_employee_no>00001</ws_employee_no>
 </ws_key>
 <ws_name>CIRCLE COMPUTER 1 </ws_name>
 <ws_addr1>65 WILLOWBROOK BLVD </ws_addr1>
 <ws_addr2>4TH FLOOR</ws_addr2>
 <ws_addr3>WAYNE, NJ 07470 </ws_addr3>
 <ws_phone_no>890-9331</ws_phone_no>
 <ws_timestamp/>
 <ws_salary>50000.00</ws_salary>
 <ws_start_date>12312008</ws_start_date>
 <ws_remarks>CIRCLE IS MAGIC </ws_remarks>
 ...some markup omitted for brevity...
 </PAYBUSOperationResponse>
 </soapenv:Body>
</soapenv:Envelope>

Response details

Presenter
Presentation Notes
This is a simple example: the SOAP standard also defines other XML elements, such as Header

Web Service Description Language
(WSDL) file

• WSDL 1.1 (see below) or 2.0: generated by CICS web
services assistant or RDz (if you don't have one)

• Describes the request/response message XML (schema);
groups messages into operations on an abstract port;
binds the operations to a message transport; specifies the
web service address

<definitions ... >
 <types>
 <xsd:schema ... > ... </xsd:schema>
 <xsd:schema ... > ... </xsd:schema>
 </types>
 <message name="PAYBUSOperationResponse">
 <part element="resns:PAYBUSOperationResponse" name="ResponsePart"/>
 </message>
 <message name="PAYBUSOperationRequest">
 <part element="reqns:PAYBUSOperation" name="RequestPart"/>
 </message>

Presenter
Presentation Notes
This example WSDL 1.1 file was generated by the CICS web services assistant

WSDL 1.1 file, continued
 <portType name="PAYBUSPort">
 <operation name="PAYBUSOperation">
 <input message="tns:PAYBUSOperationRequest" name="PAYBUSOperationRequest"/>
 <output message="tns:PAYBUSOperationResponse" name="PAYBUSOperationResponse"/>
 </operation>
 </portType>
 <binding name="PAYBUSHTTPSoapBinding" type="tns:PAYBUSPort">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="PAYBUSOperation">
 <soap:operation soapAction="" style="document"/>
 <input name="PAYBUSOperationRequest">
 <soap:body parts="RequestPart" use="literal"/>
 </input>
 <output name="PAYBUSOperationResponse">
 <soap:body parts="ResponsePart" use="literal"/>
 </output>
 </operation>
 </binding>
 <service name="PAYBUSService">
 <port binding="tns:PAYBUSHTTPSoapBinding" name="PAYBUSPort">
 <soap:address location="http://my-server:my-port/paybus1"/>
 </port>
 </service>
</definitions>

Problem

Web service provider
that your CICS application
wants to use

Your CICS
application

Data
area

Web service requester
that wants to use your
CICS application
as a web service provider

SOAP

SOAP

Internet
or intranet

(IP network)

?

Traditionally, CICS programs
communicate via data areas
(COMMAREAs or containers); web
services send SOAP messages (XML)
over a network

Presenter
Presentation Notes
Web services exchange requests and responses via SOAP XML over a network (typically, but not necessarily, HTTP)

CICS

Pipeline

Solution

SOAP Your
program

Data
area

IP
network

Data
area

CICS
web

support

CICS manages
IP and HTTP

A pipeline of programs
unwraps data from SOAP
XML into a data area, and
vice versa

Your program can
continue to work with
data areas

Presenter
Presentation Notes
For HTTP: CICS web support to send and receive messages
A pipeline of “handler” programs to convert between data areas and XML
Related CICS resources: TCPIPSERVICE, URIMAP, PIPELINE, WEBSERVICE

Tasks

Resources

Pipeline

CICS as a web service provider

Listens for
requests

CICS web
support

Sends
responses

TCPIPSERVICE URIMAP WEBSERVICE

CSOL CWXN CPIH includes sending response

Message
handler(s)

Application
handler

Your program

PIPELINE

SOAP

z/OS UNIX files

Pipeline configuration Pickup
directory wsbind WSDL

dynamic dynamic

Presenter
Presentation Notes
CSOL is a long-running CICS task. There is one instance of this task in a CICS region.
CWXN is the default transaction ID for a Web attach task. The TRANSACTION attribute of the TCPIPSERVICE can specify a different transaction. If specified, the TRANSACTION attribute must name a transaction that runs program DFHWBXN.
CPIH is the default transaction ID started by a URIMAP that has the attribute USAGE(PIPELINE) (required for a web service). The TRANSACTION attribute of the URIMAP can specify a different transaction. If specified, the TRANSACTION attribute must name a transaction that runs the program DFHPIDSH, which starts the pipeline named in the PIPELINE attribute and the Web service named in the WEBSERVICE attribute, if specified.
The final ("terminal") message handler in the pipeline hands the SOAP message body to the application handler. (For a simple pipeline, there might be only one message handler.)
The application handler maps the contents of the SOAP message body to the data area understood by your program

CICS as a web service requester
Tasks

Resources

Pipeline Sends
requests

CICS web
support
Listens for
responses

URIMAP WEBSERVICE

The task that invoked your program

Message
handler(s)

Your program

PIPELINE

SOAP

z/OS UNIX files

Pipeline configuration Pickup
directory wsbind WSDL

INVOKE WEBSERVICE
can optionally refer to a

dynamic

EXEC CICS
INVOKE
WEBSERVICE

Presenter
Presentation Notes
Use the RESPWAIT attribute of the PIPELINE resource to specify the number of seconds to wait for a response from a web service.

CICS resources

• You must manually create:
• Provider only:

TCPIPSERVICE: Specifies
which port to listen to for
requests. (This assumes
HTTP message transport.
For WebSphere MQ, you
would create an MQCONN.)

• PIPELINE: Points to a
pipeline configuration file,
which specifies the sequence
of handler programs in the
pipeline.

• CICS dynamically creates
when PIPELINE is installed (or
when you run the PIPELINE
SCAN command):
• Provider only:

URIMAP: Specifies which
pipeline and web service to
use for this request. (For a
requester, the INVOKE
(WEB)SERVICE can
optionally refer to a URIMAP
for the provider address.)

• WEBSERVICE: Points to a
WSDL file and a wsbind file.

Pipeline configuration file
• Defines the handlers that constitute the pipeline (in these

examples, the single handler wraps/unwraps the contents
of the SOAP message body in the SOAP envelope)

• If you do not require special processing, you can use these
IBM-supplied sample files unchanged:
<provider_pipeline ... >
 <service>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Also known as a “wrapper” program. Extracts data from XML, calls your CICS
application program, converts returned data back into XML.

<requester_pipeline ... >
 <service>
 <service_handler_list>
 <cics_soap_1.1_handler/>
 </service_handler_list>
 </service>
</requester_pipeline>

Presenter
Presentation Notes
In a more complex pipeline, additional message handlers can handle functionality such as web service security (not discussed in this presentation).

Web service binding (wsbind) file

• Generated by CICS web services assistant or RDz
• Proprietary to CICS web services
• Contains web service-specific information, such as how to

map between the fields in a COMMAREA or container and
the XML in a SOAP message body

• Enables you to use the CICS-supplied application handler
(DFHPITP) for different web services

Application handler

SOAP
message body

contents

Your
program

COMMAREA
or container

wsbind file

Terminal message
handler

wsbind file: pickup and shelf directories

• When you install the PIPELINE resource, or when you
issue a PIPELINE SCAN command, CICS copies the
wsbind file from the pickup directory to the shelf directory.

• At runtime, CICS refers to the copy in the shelf directory.

Shelf directory

Pickup
directory wsbind file

WSDIR attribute of the
PIPELINE resource

Subdirectory for this region

Subdirectory for this PIPELINE

wsbind file

SHELF
attribute

Network

Web service
provider

Creating a web service provider
in CICS

Your
CICS program

SOAP
request

SOAP
response

Web service
requester

Methods for creating a web service
provider in CICS

1. CICS web services assistant (batch utilities supplied
with CICS) from a copybook, using the DFHLS2WS batch
utility (generates a WSDL file and a wsbind file)

2. Rational Developer for System z (RDz) from a
copybook (using a wizard), with interpretive runtime
XML conversion (as per DFHLS2WS, above)

3. RDz as above, but with compiled runtime XML
conversion (in addition to WSDL and wsbind files, also
generates a bespoke COBOL program to convert XML)

4. RDz Service Flow Modeler from a recording of an
interactive CICS terminal user interface (and using a
wizard)

Presenter
Presentation Notes
Instead of a COBOL copybook, you can also use other language-specific data structures.

Creating a provider
using the CICS web services assistant

• Use this method for:
an existing CICS
application that is fully
functional and has a
COMMAREA or
channel interface

• You will need: a
COBOL copybook
(or PL/I, C/C++
equivalent)

DFHLS2WS
batch utility

Language structure
(COBOL, PL/I, C/C++)

wsbind
Web service binding file

WSDL
Web Service Description

Language file

Creating the CICS infrastructure for a
provider

• These steps apply to any method for creating a provider.
1. Create a TCPIPSERVICE resource.
2. Create a pipeline configuration file.
3. Create a PIPELINE resource.
4. Unless you use autoinstalled PROGRAM definitions,

create a PROGRAM resource for each program in the
pipeline.

Creating a provider
using the CICS web services assistant

1. Run the DFHLS2WS batch utility (for example, specifying
a COBOL copybook as the input file).

2. Copy the generated wsbind file to the pickup directory
(the z/OS UNIX path specified by the WSDIR attribute of
the PIPELINE resource).
Optionally, copy the generated WSDL file to the same
path (if you want to validate the SOAP messages).

3. Install the PIPELINE (dynamically creates the
WEBSERVICE and URIMAP resources).

The provider is ready for testing.

Presenter
Presentation Notes
For simplicity, this procedure assumes that:
If your application program uses channels and containers, it uses only one container on a channel. Otherwise, you need to create a channel description document.
The generated WSDL does not require any necessary customization.
For details on these assumptions, see the CICS infocenter.
If you copy the WSDL to the pickup directory, installing the PIPELINE (or the PIPELINE SCAN command) creates a second URIMAP that enables users to get the WSDL. The URI for the WSDL has the same path as the URI associated with the WEBSERVICE with the suffix ?wsdl appended.

//SYSEGXLS JOB (39248C,A,T),'LS2WS',
// MSGCLASS=A,NOTIFY=&SYSUID,REGION=0M
// SET QT=''''
//WHERESMA JCLLIB ORDER=CIRCLE.CICSWS.PROCLIB
//JAVAPROG EXEC DFHLS2WS,
// JAVADIR='Java601_64/J6.0.1_64',PATHPREF='/u',TMPDIR='/u/tmp',
// TMPFILE=&QT.&SYSUID.&QT,USSDIR='cicsts42'
//INPUT.SYSUT1 DD *
PDSLIB=CIRCLE.CICSWS.COPYLIB
REQMEM=PAYCOM1
RESPMEM=PAYCOM1
PGMINT=COMMAREA
MAPPING-LEVEL=3.0
MINIMUM-RUNTIME-LEVEL=CURRENT
LANG=COBOL
PGMNAME=PAYBUS
URI=/paybus1
WSBIND=/u/usr/lpp/cicsts/cicsts42/samples/webservices/wsbind/provider/p*
aybus1.wsbind
WSDL=/u/usr/lpp/cicsts/cicsts42/samples/webservices/wsdl/paybus1.wsdl
LOGFILE=/u/sysegx0/paybus
/*

JCL to run DFHLS2WS

Input COBOL copybook PDS members:
one for the request, another for the
response (same in this case)

Your existing CICS program

Output wsbind and
WSDL files

Presenter
Presentation Notes
DFHLS2WS stores the name of your existing CICS program in the wsbind file.

DFHLS2WS log
DFHPI9609I Parameter "LOGFILE" has value "/u/sysegx0/paybus".
...
DFHPI9609I Parameter "PDSLIB" has value "//CIRCLE.CICSWS.COPYLIB".
DFHPI9609I Parameter "PGMINT" has value "COMMAREA".
DFHPI9609I Parameter "PGMNAME" has value "PAYBUS".
DFHPI9609I Parameter "REQMEM" has value "PAYCOM1".
...
DFHPI9609I Parameter "RESPMEM" has value "PAYCOM1".
...
DFHPI9609I Parameter "URI" has value "/paybus1".
...
DFHPI9629I The minimum runtime level required for this Web
 service is "3.0".
DFHPI9640I This Web service should be installed into a PIPELINE
 that uses SOAP version "1.1".
DFHPI9587I Program "DFHLS2WS" has completed SUCCESSFULLY.

Testing the provider using
RDz Web Services Tester

• The following slides demonstrate using the RDz Web
Services Tester to test the provider:

1. Create a CICS web service project in RDz
2. Import the WSDL file
3. Run the Web Services Tester
4. Use the GUI to create and send a request to the provider

Testing the provider using RDz (1 of 8)

Testing the provider using RDz (2 of 8)

Testing the provider using RDz (3 of 8)

Testing the provider using RDz (4 of 8)

Testing the provider using RDz (5 of 8)

Testing the provider using RDz (6 of 8)

Testing the provider using RDz (7 of 8)

Testing the provider using RDz (8 of 8)

Creating a provider using
Rational Developer for System z (RDz)

• Step-by-step wizard, with
two options for runtime
XML conversion:

• Interpretive uses a
standard wrapper
program, as per the CICS
assistant

• Compiled generates a
bespoke COBOL
application handler
(wrapper program)

RDz
interactive wizard

in Eclipse GUI

Language structure
(COBOL, PL/I, C/C++)

wsbind WSDL Application
handler

COBOL program

Compiled option only

Creating a provider using RDz:
interpretive (1 of 9)

Creating a provider using RDz:
interpretive (2 of 9)

Creating a provider using RDz:
interpretive (3 of 9)

Creating a provider using RDz:
interpretive (4 of 9)

Creating a provider using RDz:
interpretive (5 of 9)

Creating a provider using RDz:
interpretive (6 of 9)

Creating a provider using RDz:
interpretive (7 of 9)

Creating a provider using RDz:
interpretive (8 of 9)

Creating a provider using RDz:
interpretive (9 of 9)

Creating a provider using RDz:
compiled (1 of 6)

Creating a provider using RDz:
compiled (2 of 6)

Creating a provider using RDz:
compiled (3 of 6)

Creating a provider using RDz:
compiled (4 of 6)

Creating a provider using RDz:
compiled (5 of 6)

Creating a provider using RDz:
compiled (6 of 6)

Creating a provider using RDz:
after running the RDz wizard
1. Transfer the wsbind file to the z/OS UNIX pickup

directory. Optionally, transfer the WSDL file to the same
directory.

2. Compiled option only (generated wrapper program):
• Compile and link the COBOL source program
• Create a PROGRAM resource

3. Issue a PIPELINE SCAN command.

Creating a provider using
RDz Service Flow Modeler

1. In RDz, create a Service Flow
Project. This starts a wizard that
directs you to:

2. Define a host connection (to the
z/OS system mainframe that hosts
your CICS application).

3. Navigate to the “start” screen
(signon to CICS, start the
transaction, clear the screen).

4. Start recording the “flow” (your
input, and the transaction output).

5. For each input field (request data),
specify a variable name.

6. For each output field (response
data), highlight the item on the
screen, and specify a variable
name.

7. Stop recording. This generates a
.seqflow file.

8. Right-click the .seqflow file, and
select New Generation Properties
File to generate a WSDL file.

9. Click Generate Runtime code.
(This wizard can submit the
compile JCL on z/OS for you.)

10. The generated code includes a
web service provider COBOL
program that drives your original
CICS application.

Network Web service
provider

Creating a web service requester
in CICS

SOAP
request

SOAP
response

Web service
requester

Your
CICS program

Methods for creating a web service
requester in CICS

1. CICS web services assistant from a WSDL, using the
DFHWS2LS batch utility

2. RDz from a WSDL (using a wizard), with interpretive
runtime XML conversion, as per DFHWS2LS, above (no
compiled option for a requester)

• Both methods generate copybooks and a wsbind file.
However, the RDz also generates COBOL source for a
requester program, demonstrating how to use the EXEC
CICS INVOKE WEBSERVICE command.

Presenter
Presentation Notes
Instead of a COBOL copybook, you can also use other language-specific data structures
The CICS web services assistant batch utility DFHLS2WS and the RDz interpretive method are effectively the same (they both use the same CICS-supplied application handler), but the RDz wizard also creates a COBOL program that you can use as a requester to test the provider.

Creating a requester
using the CICS web services assistant

• You will need: the
WSDL for the web
service that you want
to use

DFHWS2LS
batch utility

Language structure
(COBOL, PL/I, C/C++)

wsbind
Web service binding file

WSDL
Web Service Description

Language file

Creating the CICS infrastructure for a
requester

• Identical to the steps for a provider, except that a
requester does not require a TCPIPSERVICE or a
URIMAP resource

1. Create a pipeline configuration file.
2. Create a PIPELINE resource.
3. Unless you use autoinstalled PROGRAM definitions,

create a PROGRAM resource for each program in the
pipeline.

Creating a requester
using the CICS web services assistant

1. Run the DFHWS2LS batch utility (for example, specifying
a COBOL copybook as the input file).

2. Copy the generated wsbind file to the pickup directory
(the z/OS UNIX path specified by the WSDIR attribute of
the PIPELINE resource).
Optionally, copy the generated WSDL file to the same
path.

3. Install the PIPELINE (dynamically creates the
WEBSERVICE resource).

4. Add an EXEC CICS INVOKE WEBSERVICE command to
your COBOL program to send the request, and additional
code to process the response.

The requester is ready for testing.

JCL to run DFHWS2LS
//SYSEGXLS JOB (39248C,A,T),'LS2WS',
// MSGCLASS=A,NOTIFY=&SYSUID,REGION=0M
// SET QT=''''
//WHERESMA JCLLIB ORDER=CIRCLE.CICSWS.PROCLIB
//JAVAPROG EXEC DFHWS2LS,
// JAVADIR='Java601_64/J6.0.1_64',PATHPREF='/u',TMPDIR='/u/tmp',
// TMPFILE=&QT.&SYSUID.&QT,USSDIR='cicsts42'
//INPUT.SYSUT1 DD *
PDSLIB=CIRCLE.CICSWS.COPYLIB
REQMEM=REQCOM
RESPMEM=RESCOM
MAPPING-LEVEL=3.0
MINIMUM-RUNTIME-LEVEL=CURRENT
LANG=COBOL
WSBIND=/u/usr/lpp/cicsts/cicsts42/samples/webservices/wsbind/requester/*
paybus6.wsbind
WSDL=/u/usr/lpp/cicsts/cicsts42/samples/webservices/wsdl/paybus.wsdl
LOGFILE=/u/sysegx0/paybus6
/*

Output COBOL copybook PDS members:
one for the request, another for the
response

Output wsbind file

Input WSDL file

COBOL copybook generated by
DFHWS2LS

03 PAYBUSOperation.
 06 wsXpayrollXdata.
 09 wsXrequest PIC X(4).
 09 wsXkey.
 12 wsXdepartment PIC X(1).
 12 wsXemployeeXno PIC X(5).
 09 wsXname PIC X(20).
 09 wsXaddr1 PIC X(20).
 09 wsXaddr2 PIC X(20).
 09 wsXaddr3 PIC X(20).
 09 wsXphoneXno PIC X(8).
 09 wsXtimestamp PIC X(8).
 09 wsXsalary PIC X(8).
 09 wsXstartXdate PIC X(8).
 09 wsXremarks PIC X(32).
 09 wsXmsg PIC X(60).
 ...

<wsXpayrollXdata>
 <wsXrequest>DISP</wsXrequest>
 <wsXkey>
 <wsXdepartment>1</wsXdepartment>
 <wsXemployeeXno>00001</wsXemployeeXno>
 </wsXkey>
 <wsXname>CIRCLE COMPUTER 1 </wsXname>
 ...

Corresponding XML snippet

XML allows hyphens in element
names, but some applications and
programming languages interpret such
hyphens as minus signs (mathematical
operators), with undesirable results

Presenter
Presentation Notes
The XML standard explicitly allows dashes (hyphens) in element names (although not as the first character):�http://www.w3.org/TR/REC-xml/#NT-NameChar

Sending a request to a web service from
a CICS COBOL program
EXEC CICS INVOKE
 WEBSERVICE(CV-WEBSERVICE)
 CHANNEL(CV-CHANNEL-NAME)
 OPERATION(CV-OPERATION)
 URI(CV-URI)
 RESP(WS-EIB-RESP)
 END-EXEC. The RDz wizard generates

a sample CICS COBOL
program that does this

Creating a requester using RDz

RDz
interactive wizard

in Eclipse GUI

Language structure
(COBOL, PL/I, C/C++)

wsbind
Web service binding file

WSDL
Web Service Description

Language file

Example requester
program

The equivalent CICS
web services assistant
batch utility
(DFHWS2LS) does not
create this

Creating a requester using RDz (1 of 8)

Creating a requester using RDz (2 of 8)

Creating a requester using RDz (3 of 8)

Creating a requester using RDz (4 of 8)

Creating a requester using RDz (5 of 8)

Creating a requester using RDz (6 of 8)

Creating a requester using RDz (7 of 8)

Creating a requester using RDz (8 of 8)

Structure of the
pipeline definition for
a service provider

provider_
pipeline

cics_mtom_
handler

transport dfhmtom_
configuration

default_
transport_

handler_list

default_http_
transport_

handler_list

default_mq_
transport_

handler_list

named_
transport_

entry

handler handler handler name
transport_
handler_

list

service handler

service_
handler_

list
terminal_
handler

handler
cics_

soap_1.1_
handler

cics_
soap_1.2_

handler
wsse_
handler

apphandler

service_
parameter_

list

handler
cics_

soap_1.1_
handler

cics_
soap_1.2_

handler

cics_
soap_1.1_

handler_java

cics_
soap_1.2_

handler_java

Diagnosing web services in CICS:
sniffing containers in the pipeline

• The IBM Redbook Implementing
CICS Web Services, SG24-
7206, presents a simple “sniffer”
program that displays (in
tdqueue CESE) the contents of
the containers available in the
pipeline.

• To use the sniffer, you add it to
the pipeline (configuration file)
as a message handler.

• For example, in a provider
pipeline:

<provider_pipeline>
 <service>
 <service_handler_list>
 <handler>
 <program>SNIFFER</program>
 <handler_parameter_list/>
 </handler>
 </service_handler_list>
 <terminal_handler>
 <cics_soap_1.1_handler/>
 </terminal_handler>
 </service>
 <apphandler>DFHPITP</apphandler>
</provider_pipeline>

Sniffer output (1 of 5)
 CPIH 20120314113934 SNIFFER : *** Start ***
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHFUNCTION
 CPIH 20120314113934 SNIFFER : Content length : 00000016
 CPIH 20120314113934 SNIFFER : Container content: RECEIVE-REQUEST
 CPIH 20120314113934 SNIFFER : Containers on channel: List starts.
 CPIH 20120314113934 SNIFFER : >================================<
...
 CPIH 20120314113934 SNIFFER : Container Name : DFHFUNCTION
 CPIH 20120314113934 SNIFFER : Content length : 00000016
 CPIH 20120314113934 SNIFFER : Container content: RECEIVE-REQUEST
 CPIH 20120314113934 SNIFFER : >================================<
...
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-URI
 CPIH 20120314113934 SNIFFER : Content length : 00000008
 CPIH 20120314113934 SNIFFER : Container content: /paybus1
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHREQUEST
 CPIH 20120314113934 SNIFFER : Content length : 00002928
 CPIH 20120314113934 SNIFFER : Container content:
 <SOAP-ENV:Envelope ... >
 <SOAP-ENV:Body ... >
 <PAYBUSOperationRequest>
 <ws_payroll_data>
 <ws_request>DISP</ws_request>
 <ws_key>
 <ws_department>1</ws_department>
 <ws_employee_no>00001</ws_employee_no>
 </ws_key>
...
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>

Sniffer output (2 of 5)
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-PIPELINE
 CPIH 20120314113934 SNIFFER : Content length : 00000008
 CPIH 20120314113934 SNIFFER : Container content: CICSWSS
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-USERID
 CPIH 20120314113934 SNIFFER : Content length : 00000008
 CPIH 20120314113934 SNIFFER : Container content: CICSTS41
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-TRANID
 CPIH 20120314113934 SNIFFER : Content length : 00000004
 CPIH 20120314113934 SNIFFER : Container content: CPIH
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-WEBSERVICE
 CPIH 20120314113934 SNIFFER : Content length : 00000032
 CPIH 20120314113934 SNIFFER : Container content: paybus1
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-APPHANDLER
 CPIH 20120314113934 SNIFFER : Content length : 00000008
 CPIH 20120314113934 SNIFFER : Container content: DFHPITP
 CPIH 20120314113934 SNIFFER : Containers on channel: List ends
 CPIH 20120314113934 SNIFFER : DFHRESPONSE container deleted
 CPIH 20120314113934 SNIFFER : **** End ****

Sniffer output (3 of 5)
 CPIH 20120314113934 SNIFFER : *** Start ***
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHFUNCTION
 CPIH 20120314113934 SNIFFER : Content length : 00000016
 CPIH 20120314113934 SNIFFER : Container content: SEND-RESPONSE
 CPIH 20120314113934 SNIFFER : Containers on channel: List starts.
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-OUTACTION
 CPIH 20120314113934 SNIFFER : Content length : 00000067
 CPIH 20120314113934 SNIFFER : Container content:
 C"http://www.PAYBUS.PAYCOM1.com/PAYBUSPort/PAYBUSOperationResponse"
 CPIH 20120314113934 SNIFFER : >================================<
...
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-WSDL-CTX
 CPIH 20120314113934 SNIFFER : Content length : 00000116
 CPIH 20120314113934 SNIFFER : Container content:
 http://www.PAYBUS.PAYCOM1.com PAYBUSOperation
 http://www.PAYBUS.PAYCOM1.com
 http://www.PAYBUS.PAYCOM1.com PAYBUSPort
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-OPERATION
 CPIH 20120314113934 SNIFFER : Content length : 00000015
 CPIH 20120314113934 SNIFFER : Container content: PAYBUSOperation

Sniffer output (4 of 5)
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHRESPONSE
 CPIH 20120314113934 SNIFFER : Content length : 00002446
 CPIH 20120314113934 SNIFFER : Container content:
 <SOAP-ENV:Envelope ... >
 <SOAP-ENV:Body>
 <PAYBUSOperationResponse ... >
 <ws_payroll_data>
 <ws_request>DISP</ws_request>
 <ws_key>
 <ws_department>1</ws_department>
 <ws_employee_no>00001</ws_employee_no>
 </ws_key>
 <ws_name>SHARE</ws_name>
 <ws_addr1>QUEENSBURY HSE</ws_addr1>
 <ws_addr2>BRIGHTON</ws_addr2>
 <ws_addr3>SUSSEX</ws_addr3>
 <ws_phone_no>75529900</ws_phone_no>
 <ws_timestamp></ws_timestamp>
 <ws_salary>1234.56</ws_salary>
 <ws_start_date>28101984</ws_start_date>
 <ws_remarks>CIRCLE IS MAGIC</ws_remarks>
 <ws_msg></ws_msg>
 <ws_upd_inds>
 <ws_upd_name></ws_upd_name>
...

Sniffer output (5 of 5)
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHFUNCTION
 CPIH 20120314113934 SNIFFER : Content length : 00000016
 CPIH 20120314113934 SNIFFER : Container content: SEND-RESPONSE
....
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-WEBSERVICE
 CPIH 20120314113934 SNIFFER : Content length : 00000032
 CPIH 20120314113934 SNIFFER : Container content: paybus1
 CPIH 20120314113934 SNIFFER : >================================<
 CPIH 20120314113934 SNIFFER : Container Name : DFHWS-APPHANDLER
 CPIH 20120314113934 SNIFFER : Content length : 00000008
 CPIH 20120314113934 SNIFFER : Container content: DFHPITP
 CPIH 20120314113934 SNIFFER : Containers on channel: List ends
 CPIH 20120314113934 SNIFFER : **** End ****

Summary

• To create a service provider or requester in CICS:
• Create a PIPELINE resource and pipeline configuration file.
• Provider only: create a TCPIPSERVICE resource.
• Use CICS web service assistant or RDz to create wsbind

(and WSDL) files. You will need a COBOL copybook (or
other language structure) or a WSDL file.

• Install the PIPELINE (or issue a PIPELINE SCAN command
if already installed).

• Consider Service Flow Modeler for applications that do not
have separate presentation and business logic structures.

• Add a sniffer program to the pipeline to diagnose
problems.

	CICS as a Web Service�Provider or Requester
	Agenda
	Terms
	Basic concept
	Example SOAP request
	Example SOAP response
	Web Service Description Language (WSDL) file
	WSDL 1.1 file, continued
	Problem
	Solution
	CICS as a web service provider
	CICS as a web service requester
	CICS resources
	Pipeline configuration file
	Web service binding (wsbind) file
	wsbind file: pickup and shelf directories
	Creating a web service provider�in CICS
	Methods for creating a web service provider in CICS
	Creating a provider�using the CICS web services assistant
	Creating the CICS infrastructure for a provider
	Creating a provider�using the CICS web services assistant
	JCL to run DFHLS2WS
	DFHLS2WS log
	Testing the provider using�RDz Web Services Tester
	Testing the provider using RDz (1 of 8)
	Testing the provider using RDz (2 of 8)
	Testing the provider using RDz (3 of 8)
	Testing the provider using RDz (4 of 8)
	Testing the provider using RDz (5 of 8)
	Testing the provider using RDz (6 of 8)
	Testing the provider using RDz (7 of 8)
	Testing the provider using RDz (8 of 8)
	Creating a provider using�Rational Developer for System z (RDz)
	Creating a provider using RDz:�interpretive (1 of 9)
	Creating a provider using RDz:�interpretive (2 of 9)
	Creating a provider using RDz:�interpretive (3 of 9)
	Creating a provider using RDz:�interpretive (4 of 9)
	Creating a provider using RDz:�interpretive (5 of 9)
	Creating a provider using RDz:�interpretive (6 of 9)
	Creating a provider using RDz:�interpretive (7 of 9)
	Creating a provider using RDz:�interpretive (8 of 9)
	Creating a provider using RDz:�interpretive (9 of 9)
	Creating a provider using RDz:�compiled (1 of 6)
	Creating a provider using RDz:�compiled (2 of 6)
	Creating a provider using RDz:�compiled (3 of 6)
	Creating a provider using RDz:�compiled (4 of 6)
	Creating a provider using RDz:�compiled (5 of 6)
	Creating a provider using RDz:�compiled (6 of 6)
	Creating a provider using RDz:�after running the RDz wizard
	Creating a provider using�RDz Service Flow Modeler
	Creating a web service requester�in CICS
	Methods for creating a web service requester in CICS
	Creating a requester�using the CICS web services assistant
	Creating the CICS infrastructure for a requester
	Creating a requester�using the CICS web services assistant
	JCL to run DFHWS2LS
	COBOL copybook generated by DFHWS2LS
	Sending a request to a web service from a CICS COBOL program
	Creating a requester using RDz
	Creating a requester using RDz (1 of 8)
	Creating a requester using RDz (2 of 8)
	Creating a requester using RDz (3 of 8)
	Creating a requester using RDz (4 of 8)
	Creating a requester using RDz (5 of 8)
	Creating a requester using RDz (6 of 8)
	Creating a requester using RDz (7 of 8)
	Creating a requester using RDz (8 of 8)
	Structure of the pipeline definition for a service provider
	Diagnosing web services in CICS:�sniffing containers in the pipeline
	Sniffer output (1 of 5)
	Sniffer output (2 of 5)
	Sniffer output (3 of 5)
	Sniffer output (4 of 5)
	Sniffer output (5 of 5)
	Summary

