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CICS users are loyal to their apps – and for 
good reason!  However, they also need to 
integrate these same applications with an 
ever widening array of web and cloud-
based resources.  And, if that weren’t 
enough, every year they are under 
pressure to add new value, and reduce the 
cost of ownership.  That’s a tall order.  This 
session will highlight a few of the tactics 
and strategies that customers can use to 
enhance the value of the existing CICS 
apps while lowering the cost of ownership. 

Original Abstract (it morphed) 

One 
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Customer Context (why it morphed) 

 When the abstract was submitted, we had just been 
approached by a large CICS customer with some 
intriguing business/technical objectives 

 Business Objectives 
 Respond to competitive pressures in their industry 
 Lower incremental cost of high-volume  

CICS application processing 
(i.e., marginal value > marginal cost) 

 Move new/additional workload to System z and  
reinforce CICS TS as the most cost effective  
platform for their business 

 Technical Objective (at least their hope) 
 Reduce the CPU burn (GP) associated with  

socket applications and infrastructure 
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Perfect R&D Situation 

Well defined business objectives 
An initial theory as to what the  

technical issues might be 
Very strong in-house CICS talent 
Load testing infrastructure in place 
Good CICS tools on hand 
Test LPAR/region available 
Had a spare cubicle 
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Timing Was Opportune 
 Customers were continuing to state their concern 

about doing more for less 
 We had just delivered zIIP-enabled versions of our 

products, and our heads were filled with fun facts 
related to: 
 z/OS, USS, LE, WLM, SRBs, zIIP 
 CICS TS v4 Open Transaction Environment 
 Sockets 

 Other factors: 
 We are zealots regarding integration of CICS  

apps/data as part of web/cloud-based infrastructure 
 We are committed to delivering functionality under CICS 
 I didn’t want to stop writing code (zIIP project was too fun) 
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Cut to the Chase 
 What we learned was surprising and the results 

were unexpected (in a good way) 
 We ended up exploiting CICS TS v4 OTE and  

z/OS to create a solution 
 I want this to be knowledge you can use: 
 The approach is generally applicable to any 

CICS customer who has socket apps 
 The higher your volume, the more it  

matters 
 Yes… I’m “a vendor” but please forget 

that for now – I’m speaking as a CICS  
developer 

CICS 
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Initial Conditions 

• Typical architecture for CICS-based 
socket listener/applications 

• Persistent connection between 
Gateway and RX/TX transactions 

• Multiple simultaneous Gateway-to-
CICS connections 

• Volume was VERY HIGH! 
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Research Focus 

• EZASOKET application design patterns, 
performance, APIs 

• CICS Socket Listener design patterns 
• CICS Socket Def/Mgmt patterns 
• CICS TS v4 OTE exploitation 
• z/OS USS exploitation 
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 Provided as part of z/OS Communications Server 
 What it includes: 

 Socket APIs 
 C language API 
 Sockets Extended API (aka, EZASOKET or EZACICSO) 
 Original COBOL API (aka, EZACICAL) 

 Listeners: standard and enhanced (i.e., CSKL); or user-written 
 Definition and management components (e.g., EZAO) 

 A well-documented workhorse, but… 
 It’s been around a long time (circa 1992) 
 Older than CICS OTE 

 Thus… much of it’s original architecture 
 Reengineered to support OTE 

 But… the general approach of the original architecture persisted 

CICS Socket Support 

Thus, I’m NOT 
referring to CICS TS 

features which use the 
CICS Sockets Domain. 
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CICS Sockets       Sockets Domain 

Our focus  
is here… 
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CICS Sockets Pathway 

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference  

CICS Sockets Support CICS Sockets Domain 
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Test Methodology 

• Two test harnesses used for comparison 
• z/OS-based testing is quick and good for functionality, 

but not fair for performance (hyper-sockets is too good) 
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Standard Test Cycle 
 Each test cycle caused the gateway to: 
 Open 2 sockets via Listener TX 
 Send/Receive TXs started to handle socket I/O 
 Generate 2,500 request-response iterations (no delays) 
 Each request caused a LINK to a customer program 
 Bytes in/out modeled for average production use case 

 Benchmarks run: 
 1 concurrent test cycle 
 5 concurrent test cycles  

(10 sockets and 12,500 iterations) 
 Objectives: 
 Measure region-level CPU burn for various 

configurations 
 Differentiate between CPU burn associated with  

Socket apps and Socket infrastructure 

Selected to keep total region-level CPU 
use to a manageable level on test LPAR 
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Tooling Developed 
 It’s difficult to get a snapshot of a CICS region’s total 

resource consumption that is: 
 high-resolution (microseconds) 
 low-overhead 
 Immediate 
 Includes zIIP and zAAP 

 Ended up developing four tools: 
 A CICS transaction to provide a summary of MVS ASSB timers (HBZT) 
 A CICS XMNOUT exit to log transaction metrics via WTO  
 A CICS-based test harness to generate socket activity 
 A PC-based test harness to augment the customer’s 

 The combination allowed us to: 
 drive testing fast 
 quickly assess results from all angles 

 Special thanks to: 
 Larry Lawler (UNICOM) 
 Ed Jaffe (Phoenix Software) 
 Scott Glenn (HostBridge) 

 For info on HBZT, see me after session 
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HBZT CPU Transaction 

ACTUAL mode upon entry  

Simple 
but 

Free 
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HBZT CPU Transaction 

PF2 toggles mode 

Immediate view of 
ASSB values 
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HBZT CPU Transaction 

PF1 resets baseline 

All delta values now 
zero 
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HBZT CPU Transaction 

Run load test and 
press ENTER 

Immediate view of 
ASSB values (deltas) 
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HBZT CPU Transaction 

PF1 resets baseline 

All delta values now 
zero 

Press PF2 to get 
back to totals 

Immediate view of 
ASSB values (totals) 
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XMNOUT Exit Metrics 

Immediate view of 
Receive TX from 
CICS perspective 

Immediate view of 
Send TX from 

 CICS perspective 
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Program Metrics 

Immediate view of Receive TX 
from WLM perspective 

 In order to triangulate all views of resource 
consumption, we included instrumentation in our 
code (provided it would not bias the results): 
 Simple activity & data counters  
 WLM Enclave metrics 

Immediate view of Send TX 
from WLM perspective 
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Where the Data Led Us 
 Under volume testing, the CPU burn associated 

with the CICS Sockets Support was measurable 
and linear (confirmed customer’s theory) 

 I won’t characterize it as “high” or “low” because 
the only thing that mattered was whether it  
could be lower (or not so linear) 

 Thus, we began to: 
 Isolate various components and their impact 
 Consider how to provide alternative  

functionality (but complimentary to CICS TS) 
 Low hanging fruit seemed to be  

CICS Socket Handler (via EZASOKET API) 
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Solution 1 

• Leverage EZASOKET API as established design pattern 
• Replace CICS Socket Handler 
• Keep CICS Socket Definition/Management 
• Exploit CICS TS v4 OTE, z/OS, USS 
• EZASOKET apps must be defined as THREADSAFE & OPENAPI 
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Solution 1 Assessment 
 Good… 
 The Alt. Socket Handler lowered GP CPU burn 

associated with Socket I/O 
 All it required was a re-link of apps that used EZASOKET 

API (with alternate load module) 
 Transparent to existing user-written Listeners, Sender 

and Receiver TXs 
 However… 
 EZASOKET API emulation seemed to be a bit of needless 

overhead (e.g., parameter marshaling and 
transformation) 

 zIIP enablement opportunity wasn’t optimal  
due to task switching 

 But wait… 
 The design patterns for CICS-based Listeners, 

Receivers and Senders are fairly common 
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Solution 2 

• Replace Listener, Receive, Send TX with equivalent/generic alternatives 
• Eliminate EZASOKET API as a design pattern 
• Keep CICS Socket Definition/Management 
• Exploit CICS TS v4 OTE, z/OS, USS, zIIP 
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Solution 2 Assessment 

 Very Good… 
 GP CPU burn associated with Socket I/O  

went down further 
 EZASOKET API emulation eliminated (all 

components use native sockets) 
 Transparent to the customer’s applications 
 CICS Socket definition/management leveraged 

 EZAO still used to Configure, Start, or Stop Listeners 

 zIIP enablement potential maximized 
 Minimal task switching 
 Customer application code not zIIP enabled 

(per IBM-ISV T&C’s) 

zIIP 
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Pathway - Old vs. New 

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference  

CICS Sockets Support Alt. Sockets Support 
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Test Results 

Standard Socket Infrastructure (EZA-based)
Send TX Recv TX Total
(GP) (GP)

1 140714 332702
2 138355 317988
3 141509 336017

Avg 140193 328902 469095

Alt. Socket Infrastructure (ziip=n)
Alt Send TX Alt Recv TX
(GP) (GP)

1 128676 285711
2 125736 271014
3 119938 240784

Avg 124783 265836 390620 -17%

Alt. Socket Infrastructure (ziip=y)
Alt Send TX Alt Recv TX
(GP) (zIIP) (GP) (zIIP)

1 94956 48131 165486 114161
2 94766 48759 165751 114349
3 94049 47391 159752 111208
4 94522 47390 155531 107856

Avg 94573 161630 256203 -34% -45%

TEST: concurrent instances=1; total requests=2500

% reduction - Old vs. 
New w/o zIIP

% reduction - 
New w/o zIIP 
to New w/ zIIP

% reduction - 
Old vs. New w/ 
zIIP

All times in 
microseconds 
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Test Results (w/ Concurrency) 
Standard Socket Infrastructure (EZA-based)

Send TX Recv TX Total
(GP) (GP)

1 609880 1226658
2 614881 1234086
3 617669 1259704

Avg 614143 1240149 1854293

Alt. Socket Infrastructure (ziip=n)
Alt Send TX Alt Recv TX
(GP) (GP)

491684 782429
496651 780384
502901 804619

Avg 497079 789144 1286223 -31%

Alt. Socket Infrastructure (ziip=y)
Alt Send TX Alt Recv TX
(GP) (zIIP) (GP) (zIIP)

417841 198962 657107 424739
417388 194910 613641 401113
409281 194758 618252 399555
410077 193542 600015 397736

Avg 413647 622254 1035901 -19% -44%

TEST: concurrent instances=5; total requests=12500

% reduction - Old vs. 
New  w/o zIIP

% reduction - 
New w/o zIIP 
to New w/ zIIP

% reduction - 
Old vs. New w/ 
zIIP

Your 
Mileage 

May 
Vary 

All times in 
microseconds 

The TCP/IP stack seems 
to get more efficient the 

harder you load it 
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Summary 
 CICS Socket Support has been a workhorse for a long 

time -- it’s earned it’s keep! 
 CICS TS Open Transaction Environment continues to 

evolve and permits new opportunities for customers  
and ISV’s -- thank you Hursley Lab 

 An example is the Alternate Socket Handler described  
in this presentation 

 This approach is applicable to any customer who relies 
heavily on CICS Socket Support 
 zIIP support can only be provided by a licensed ISV 

 The final estimate was that the solution would  
reduce the customer’s CPU usage (GP)  
associated with CICS Sockets I/O by: 
 20% without zIIP-enablement 
 40% with zIIP-enablement 

 They were pleased 
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