
Copyright © 2012 HostBridge Technology

CICS Integration & Optimization:
Tales from the Trenches

Russ Teubner - russ@hostbridge.com

(SHARE Anaheim)

Copyright © 2012 HostBridge Technology

CICS users are loyal to their apps – and for
good reason! However, they also need to
integrate these same applications with an
ever widening array of web and cloud-
based resources. And, if that weren’t
enough, every year they are under
pressure to add new value, and reduce the
cost of ownership. That’s a tall order. This
session will highlight a few of the tactics
and strategies that customers can use to
enhance the value of the existing CICS
apps while lowering the cost of ownership.

Original Abstract (it morphed)

One

Copyright © 2012 HostBridge Technology

Customer Context (why it morphed)

 When the abstract was submitted, we had just been
approached by a large CICS customer with some
intriguing business/technical objectives

 Business Objectives
 Respond to competitive pressures in their industry
 Lower incremental cost of high-volume

CICS application processing
(i.e., marginal value > marginal cost)

 Move new/additional workload to System z and
reinforce CICS TS as the most cost effective
platform for their business

 Technical Objective (at least their hope)
 Reduce the CPU burn (GP) associated with

socket applications and infrastructure

Copyright © 2012 HostBridge Technology

Perfect R&D Situation

Well defined business objectives
An initial theory as to what the

technical issues might be
Very strong in-house CICS talent
Load testing infrastructure in place
Good CICS tools on hand
Test LPAR/region available
Had a spare cubicle

Copyright © 2012 HostBridge Technology

Timing Was Opportune
 Customers were continuing to state their concern

about doing more for less
 We had just delivered zIIP-enabled versions of our

products, and our heads were filled with fun facts
related to:
 z/OS, USS, LE, WLM, SRBs, zIIP
 CICS TS v4 Open Transaction Environment
 Sockets

 Other factors:
 We are zealots regarding integration of CICS

apps/data as part of web/cloud-based infrastructure
 We are committed to delivering functionality under CICS
 I didn’t want to stop writing code (zIIP project was too fun)

Copyright © 2012 HostBridge Technology

Cut to the Chase
 What we learned was surprising and the results

were unexpected (in a good way)
 We ended up exploiting CICS TS v4 OTE and

z/OS to create a solution
 I want this to be knowledge you can use:
 The approach is generally applicable to any

CICS customer who has socket apps
 The higher your volume, the more it

matters
 Yes… I’m “a vendor” but please forget

that for now – I’m speaking as a CICS
developer

CICS

Copyright © 2012 HostBridge Technology

Initial Conditions

• Typical architecture for CICS-based
socket listener/applications

• Persistent connection between
Gateway and RX/TX transactions

• Multiple simultaneous Gateway-to-
CICS connections

• Volume was VERY HIGH!

Copyright © 2012 HostBridge Technology

Research Focus

• EZASOKET application design patterns,
performance, APIs

• CICS Socket Listener design patterns
• CICS Socket Def/Mgmt patterns
• CICS TS v4 OTE exploitation
• z/OS USS exploitation

Copyright © 2012 HostBridge Technology

 Provided as part of z/OS Communications Server
 What it includes:

 Socket APIs
 C language API
 Sockets Extended API (aka, EZASOKET or EZACICSO)
 Original COBOL API (aka, EZACICAL)

 Listeners: standard and enhanced (i.e., CSKL); or user-written
 Definition and management components (e.g., EZAO)

 A well-documented workhorse, but…
 It’s been around a long time (circa 1992)
 Older than CICS OTE

 Thus… much of it’s original architecture
 Reengineered to support OTE

 But… the general approach of the original architecture persisted

CICS Socket Support

Thus, I’m NOT
referring to CICS TS

features which use the
CICS Sockets Domain.

Copyright © 2012 HostBridge Technology

CICS Sockets Sockets Domain

Our focus
is here…

Copyright © 2012 HostBridge Technology

CICS Sockets Pathway

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference

CICS Sockets Support CICS Sockets Domain

Copyright © 2012 HostBridge Technology

Test Methodology

• Two test harnesses used for comparison
• z/OS-based testing is quick and good for functionality,

but not fair for performance (hyper-sockets is too good)

Copyright © 2012 HostBridge Technology

Standard Test Cycle
 Each test cycle caused the gateway to:
 Open 2 sockets via Listener TX
 Send/Receive TXs started to handle socket I/O
 Generate 2,500 request-response iterations (no delays)
 Each request caused a LINK to a customer program
 Bytes in/out modeled for average production use case

 Benchmarks run:
 1 concurrent test cycle
 5 concurrent test cycles

(10 sockets and 12,500 iterations)
 Objectives:
 Measure region-level CPU burn for various

configurations
 Differentiate between CPU burn associated with

Socket apps and Socket infrastructure

Selected to keep total region-level CPU
use to a manageable level on test LPAR

Copyright © 2012 HostBridge Technology

Tooling Developed
 It’s difficult to get a snapshot of a CICS region’s total

resource consumption that is:
 high-resolution (microseconds)
 low-overhead
 Immediate
 Includes zIIP and zAAP

 Ended up developing four tools:
 A CICS transaction to provide a summary of MVS ASSB timers (HBZT)
 A CICS XMNOUT exit to log transaction metrics via WTO
 A CICS-based test harness to generate socket activity
 A PC-based test harness to augment the customer’s

 The combination allowed us to:
 drive testing fast
 quickly assess results from all angles

 Special thanks to:
 Larry Lawler (UNICOM)
 Ed Jaffe (Phoenix Software)
 Scott Glenn (HostBridge)

 For info on HBZT, see me after session

Copyright © 2012 HostBridge Technology

HBZT CPU Transaction

ACTUAL mode upon entry

Simple
but

Free

Copyright © 2012 HostBridge Technology

HBZT CPU Transaction

PF2 toggles mode

Immediate view of
ASSB values

Copyright © 2012 HostBridge Technology

HBZT CPU Transaction

PF1 resets baseline

All delta values now
zero

Copyright © 2012 HostBridge Technology

HBZT CPU Transaction

Run load test and
press ENTER

Immediate view of
ASSB values (deltas)

Copyright © 2012 HostBridge Technology

HBZT CPU Transaction

PF1 resets baseline

All delta values now
zero

Press PF2 to get
back to totals

Immediate view of
ASSB values (totals)

Copyright © 2012 HostBridge Technology

XMNOUT Exit Metrics

Immediate view of
Receive TX from
CICS perspective

Immediate view of
Send TX from

 CICS perspective

Copyright © 2012 HostBridge Technology

Program Metrics

Immediate view of Receive TX
from WLM perspective

 In order to triangulate all views of resource
consumption, we included instrumentation in our
code (provided it would not bias the results):
 Simple activity & data counters
 WLM Enclave metrics

Immediate view of Send TX
from WLM perspective

Copyright © 2012 HostBridge Technology

Where the Data Led Us
 Under volume testing, the CPU burn associated

with the CICS Sockets Support was measurable
and linear (confirmed customer’s theory)

 I won’t characterize it as “high” or “low” because
the only thing that mattered was whether it
could be lower (or not so linear)

 Thus, we began to:
 Isolate various components and their impact
 Consider how to provide alternative

functionality (but complimentary to CICS TS)
 Low hanging fruit seemed to be

CICS Socket Handler (via EZASOKET API)

Copyright © 2012 HostBridge Technology

Solution 1

• Leverage EZASOKET API as established design pattern
• Replace CICS Socket Handler
• Keep CICS Socket Definition/Management
• Exploit CICS TS v4 OTE, z/OS, USS
• EZASOKET apps must be defined as THREADSAFE & OPENAPI

Copyright © 2012 HostBridge Technology

Solution 1 Assessment
 Good…
 The Alt. Socket Handler lowered GP CPU burn

associated with Socket I/O
 All it required was a re-link of apps that used EZASOKET

API (with alternate load module)
 Transparent to existing user-written Listeners, Sender

and Receiver TXs
 However…
 EZASOKET API emulation seemed to be a bit of needless

overhead (e.g., parameter marshaling and
transformation)

 zIIP enablement opportunity wasn’t optimal
due to task switching

 But wait…
 The design patterns for CICS-based Listeners,

Receivers and Senders are fairly common

Copyright © 2012 HostBridge Technology

Solution 2

• Replace Listener, Receive, Send TX with equivalent/generic alternatives
• Eliminate EZASOKET API as a design pattern
• Keep CICS Socket Definition/Management
• Exploit CICS TS v4 OTE, z/OS, USS, zIIP

Copyright © 2012 HostBridge Technology

Solution 2 Assessment

 Very Good…
 GP CPU burn associated with Socket I/O

went down further
 EZASOKET API emulation eliminated (all

components use native sockets)
 Transparent to the customer’s applications
 CICS Socket definition/management leveraged

 EZAO still used to Configure, Start, or Stop Listeners

 zIIP enablement potential maximized
 Minimal task switching
 Customer application code not zIIP enabled

(per IBM-ISV T&C’s)

zIIP

Copyright © 2012 HostBridge Technology

Pathway - Old vs. New

z/OS Communications Server, IP Sockets Application Programming Interface Guide and Reference

CICS Sockets Support Alt. Sockets Support

Copyright © 2012 HostBridge Technology

Test Results

Standard Socket Infrastructure (EZA-based)
Send TX Recv TX Total
(GP) (GP)

1 140714 332702
2 138355 317988
3 141509 336017

Avg 140193 328902 469095

Alt. Socket Infrastructure (ziip=n)
Alt Send TX Alt Recv TX
(GP) (GP)

1 128676 285711
2 125736 271014
3 119938 240784

Avg 124783 265836 390620 -17%

Alt. Socket Infrastructure (ziip=y)
Alt Send TX Alt Recv TX
(GP) (zIIP) (GP) (zIIP)

1 94956 48131 165486 114161
2 94766 48759 165751 114349
3 94049 47391 159752 111208
4 94522 47390 155531 107856

Avg 94573 161630 256203 -34% -45%

TEST: concurrent instances=1; total requests=2500

% reduction - Old vs.
New w/o zIIP

% reduction -
New w/o zIIP
to New w/ zIIP

% reduction -
Old vs. New w/
zIIP

All times in
microseconds

Copyright © 2012 HostBridge Technology

Test Results (w/ Concurrency)
Standard Socket Infrastructure (EZA-based)

Send TX Recv TX Total
(GP) (GP)

1 609880 1226658
2 614881 1234086
3 617669 1259704

Avg 614143 1240149 1854293

Alt. Socket Infrastructure (ziip=n)
Alt Send TX Alt Recv TX
(GP) (GP)

491684 782429
496651 780384
502901 804619

Avg 497079 789144 1286223 -31%

Alt. Socket Infrastructure (ziip=y)
Alt Send TX Alt Recv TX
(GP) (zIIP) (GP) (zIIP)

417841 198962 657107 424739
417388 194910 613641 401113
409281 194758 618252 399555
410077 193542 600015 397736

Avg 413647 622254 1035901 -19% -44%

TEST: concurrent instances=5; total requests=12500

% reduction - Old vs.
New w/o zIIP

% reduction -
New w/o zIIP
to New w/ zIIP

% reduction -
Old vs. New w/
zIIP

Your
Mileage

May
Vary

All times in
microseconds

The TCP/IP stack seems
to get more efficient the

harder you load it

Copyright © 2012 HostBridge Technology

Summary
 CICS Socket Support has been a workhorse for a long

time -- it’s earned it’s keep!
 CICS TS Open Transaction Environment continues to

evolve and permits new opportunities for customers
and ISV’s -- thank you Hursley Lab

 An example is the Alternate Socket Handler described
in this presentation

 This approach is applicable to any customer who relies
heavily on CICS Socket Support
 zIIP support can only be provided by a licensed ISV

 The final estimate was that the solution would
reduce the customer’s CPU usage (GP)
associated with CICS Sockets I/O by:
 20% without zIIP-enablement
 40% with zIIP-enablement

 They were pleased

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Initial Conditions
	Research Focus
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Test Methodology
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Solution 1
	Slide Number 24
	Solution 2
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

