
1

Saving Your Caller's Registers -
Not Your Father's Save Area

Tom Marchant

Compuware

thomas.marchant@compuware.com

Tuesday, August 7, 2012

Session 11408

2

2

Acknowledgments

• Peter Relson, z/OS Core Technology Design, IBM

• The Assembler Services Guide, Release 12 or higher

• SA22-7605-12 Release 12

• SA22-7605-14 Release 13

• All of the people who have asked me to explain it to them

When I was first preparing to use the newer save area formats, I had

some questions. I asked and Peter graciously answered. The answers

lead to more questions. Peter patiently answered my questions. After

several email exchanges, he made extensive revisions to the Linkage

Conventions Chapter of the Assembler Services Guide. The z/OS

Version 1 Release 12 edition of the manual is much clearer than earlier

editions.

Many people have asked me to explain this material to them, and each

time I did, my understanding grew.

I am grateful to Peter for his review of this presentation and for some

suggestions that he made to improve the content.

3

3

Agenda

• Review the standard 72-byte save area

• F4SA used for programs that use the 64-bit registers

• Chaining the save areas together

• Using F4SA to identify the save area type
• Following save area chains in a dump

• F7SA for AR mode programs

• F5SA and F8SA for 64-bit programs that are passed a 72-

byte save area

• Using the Linkage Stack

• XP Link will not be covered

We will begin with a brief review of the 72-byte save area.

Then we will cover the newer save area formats, starting with F4SA.

We will give special emphasis to the correct method of marking the save

areas to identify the save area formats that are used.

Finally, we will cover the correct way to establish a save area for the

programs that you call if you use the Linkage Stack to save your caller's

registers.

XPLink formats used by some Language Environment programs will not

be covered in this presentation.

4

4

This is why Linkage conventions are
important

SAVE AREA TRACE

PROCEEDING FORWARD FROM TCBFSA

INTERRUPT AT B8368732

PROCEEDING BACK VIA REG 13

NAME=UNKNOWN

WAS ENTERED VIA CALL AT EP PROGRAM2

SA 382B04F8 WD1 00008C98 HSA 382B03B8 LSA 38369D78 RET B836847C EPA 800150F8

 R1 382B0594 R2 00000000 R3 00007130 R4 382AD784 R5 38368967

 R7 382B091C R8 B80AC30A R9 00000000 R10 382B07B8 R11 38367968

NAME=PROGRAM1

WAS ENTERED VIA CALL

SA 382B03B8 WD1 00001001 HSA 382AD2C0 LSA 382B04F8 RET B80002FC EPA B8367968

 R1 382AD71C R2 00000010 R3 80008918 R4 380AE010 R5 382AD784

 R7 00000001 R8 B80AC30A R9 382AF2BE R10 382AE2BF R11 38000190

Standard save area formats are used so that the program flow can be

followed when analyzing a dump. This shows part of a save area trace

as it is shown in a SYSUDUMP or SYSABEND dump. The previous

save area field that is in the second word of the save area is used to

locate the previous save area.

SYSUDUMP and SYSABEND analyze the calling chain by first going

forward from the first save area that is stored in the TCB (TCBFSA).

This analysis is done only with standard 72-byte save areas, and then

only for programs that maintain the forward chain. Not all programs do.

As we will see, with the newer save area formats, the only predictable

way to follow the save area chain is going backward. In some cases, it

is impossible to follow it going forward

5

5

First some terminology

• These all refer to the same location

• Offset 4

• Word 1

• The second word

• The Linkage Conventions chapter of the Assembler

Services Guide uses all three of these ways to refer to

various locations in the save areas.

Word 0 is the first word in the save area. It begins at offset 0.

Word 1 begins at offset 4.

6

6

The basic form of these slides

Program

A

Register 13

Program

B
Program

C

Program

B's

Save

Area

Program

A's

Save

Area

Program

C's

Save

Area

We start out with Program A on the left side. Program A has a save

area whose address is in register 13 when it calls program B. Program

B uses this save area to save program A's registers and establishes its

own save area, then calls program C which also creates a save area for

any programs that it calls.

After this slide, the programs are not shown, only the save areas that

are associated with them.

7

7

Standard 72-byte save area

Next

Previous

Register 14

Register 15

Register 0

Register 1

...

Register 11

Register 12

Register 13

STM 14,12,12(13)

GETMAIN RU,LV=72

ST 13,4(,1)

ST 1,8(,13)

LR 13,1

When program B receives control, it saves registers 14-12 starting in

offset 12 of the save area pointed to by register 13.

Then it allocates a new 72 byte (18 fullword) save area on a fullword

boundary and chains the two save areas together. Offset 4 of the new

save area points to the caller's save area. Offset 8 of the caller's save

area is set to the address of the new save area. Finally, it updates

register 13 to point to the new save area.

Register 13 is not saved in the caller's save area. It contains the

address of the caller's save area and is stored in the new save area.a.

8

8

Standard 72-byte save area

Next

Previous

Next

Previous

Register 14

Register 15

Register 0

Register 1

...

Register 11

Register 12

Register 14

Register 15

Register 0

Register 1

...

Register 11

Register 12

Register 13

When Program B calls program C, program C does the same thing.

Only the middle save area in this illustration has all of the fields filled in.

9

9

Saving 64-bit registers

STMG 14,12,8(13)

GETMAIN RU,LV=144

STG 13,128(,1)

STG 1,136(,13)

MVC 4(4,1),=C'F4SA'

LGR 13,1

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Previous

Next

F4SA

Register 13

With z/Architecture, the registers are now 64 bits wide. Programs that

use the high halves of the 64-bit registers need to save all 64 bits of the

registers.

Program B saves program A's registers 14-12 starting at 0ffset 8 in

program A's save area. A new 144 byte (18 doubleword) save area is

allocated on a doubleword boundary. The address of the calling

program's save area is stored in the doubleword at offset 128 (X'80') of

the new save area. The address of the new save area is stored in the

doubleword at offset 136 (X'88') of the calling program's save area.

�F4SA� is stored in offset 4 of the new save area. We do not know or

care what is in offset 4 of program A's save area. Nor do we know how

the new save area will be used.

The instructions shown are for illustrative purposes. For better

readability and maintainability, use the labels defined in IHASAVER

rather than hard-coded offsets. The samples in the Assembler Services

Guide use these labels to save and restore registers.

10

10

Saving 64-bit registers

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Previous

NextNext

Previous

F4SAF4SA

Register 13

When program C is called, it does exactly the same thing. Here we can

see the result when C is in control.

Because the save area addresses are stored as doublewords, a save

area could be allocated above 2 GB, but doing so means that only

AMODE(64) programs can be called by this program.

The Assembler Services Guide refers to AMODE 64 programs, but even

if a program only uses the high halves to do arithmetic, the high halves

must be preserved. This presentation refers to �64-bit programs� to

signify programs that alter the high halves of some registers. �31-bit

programs� refers to programs that do not alter the high halves of any

registers.

11

11

Same areas drawn as a doubleword wide

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Next

Register 13

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Next

F4SA

Previous

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12
Previous

F4SA

8 bytes 8 bytes8 bytes

This slide contains the same information as the previous illustration, but

it is drawn differently. While the previous slide showed the save area as

being 4 bytes wide, in this slide the save area is illustrated as a

doubleword in width.

12

12

After program C returns, the save area
might still be in memory somewhere

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Next

Register 13

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Next

F4SA

Previous

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12
Previous

F4SA

8 bytes 8 bytes

Now suppose that program C has freed its save area and returned to

program B. Program C's save area might still exist somewhere in

memory, and program B's save area still has the address where it was

located. If it has not been reused, there is still a back chain pointer to

B's save area.

13

13

Call a 31-bit program

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Next

Register 13

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Next

F4SA

Previous

Previous

Previous

Register 15

Register 1

Register 3

Register 5

Register 7

Register 9

Register 11

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Register 14

Register 0

Register 2

Register 4

Register 6

Register 8

Register 10

Register 12

Next

8 bytes 8 bytes

Now program B calls a 31-bit program, C2. C2 saves program B's

registers in standard format. This does not disturb anything important in

program B's save area. Offset 4 still contains the value �F4SA� and the

previous save area pointer is at offset 128 (X'80'). When C2 returns,

program B will be able to restore program A's registers to return to it.

This illustrates why it is very difficult to follow the save area chain going

forward. At this point in time, B's save area has a forward pointer at

offset 8 and an old forward pointer at offset 136 (X'88').

14

14

Setting �F4SA� in the save area

• �F4SA� is set in offset 4 of the new save area to signify that

the program that created the save area saved its caller's

registers in F4SA format in the caller's save area.

• It does not describe the contents of the save area that is

marked with �F4SA�

• The value in offset 4 of the caller's save area is not important

• Offset 4 is the same location that is used in a standard save

area to hold the address of the previous save area

• MVC SAVF4SAID-SAVF4SA(4,1),=A(SAVF4SAID_VALUE)

• Do not use �=C�. It will not generate the correct value.

• Use the sample code in the Assembler Services Guide.

• It is more complete and it has been tested.

This is important.

The value in the second word of the save area does not describe the

contents or the size of the save area that contains it. It tells how the

program that allocated the save area saved its caller's registers in its

caller's save area.

It might seem strange to use =A(SAVF4SAID_VALUE) when setting the

value in offset 4. That is the correct way to set it.

The samples in the Assembler Services Guide are very good and they

have all been tested and verified to work correctly. Use them.

15

15

Finding the previous save area

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Register 9

Register 10

Register 11

Register 12

Previous

Next

F4SA

Register 13

Offset 4

Offset 128 (X'80')

The value in the second

word tells one thing

about the save area that

contains it:

It tells how to find the

previous save area.

When looking at a save area in a dump, examine the value at offset 4 to

find the location of the previous save area.

If it is even, it is the address of a standard 72-byte save area or it is

zero, indicating that there is no previous save area.

If it is �F4SA�, the previous save area is at offset 128 (X'80').

16

16

A question and Peter Relson's answer

Q: When the system gives control to a routine, is the 144-

byte save area that is provided marked as F4SA?

A: The answer is "no". Because there is no caller of the

"system" who allocated the storage for the 144-byte save

area. So the routine (the system) who allocated the storage

for the 144-byte area did not save its callers registers.

When the system passes control to a program with ATTACH, register

13 contains the address of a 144-byte save area on a doubleword

boundary. The second word of the save area is zero, indicating that

there is no previous save area.

17

17

Programs that alter Access Registers
216 byte save area � 27 Doublewords

Register 13

Previous

F7SA

X'80'

A's AR13

A's ASC mode

X'88'

X'80'

NextX'88'

Program

A's 64-bit

Registers

STG 13,128(,1)

STG 1,136(,13)

MVC 4(4,1),=C'F7SA'

LGR 13,1

A's

Access

registers

X'CC'

X'D0'

X'CC'

X'D0'

STMG 14,12,8(13)

STAM 14,12,144(13)

Allocate a 216-byte save

area

Save the caller's ASC

mode in offset 208 of the

new save area

STAM 13,13,204(1)

Next, we will look at the way an AR-mode program can save the Access

Registers. For this, the program will require a 216 byte (27

doubleword) save area. The Access Registers are stored at offset 144

of the save area. The calling program's ASC mode is stored in offset

212 (X'D0') and Access Register 13 is stored at offset 208 (X'CC') of the

new save area. This information is needed in order to be able to

correctly locate the previous save area. For details about the code

needed to save the ASC mode, see the Assembler Services Guide.

As with F4SA, the back chain pointer is at offset 128 (X'80') and the

forward chain is at offset 136 (X'88'). The new save area is marked to

show how we saved our caller's registers, this time with �F7SA�.

Register 13 is updated with the address of our new save area.

18

18

Call program C

Register 13

Previous

F7SA

X'80'

B's AR13

B's ASC mode

X'88'
Previous

F7SA

X'80'

A's AR13

A's ASC mode

NextX'88'

X'80'

NextX'88'

B's

Access

registers

Program

B's 64-bit

Registers

A's

Access

registers

Program

A's 64-bit

Registers

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

When program B calls AR mode program C, program C does the same

thing.

The General Purpose Registers and the Access Registers are saved in

the caller's save area. The ASC mode when we received control is

stored in our save area, along with the ALET for the caller's save area

that was in AR13.

19

19

Program C could be a 64-bit program that
does not use Access Registers

Register 13

Previous

F4SA

X'80'

X'88'
Previous

F7SA

X'80'

A's AR13

A's ASC mode

NextX'88'

X'80'

NextX'88'

Program

B's 64-bit

Registers

A's

Access

registers

Program

A's 64-bit

Registers

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

144 Byte

18 Doublewords

If program C is a 64-bit program that does not use the Access

Registers, it will save program B's registers in F4SA format within the

216-byte save area that program B provided. No harm is done by this.

Program C will allocate a save area that is in accordance with the

specifications of any programs that it calls. It may be a 144-byte save

area or a 216 byte save area. Regardless of the size of save area that

C allocates, C will mark it as F4SA because that is the format that C

used to save its caller's registers.

20

20

Program C could be a 31-bit program

Register 13

Previous

Previous

F7SA

X'80'

A's AR13

A's ASC mode

X'88'

X'80'

NextX'88'

B's 32-bit

Registers

A's

Access

registers

Program

A's 64-bit

Registers

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

Next

72 Bytes

18 Fullwords

B can also call a 31-bit program. The 31-bit program will use the first 72

bytes of the 216-byte save are that was allocated by B. No harm is

done by this. The 31-bit program saves its caller's registers in the usual

way and the save areas are chained according to the rules for standard

save areas. Offset 4 of the new save area has the address of the

caller's save area. Offset 8 of the caller's save area is updated with the

address of the new save area. The result is as is shown here.

With the mixing of save area formats that can occur, the only reliable

way to analyze the save areas is going backward.

21

21

B can be a 64-bit program that saves its
caller's registers in F4SA format

Register 13

Previous

F7SA

X'80'

B's AR13

B's ASC mode

X'88'
Previous

F4SA

X'80'

NextX'88'

X'80'

NextX'88'

B's

Access

registers

Program

B's 64-bit

Registers

Program

A's 64-bit

Registers

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

Here, program B is a 64-bit program that does not use Access

Registers. It requires a 144-byte save area to save program A's

registers in F4SA format. Program B will be calling program C, which

does use the Access Registers. Program B knows that it must provide a

216-byte save area for C to save B's registers.

This is another illustration of how the value in offset 4 does not describe

the save area that contains it.

22

22

B can be a 31-bit program that saves its
caller's registers in a 72-byte save area

Register 13

Previous

F7SA

X'80'

B's AR13

B's ASC mode

X'88'

Previous

X'80'

NextX'88'

Next

B's

Access

registers

Program

B's 64-bit

Registers

Program

A's 32-bit

Registers

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

X'CC'

X'D0'

In this illustration, program B is a 31-bit program. It uses a 72-byte save

area to save program A's registers in standard format. Program B will

be calling program C, which requires a 216-byte save area for C to save

B's registers. This might be unusual, but it is consistent with the rules

for save areas.

23

23

A question and Peter Relson's answer

Q: Module C, called by B, would not be able to determine by

looking at the save area that was passed to it whether or not

it had enough space to store the access registers.

A: C does not "determine", C "requires". C�s entry

requirements de ne how big a save area its callers must �

provide. It is up to the callers to obey or face the

consequences (such as an overlay of B�s storage). For

example, C might say "I need a 216 byte save area that I can

use in F7SA format". If the user provided 144, then C was still

going to store 216 bytes of data.

24

24

64-bit program that can be called by a
31-bit program

STM 14,12,12(13)

GETMAIN RU,LV=216

Save the high halves in

offset 144 of the new

save area

STG 13,128(,1)

ST 1,8(,13)

MVC 4(4,1),=C'F5SA'

LGR 13,1

Register 13

Next

Low

halves of

the

caller's

registers

High

halves of

the

caller's

registers

Previous

F5SA

X'80'

X'90'

72 bytes

18 Fullwords

When a 64-bit program is not able to control its callers, it can not require

that a 144-byte save area be passed to it. In that case, the low halves

of the registers are saved in the caller's save area. A 216 byte save

area is allocated and the high halves are stored at offset 144 of the new

save area.

This is a little more complicated than might be expected because the

high halves of registers 15, 0 and 1 are preserved across the GETMAIN

so that they can be saved in the save area. For details of how this is

done, see the sample code in the Assembler Services Guide.

25

25

Program B calls 64-bit program C

Register 13

Next

Low

halves of

the

caller's

registers

High

halves of

the

caller's

registers

Previous

F5SA

X'80' Previous

F4SA

X'80'

Next

Program

B's 64-bit

registers

X'90'

X'88'

72 bytes

18 Fullwords

When program B calls another 64-bit program, the first 144 bytes of

program B's save area can be used to store the registers in F4SA

format. As with F4SA, a 31-bit program that is called by B will save the

32-bit registers with no ill effects.

Another program that is coded to use F5SA format will store the low

halves in the first 72 bytes. It will not know that 144 bytes are available.

26

26

64-bit program that can be called by a
31-bit program

STM 14,12,12(13)

GETMAIN RU,LV=288

Save the high halves in

offset 216 of the new

save area

STG 13,128(,1)

ST 1,8(,13)

MVC 4(4,1),=C'F8SA'

LGR 13,1

Register 13

Next

Low

halves of

the

caller's

registers

High halves

of caller's

registers

Previous

F8SA

X'80'

X'D8'

72 bytes

18 Fullwords

F5SA is not adequate for a 64-bit program that will call an AR mode

program that requires a 216-byte save area. In that situation, F8SA

may be used.

F8SA is the same as F5SA except that the location that is used to save

the high halves of the caller's registers is different. In an F5SA, the high

halves of the caller's registers are stored at offset 144, allowing the

program to call other programs that require a 144-byte save area.

In an F8SA, the high halves are stored at offset 216. This allows the

64-bit program to call AR mode programs that require a 216-byte save

area.

27

27

Program B calls AR mode program C
(Not to scale)

Register 13

Next

Low

halves of

the

caller's

registers Previous

F8SA

X'80'

Next

Program

B's 64-bit

Registers

X'88'

High halves

of caller's

registers

Previous

F7SA

X'80'

X'D8'

B's AR13

B's ASC mode

B's

Access

registers

72 bytes

18 Fullwords

Program B can then call an AR mode program that requires a 216-byte

save area. AR mode program C does not know or care that the high

halves of program A's registers are stored at offset 216 of program B's

save area.

28

28

A question and Peter Relson's answer

Q: I have another question about the example of using F5SA

and F8SA. The documentation of GETMAIN says that it uses

register 14 as a work area. Because of this, shouldn�t the high

half of reg 14 be saved prior to the GETMAIN in the same

way that registers 0, 1 and 15 are saved?

A: GETMAIN won�t clobber the high half of reg 14. Only the

low half (which matches the linkage standard whereby a

routine does not clobber high halves of regs 2-14). Otherwise,

you�re certainly right that it would be necessary to preserve

that half of reg 14 before calling GETMAIN.

29

29

Branch and Stack

Register 13

Register 13

F1SA

BAKR 14,0
. . .

PR

Register 13

F6SA

BAKR 14,0
. . .

PR

There is another way to save the caller's registers that does not use the

save area that is passed in register 13. When a program issues a

BAKR 14,0 instruction, the registers are saved on the Linkage Stack for

the current task. The Return PSW in the stack entry contains the

current PSW modified with the instruction address in Register 14.

The program then allocates a save area that is sufficient for any

programs that it will call. Offset 4 is set to �F1SA� or �F6SA� to indicate

that the caller's registers were saved on the Linkage Stack. There is no

difference between F1SA and F6SA. Every program that uses the

Linkage Stack should create an F1SA or F6SA.

Register 13 in the stack entry leads back to the save area that was

passed to this program. This allows the calling chain to be followed

backward when analyzing a dump. Finding the Linkage Stack entry

once an F1SA or F6SA is found in a dump can be more difficult. It

requires that the linkage stack entries be matched to save areas marked

F1SA/F6SA. It is not possible to follow forward from a linkage stack

entry to the F1SA or F6SA.

When the program is finished, it issues a PR instruction, restoring the

registers, Access Registers, ASC mode and PSW from the current entry

on Linkage Stack, making the previous entry the current one.

30

30

Summary

• It is the caller's responsibility to provide a save area that is

large enough for the called program to save the caller's

registers

• Offset 4 in a save area tells how the program that allocated

the save area saved its caller's registers

• It does not describe the contents of the save area that

contains it.

• If it is zero, there is no previous save area

• If it is a fullword address (low order bit = 0), it is the address of

the standard, 72-byte save area

A called program does not examine the save area that was passed to it

to decide how to save its caller's registers.

The second word of a save area does not describe the save area that

contains it. It describes the way that the program that created the save

area saved its caller's registers, either in the caller's save area or on the

linkage stack.

When the program that created the save area saved its caller's registers

in standard 72-byte format, it is the address of that save area. When

the program saved its caller's registers in some other way, it is a code to

indicate how those registers were saved.

Since all save areas must be on at least a fullword boundary, if the

value of the word at offset 4 has the low order bit on, it can not be the

address of a standard save area.

The EBCDIC character �A� is X'C1' so if the low order bit of the word at

offset 4 is off, it can only be a standard 72-byte save area.

31

31

Summary

• Save area chains can only be followed predictably by going

backward from register 13

• Standard save area

• 72 bytes, 18 fullwords, on a fullword boundary

• Back chain pointer is in offset 4

• Forward chain pointer is in offset 8

• New save area format (ESA)

• F1SA and F6SA
• No difference between them

• Must be large enough for any called programs

• There is no back chain pointer

The backward chain is a necessary part of the save area. Every

program must be able to find the save area where it saved its caller's

registers. The forward chain is not required and there are two possible

locations for it. As a result, the only predictable way to follow a calling

chain is going backward.

A standard save area is 72 bytes or 18 fullwords. It must be allocated

on a fullword boundary.

A save area marked as F1SA or F6SA must be on an appropriate

boundary and be of at least the minimum size needed for the programs

that it will call. It might be 18 words, 18 doublewords or 27

doublewords. If it is known that the program will never call another

program, it can allocate an 8-byte area with �F1SA� or �F6SA� in the

second word. Doing this will ensure that that someone doing analysis of

a dump will know when to look for a linkage stack entry.

F1SA and F6SA do not have a back chain pointer; the previous

registers were saved in the current entry in the linkage stack. Dump

analysis requires matching F1SA/F6SA to the linkage stack entries.

32

32

Summary

• New 64-bit save area formats

• Four formats
• F4SA � 18 doublewords, 144 bytes

• F5SA � 27 doublewords, 216 bytes

• F7SA � 27 doublewords, 216 bytes

• F8SA � 36 doublewords, 288 bytes

• Allocated on a doubleword boundary

• Back chain pointer at offset 128, X'80'

• Forward chain pointer at offset 136, X'88'

• The Assembler Services guide has sample code for saving

and restoring the registers using all of these formats

144-byte, 216-byte and 288-byte save areas are all allocated on a

doubleword boundary.

Use the IHASAVER macro to map the fields in the save areas.

The sample code in Chapter 2 of the Assembler Services Guide has all

been tested and verified to work correctly. Use it.

33

33

Additional information

• The Assembler Services Guide, Release 12 or higher

• SA22-7605-12 Release 12

• SA22-7605-14 Release 13

• z/Architecture Principles of Operation, SA22-7832

• IHASAVER macro

The Linkage Conventions chapter, Chapter 2, in the Assembler

Services Guide has been extensively rewritten for the release 12 edition

of the manual. It has sample code fragments showing how to save and

restore the registers using all of the formats covered in this session.

The Principles of Operations manual describes the operation and

contents of the Linkage stack. In z/OS, every task has its own Linkage

Stack.

The IHASAVER macro maps all of the save area formats.

34

34

Thank you

Questions?

thomas.marchant@compuware.com

The best way to contact me with any questions is to send me email.

