
WebSphere MQ 101 - Introduction
to the World's Leading Messaging
Provider
Chris Matthewson,
Software Engineer
IBM

 Session 11386

Agenda

• Introduction
• Fundamentals
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

Business Challenges (1) - Universal
Connectivity

• Over time, separate organisational units build their own pieces of
business logic…

• …with applications developed on many different platforms.

• Connecting these and managing them
together can save a lot of time and
money

• WebSphere MQ can help achieve this.

Business Challenges (1) - Universal Connectivity

• For example; Payroll have a program to run to add a one-time payment
to an employee’s pay packet

• HR have a program to calculate an employee’s performance bonus
based on her annual review score and her business unit’s performance

• Sales have a program to calculate annual review scores
• Research have a program to calculate annual review scores
• Etc.

• These applications may all run using different hardware and OS and be
written in different languages. Being able to connect these together
reduces costs and time.

Business Challenges (2) - Process Resilience

• As systems become more integrated…

• …the reliance on and cost of failure of a process increases

• The risk of failure can be reduced by:
– Removing dependencies
– Introducing redundancy
– Guaranteeing data delivery
– Robust security

• WebSphere MQ can help achieve this.

Business Challenges (2) - Process Resilience

• Business processes need to provide a reliable always-on
experience to users. For example, revenue or trust is lost if
an order can’t be taken or an error occurs. This means
updates need to be transported and processed reliably and
processes need to continue even if one or more data
sources is unavailable.

• WebSphere MQ can help decouple each component in a
process from the others. This reduces the number of
dependencies at each stage and allows redundancy to be
introduced easily.

Business Challenges (3) - Process Scalability

• Many applications and processes start out on a single system…

• …as business grows, a single system is no longer sufficient to
cope with demand

• A scalable architecture enables the
capacity to be incrementally grown to
meet increasing workloads

• WebSphere MQ can help achieve this.

Business Challenges (3) - Process Scalability

• Scalability needs to be designed in, and can add
significantly to the complexity, i.e. running an application
across multiple systems can be orders of magnitude harder
then running on a single system.

• WebSphere MQ provides the reliable communications and
administration tools needed to spread or migrate
applications and processes to multiple systems.

Business Challenges (4) - Process Flexibility
and Cost

• A process originally designed for one purpose…

• …needs to change to meet new requirements

• Being able to respond rapidly to internal
and external challenges by easily
leveraging or modifying existing services
gives a competitive advantage

• WebSphere MQ can help achieve this.

Business Challenges (4) - Process Flexibility and Cost

• Requirements may change for a number or reasons;
organisational changes, market changes or changes in
technology. Being able to adapt quickly gives competitive
advantage.

• WebSphere MQ can help to improve the responsiveness of
your business by:
–Allowing individual components of your business logic to be

seamlessly replaced without alterations to the rest of the
process.

–Providing a ‘unifying transport’ which eases integration of
existing assets using existing skills

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

WebSphere MQ – Key Concepts

• Reliability
• Assured message delivery
• Performance

• Ubiquitous
• Breadth of support for platforms,

programming languages and API
• Loose application coupling

• Location transparency
• Time independence
• Data transparency (with WebSphere

Message Broker)
• Platform independence

• Scalability
• Incremental growth

• Rapid development
• Standards
• Reduce Complexity
• Ease of use

Q Manager Q Manager

 Message

 Queue

Application
Z

Application
A

 Channels

WebSphere MQ – Key Concepts (3)
• What WebSphere MQ (aka MQSeries) did was to recognise that for the queuing model to

be successful and applicable to a wide range of applications that it must achieve the
following major goals :-

• First it must be totally reliable. A message put to an WebSphere MQ queue is as safe as a
record written to a database. e-mail just isn't reliable enough

• Secondly it should be available everywhere, and support as wide a range of platforms,
programming languages and common API as possible. The postal service would be
severely restricted if it only covered the local city.
– The WebSphere MQ base product is available on all major platforms such as Windows, AIX, HP-UX, Solaris, i5/OS,

z/OS and many others (In all 80+ platform configurations are supported). Programming is performed using simple
defacto API, such as the MQI which is available with only around a dozen verbs or via standards based interfaces
such as JMS.

• Thirdly, the goals of MQ from an application standpoint is to enable as loose coupling as
possible. This is achieved by providing :-
– Location Transparency: A sending application need not know where the receiving application is nor have any

knowledge of the network or communications .
– Time Independence{ It is not necessary for both applications to be up and running at the same time (asynchronous)
– Platform Independence: A sending application need not know what type of platform the receiving application is running

on.
– Data transparency: With the advent of Brokers and message translation it is not even necessary for the two

applications to exchange messages in a shared format.

• Fourthly, it must be possible to incrementally add applications and capacity
• Finally, Reliable distributing computing is difficult, complex and error prone. Providing

simple API and the right tooling makes a significant difference to the ease of application
development and administration.

Vision – Universal Messaging Backbone

• Addressing the full spectrum of transport requirements

Qualities-of-Service Delivery StylesEnd-PointsSkills

Languages

Mindsets

Orientations

COBOL, C/C++, RPC
Java, JEE, JMS
.NET, C#, VB, WCF
AJAX, Perl, Python…

Service
Batch
File
Message
Resource…

WSDL, XML, WS-*
REST, MEST, KISS

Transactional

Persistent

At-least-once

Best-Effort

Fire-and-Forget

Request-Reply

Replay

Guaranteed

At-Most-Once

Fastest speed

Lowest Latency

Client-Server

Backbone

Point-to-Point

Peer-to-Peer

Publish/Subscribe

Grid

Bus

Multicast
Unicast

Vendor Platforms

Applications

Operating Systems

Devices

Web services

Web 2.0

JEE, .NET, etc

Exploitation & Support

SAP, Siebel, etc…

Mobile, Wireless, PoS,
Sensor, Actuator, RFID…

Appliances
HTTP, AJAX, REST,…

SOAP, WSDL, WS-RM, WS-N…

IBM’s Vision – Universal Messaging Backbone

• The vision for MQ is that it provides a range of capabilities,
making it suitable to be a transport backbone across all
environments. While MQ does not necessarily have all of
these capabilities today in the core product, this picture
drives the selection of features as we continue to enhance it.

The WebSphere MQ Product Family

• WebSphere MQ
• WebSphere MQ: File Transfer Edition
• WebSphere MQ: Advanced Message Security
• WebSphere MQ: Low Latency Messaging
• WebSphere MQ: Telemetry

The WebSphere MQ Product Family

• The WebSphere MQ product contains all the functionality
required for building a messaging system. Additional product
extensions can then be purchased to satisfy specific or more
specialist requirements:

• These are described in more depth later.
–WebSphere MQ File Transfer edition: For a managed file

transfer solution which leveraging WMQ.
–WebSphere MQ Advanced Message Security: For end to end

application security
–WebSphere MQ Low Latency Messaging: For low latency,

extreme high throughput multi-cast messaging
–WebSphere MQ Telemetry: For extending the reach of

enterprise messaging to devices

WebSphere MQ is not a substitute for…!

• Well written applications

• Robust network

• Good operational procedures

• Well managed systems

WebSphere MQ – Messaging Style (1)

• Messages can be created from any source:
• Data, Messages, Events, Files, Web service requests / responses

• Messages are moved asynchronously using:
• Queues [Point-to-Point]
• Topics [Publish/Subscribe]

X

Y

B

A

WebSphere MQ – Messaging Topology (1)
• The physical world is frequently organised in queues. Consider for a moment just how

many queues you have been involved in today alone. We queue at the Post Office,
Supermarket checkout, at traffic lights. We write shopping lists and to do lists. We use the
postal service, voice mail, and of course, the ever present e-mail.

• The truth is that queuing is a natural model that allows us to function efficiently. Perhaps
not surprisingly therefore it turns out that it is also a very useful model in which to organise
our applications.

• Instead of application A talking synchronously to Application B have Application A 'send a
message' to a queue which Application B will read.

• Messages can be of any form, the content is not restricted, so they could contain:
– Data in general
– Data packaged as messages
– It might be notification events
– Files being moved in a managed FT application
– SOAP messages for invoking services

WebSphere MQ – Messaging Styles (2)

• Publish Subscribe
• Essentially….

------- requesting information on a given topic
____ providing information on a given topic

H

A
X

Z

E

L

FI

N

WebSphere MQ – Messaging Topology (2)
• Our daily life is full of examples of requests for information on a given topic and

providing information about a given topic.

• Let us consider an example:-

• You have installed a piece of software on your computer and you would like to
know when there are updates available for it ….the software provider has a
service to inform you of updates when they occur.

• You ask the software provider to let you know when there are updates available
for the software (a topic) in which you are interested (a subscription)

• The software provider informs you when updates become available (a
publication)

• The software provider can use a message to provide this information
• You can provide a destination (queue) to which the information is published

Header User Data

A Series of Message Attributes
Understood and augmented by the Queue Manager
•Message Id
•Correlation Id
•Routing information
•Reply routing information
•Message priority
•Message codepage/encoding
•Message format
....etc.

•Any sequence of bytes
•Private to the sending and receiving programs
•Not meaningful to the Queue Manager

Message = Header + User Properties + User Data

What is a Message?

• Message Types
• Persistent ... recoverable
• Non Persistent

• Up to 100MB message length

User Properties

•User Properties require WMQ V7
•Emulated for JMS in older versions of WMQ

•Arbitrary properties
•For example, this is a “green” message

What is a Message?
• A message in WebSphere MQ is merely a sequence of bytes in a buffer of a

given length. The current products support up to 100MB in a single message
although the vast majority of messages are in the order of a few thousand bytes.

• Messages have various attributes associated with them such as their identifier,
their priority and their format. Each application is free to define its own format for
messages although there are a number of predefined formats. One common
format for messages is XML for example.

• A key attribute of a message is its persistence. A message is either persistent or
non-persistent. This attribute tells the Queue Manager how important the
message is.
– Persistent: persistent messages are written to disk and are logged. The Queue Manager

will ensure that the messages are recovered in the case of a system crash or network
failure. These messages are delivered once and only once to the receiving applications.

– Non-persistent: The messages are identified by the application as non-critical. The
Queue Manager will make every effort to deliver these messages but since they are not
necessarily written to disk they will be lost in the case of a system crash or network
failure. Clearly with no disk IO involved these messages are much faster than persistent
ones.

What is a Queue?

• A queue holds messages
• Various Queue Types

• Local, Alias, Remote, Model
• Queue creation

• Predefined
• Dynamically defined

• Message Access
• FIFO
• Priority
• Direct
• Selected by Property (V7)
• Destructive & non-destructive access
• Transacted

• Parallel access by applications
• Managed by the queue manager

What is a Queue?

• A Queue is a named object (up to 48 characters) which is defined with a queue type.
– Local Only queue type which can actually hold messages
– Alias A queue name which 'points' to another queue
– Remote A queue which 'points' to a queue on a remote machine
– Model A template definition which when opened will create a local queue with a new name

• Applications open queues, by name, and can either put or get messages to/from the
queue. Messages can be got from the queue either in FIFO order, by priority or directly
using a message identifier or correlation identifier.

• As many applications as required can open a queue either for putting or for getting making
it easy to have single server responding to many clients or even n servers responding to
many clients.

• A key feature of WebSphere MQ is its transaction support. Messages can be both put and
got from queues in a transaction. The transaction can be just local, involving just
messaging operations or global involving other resource managers such as a database. A
classic example, is an application which gets a message, updates a database and sends a
reply message all within a single transaction. If there is a failure before the transaction
commits, for example a machine crash, both the database update and the received
message will be rolled back. On machine restart the request message will still be on the
queue allowing the application to reprocess the request.

What is a Topic?

• A Topic can be
• Topic String

• is a case sensitive character string
• Not-necessarily predefined, exists if used
• Is the basis of the topic tree
• made up of any characters

• ‘/’ character gives structure
• E.g Price/Fruit/Apples
• Price/Fruit/Oranges

• Topic Object
• is predefined – represents a point in the topic tree
• allows you to assign specific non default information to a topic
• is a security access control point

FRUIT

Price

Fruit

Apples Oranges

What is a Topic?

• A topic is a character string that describes the nature of the data that is published in a
publish/subscribe system. Topics are key to the successful delivery of messages in a
publish/subscribe system. Instead of including a specific destination address in each
message, a publisher assigns a topic to the message. The queue manager matches the
topic with a list of subscribers who have subscribed to that topic, and delivers the message
to each of those subscribers.

• Note that a publisher can control which subscribers can receive a publication by choosing
carefully the topic that is specified in the message.

• Each topic that you define is an element, or node, in the topic tree. The topic tree can either be
empty to start with or contain topics that have been defined by a system administrator using
MQSC or PCF commands. You can define a new topic either by using these create topic
commands or by specifying the topic for the first time in a publication or subscription.

• Although you can use any character string to define a topic's topic string, choose a topic string
that fits into a hierarchical tree structure. Thoughtful design of topic stings and topic trees can
help you with the following operations:
– Subscribing to multiple topics.
– Establishing security policies.

• Although you can construct a topic tree as a flat, linear structure, it is better to build a topic tree
in a hierarchical structure with one or more root topics.

• Topics can be defined by a system administrator using MQSC or PCF commands. (Topic
objects)

• However, the topic of a message does not have to be defined before a publisher can use it;
a topic is created when it is specified in a publication or subscription for the first time.

A

B E

D

F

Pub/Sub
Engine

Data

Data

Topic A

Topic B

Topic A,B

Topic B

C

Subscription

(re-) Publication

Data

Publish/Subscribe in Action

Topic A

What is Publish/Subscribe?

• In this environment, the receiving applications notify an intermediary of their interest in
particular sets of information. The receiving (or subscribing) application provides a subject
and a queue where messages matching this subject may be delivered.

• The sending (publishing) applications generate information, together with a subject name,
and sends the information to the pub/sub engine. The pub/sub engine contains a matching
service which determines the subscribing applications interested in receiving this
information.

• Note that the publish/subscribe model provides for the situation where a message may be
published by an application using a subject which has no subscribers. In this instance the
message data is discarded.

• There are many publish/subscribe products available in the marketplace today. MQ
publish/subscribe differentiates itself by providing support for the publish/subscribe model
and combining it with the exactly once delivery model of MQ message/queuing.

What is a Queue Manager?

Kernel

Message
Moving

Utilities
Command Server

Listener
Channel Initiator
Trigger Monitor

Windows ExplorerMQ API

Put Get

Local
queuing

PubSub
Engine

What is a Queue Manager?
• A queue manager may - generally - be thought of as 3 components:

• The Kernel is the part of the queue manager that understands how to implement the MQ
APIs. Given that the APIs are common across the queue manager family, it stands to
reason that the Kernel is mostly common code across the set of queue managers. (The
primary exception to this is the z/OS queue manager where the same functions are
implemented differently to support the same APIs).

• The Local Queuing component is the part of the queue manager responsible for interacting
with the local operating system. It manages memory, the file system and any operating
system primitives such as timers, signals, etc. This component insulates the Kernel from
any considerations of how the underlying operating system provides services and so
enables the Kernel to be operating system independent.

• The Message Moving component is responsible for interacting with other queue managers
and with MQI clients. For environments where all of the message queuing activity is local
to a system then this component is unused - though this is a very rare case.

• The message moving functions are provided by specialised MQ applications, called
Message Channel Agents.

Local and Cross-System Communication with
WMQ

Program C
QM 2

Messaging

 and

Queuing

Program A Program B
QM 1

Messaging

 and

Queuing

MQI MQI
Put Q1 Get Q1

Q1 Q2

Put Q2 Get Q2

QM 2 XmitQ

TCP/IP, APPC etc
Channel

Cross-System Communication with WebSphere MQ

• In the diagram we see Program A sending messages to two other programs.

• To Program B: in this case the actual physical queue that both applications
access are the same. This therefore does not require any network
communication.

• To Program C: in this case Program A wants to put a message to queue Q2 on
Queue Manager QM2. It can't do this directly without requiring that the network
and QM2 Queue Managers are available so instead the message is put to a
'holding' queue called a transmission queue. Asynchronously, another part of
WebSphere MQ called a channel will read this transmission queue and deliver
any messages to the queues on QM2.

• Any number of applications running on QM1 can send messages to QM2 via the
same transmission queue and channel.

What is an MQ Client?

ApplicationServer
Model

MQ Server
Library

MQ
Server

Inter process
Communications

local or bindings mode

MQ
Server

Network
Communications

Client
Model Application

MQ Client
Library

Application essentially unaware of how library connects to the queue manager

What is an MQ Client?
• WebSphere MQ clients provide a low cost, low resource mechanism to gain access to MQ

facilities. The client provides a remote API facility, allowing an WebSphere MQ application
to run on a machine that does not run a queue manager.

• Each MQ API command is passed to a Server queue manager where a proxy executes
the required API command. The connection between client and server is entirely
synchronous providing an 'rpc-like' mechanism - though NO regular (well-known) rpc
mechanism is used !

• The client machine does not own any MQ resources - all resources are held by the Server
machine. Thus, if local queuing capability is required then a server (rather than a client)
must be used.

• The WebSphere MQ Client support is part of the WebSphere MQ product that can be
installed and used separately from the MQ server. It provides a set of libraries which can
be linked with your applications to provide access to WebSphere MQ queues without
requiring the application to run on the same machine as the queues.

• Generally speaking an application is linked either with the client libraries or with the server
libraries (often called ‘local’ or ‘bindings’ mode). In bindings mode the application
communicates with the Queue Manager via an inter-process communications link of some
kind. In client mode the application communicates via a network connection. However, as
can be seen from the diagram, the two models are logically equivalent. For this reason the
functionality provided at the client is almost identical to that provided by local applications.

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

HP-UX Windows zLinux Solaris AIX OS/400 NSS OVMS

.NET (WCF)
Microsoft

MQI C, RPG, COBOL
IBM de facto

JMS (Java)
Industry standard

XMS (C/C++,C#)
IBM standard

zOS Linux

WebSphere MQ

Programming API

• Broad support for:
• programming languages, messaging interfaces, application environments and OS

platforms.

MQI C++, Java, C#
OO MQI

Programming API

• One of WebSphere MQ key strengths is its breadth. It can run on
virtually any commercially available platform and is accessible through a
wide number of programming languages and API. The MQ Interface
(MQI) is the de facto API for MQ, providing simple common access
across all platforms. It has both a procedural implementation and an
object oriented implementation.

• Standards based interfaces such as JMS, and its IBM equivalent for C,
C++ and .NET, XMS are also available.

The MQ API (MQI)

QM1

MQI C, RPG, COBOL
IBM de facto

Connection
MQCONN(X)
MQDISC
Resource Use
MQOPEN

MQCLOSE
Messages
MQPUT(1)
MQGET

MQCONN
(QM1)

MQOPEN
(APP.Q for PUT)

MQPUT

MQCLOSE

MQDISC

APP.Q

Sending Application

MQCONN
(QM1)

MQOPEN
(APP.Q for GET)

MQGET

MQCLOSE

MQDISC

Receiving Application

The MQ API (MQI)
• The most common verbs are MQOPEN, MQCLOSE, MQPUT and MQGET which are

concerned with the processing of messages on queues. The first example shows an
application putting a message to a queue and another getting the message off the queue.
We refer to this as the Point-to-Point application model. The second example shows an
application publishing a message to a topic and another subscribing to messages about
that topic. We refer to this as the Publish/Subscribe application model.

• There are many, many options associated with these verbs. However, in general, most of
these options may be left to take their default values - and MQ provides a set of default
structures to allow for easy assignment of these default values.

• There are 24 verbs in total in the WebSphere MQ API, known as the MQI. We have briefly
illustrated the most common ones. The rest have less frequent use and we have
summarised them in a table.

• To use the MQ verbs in your application you link with the MQ library provided with MQ,
which will send your call to the MQ queue manager to process.

The MQ API (MQI) – Publish/Subscribe

QM1

MQI C, RPG, COBOL
IBM de facto

Connection
MQCONN(X)
MQDISC
Resource Use
MQOPEN
MQSUB
MQCLOSE
Messages
MQPUT(1)
MQGET

MQCONN
(QM1)

MQOPEN
(“Price/Fruit”)

MQPUT

MQCLOSE

MQDISC

Sending Application

MQCONN
(QM1)

MQSUB
(“Price/Fruit”)

MQGET

MQCLOSE

MQDISC

Receiving Application

Price

Fruit

The MQ API (MQI) – Summary of all verbs

MQI C, RPG, COBOL
IBM de facto

Connection
MQCONN
MQCONNX
MQCTL
MQDISC

Object attributes
MQINQ
MQSET

Application

MQ
Library

MQ
Queue Manager

Call Queue manager

Message Properties
MQCRTMH
MQCLTMH
MQSETMP
MQINQMP
MQDLTMP
MQMHBUF/MQBUFMH

Resource Use
MQOPEN
MQSUB
MQSUBRQ
MQCLOSE

Messages
MQPUT
MQPUT1
MQGET
MQCB

Transactions
MQBEGIN
MQCMIT
MQBACK

Java Message Service (JMS) and XMS

• JMS is the standard Java API for messaging
• Point-to-point and Publish/subscribe messaging (application can be agnostic)
• Enables greater portability between messaging providers

• Vendor-independent messaging API in Java
• Managed by The Java Community Process
• Expert Group includes IBM

• WMQ supports all Java Enterprise Edition (JEE) 1.4+ application servers
• Features such as message-driven beans greatly simplify creation of messaging

applications
• IBM Message Service Clients (XMS) renders a JMS-like API in

non-Java languages
• (Almost) full compatibility with JMS 1.1 API
• Full interoperability with IBM JMS implementations on WMQ and WPM
• Shared administered objects in JNDI with JMS
• Current implementations include: C, C++ and .NET

JMS (Java)
Industry standard

XMS (C/C++,C#)
IBM standard

Java Message Service (JMS) and XMS

• JMS is part of the J2EE specification and is supported by all J2EE compliant
applications servers including; WAS, WebLogic etc. If you are working in
Java or a J2EE environment inside an app. server, then you will almost
certainly use JMS to access your messaging infrastructure. JMS 1.1 is the
current version of the standard and is fully supported by MQ.

• It simplifies programming – providing simple to use Pub/Sub messaging in
addition to point-to-point, although there are many similarities with the MQI
(Connection = MQCONN(), Session = UOW)

• XMS syntactically the same as JMS V1.1, but for C, C++ and C#. It offers
good interoperability between JMS & non-Java applications, and they share
administration models – it is ideal for sending message to JMS application
running in an App Server.

WMQ Custom Channel for WCF
• Windows Communication Foundation (WCF) underpins Web

services and Messaging in .NET 3
• Built-in Transports e.g. MSMQ, HTTP(S), Named Pipes, TCP/IP, etc.
• Transports can be extended with ‘custom channels’
• Allows alternative transports (like MQ) to be slotted into WCF

seamlessly
• Primary focus is for service orientated architectures

WMQ

Message
Encoder

WMQ
Transport

Protocols..

WCF Client
Application

WCF Channel Stack

WCF Services Layer

Message
Encoder

WMQ
Transport

Protocols..

WCF Service
Application

WCF Channel Stack

WCF Services Layer

Q

WMQ Custom Channel for WCF

• Initially released on Alphaworks in 2007, the WMQ Custom Channel for
WCF is now available in WMQ v7.0.1.

• Its primary role is for use as a transport for web services, interoperating
with clients and services hosted in WCF, WAS, CICS, Axis and .NET
(.asmx) enabling web services to be invoked with messaging qualities of
service.

• Integrates seamlessly with the built-in WCF channels provided by
Microsoft and so shares the same tooling such as the svcutil.exe client
proxy generator.

• Supports both one-way (fire and forget) and request-reply message
exchange patterns.

HTTP Connectivity to WMQ

• Key features of the WebSphere MQ Bridge for HTTP
• Maps URIs to queues and topics
• Enables MQPUT and MQGET from

• Web Browser
• Lightweight client

• Can be used as a SOAP Web Services entry point

MA0Y Servlet
 (WMQ HTTP

Bridge)

B

WMQ
JCA +

JMS

http://mq.com:1415/msg/

queues/myQ

topics/stocks/IBM

HTTP: POST /
GET / DELETE

libwww

Web
Browsers

Javascript
AJAX

HTTP
clients

JEE Application
Server

Java

SVRCONN
CHANNEL

WMQ Bindings
Connection

WMQ JMS
client

connection

Queue Manager

HTTP Connectivity to WMQ
• The first goal of the HTTP feature (originally SupportPac MA0Y) is to extend the reach of WMQ

applications to more environments such as web browsers. This will give Rich Internet Applications
simplified access to the Enterprise. Eliminating the WMQ client reduces the cost of application
deployment, though this is not a complete replacement for the WMQ client
– It is missing many MQI features and does not offer transactionality, assured delivery etc.
– But in many cases where applications have resend logic and check for duplicates it will be good enough

• The API is modeled after REST ("Representational State Transfer") principles. REST offers a different
integration style to WS-* standards based web services. Qualities of service are sacrificed for simplicity
and scalability to keep barriers-to-entry low. REST APIs are typically simple and can be used
spontaneously and incrementally – for example in Web 2.0 mash-ups. The HTTP/WMQ API is largely
based on REST, though it has some quirks. For example this component transfers message
representations, but messages are not ideal REST resources
– They do not necessarily have a unique identifier, and so cannot be addressed individually
– Not generally amenable to caching etc. because they must be delivered only once
– They are very transient

• It is a stateless / connectionless API with one HTTP verb corresponding to one WMQ operation
– HTTP headers = Message headers
– request headers (get and put options) – wait, requires-headers
– entity headers (MQMD options) – priority, expiry, timestamp, persistence, msgId, correlId, replyTo
– HTTP request payload = Message body as either text or binary

• No client libraries are provided – apps code directly to HTTP verbs using whatever APIs are in the
environment.

• REST was described by Roy Fielding in
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

HTTP-MQI Verb / Resource Mapping
• Define URI to identify queue (or topic)
• Modelled on REST principles

–Simple translation of HTTP to MQI
• Message Format:

–Header fields (MQMD) conveyed in HTTP headers
–Body is passed in HTTP entity body
–Message type is conveyed in HTTP Content-Type

–“text/plain” or “text/html” equate to WMQ string messages
(MQFMT_STRING)

–All other media types map to WMQ binary messages
(MQFMT_NONE)

HTTP verb mapping

Resource Sample URIs GET POST PUT DELETE

Messages
http://host/msg/queue/qname/

http://host/msg/topic/topic_path/
MQGET w.

browse MQPUT - MQGET

Example HTTP Flow - POST (= MQPUT)

Request:
POST /msg/queue/requestQ/ HTTP/1.1
Host: www.mqhttpsample.com
Content-Type: text/plain
Content-Length: 60
x-msg-replyTo: /msg/queue/replyQ/
x-msg-requiresHeaders: msgID, priority, timestamp
Message body which will appear on the queue as an MQSTR

Response:
HTTP/1.1 200 OK
x-msg-msgID: 1234567890
x-msg-timestamp: Thu, 22 Mar 2007 08:49:37 GMT
x-msg-priority: 4

Put to destination

Type and length of message
(60 char string)

Headers to
include on reply

Message DataResponse code

Required
Headers

reply Queue

WebSphere MQ Telemetry
• Product extension included in WMQ 7.1

supporting mass connectivity for smart
devices to the enterprise

• Utilises MQTT protocol
• a lightweight, public, low bandwidth

messaging protocol for scenarios where
enterprise messaging clients are too big
or bandwidth intensive.

• Established for >10 years

• Java and C API provided, but you can
“roll your own”

• Ideally suited to:
• Fragile / Expensive networks such as

“sometimes connected” devices / satellite phones
• Niche platforms such as tiny sensors, personal

devices, edge/small servers
• Mass Scalability (> 50,000 clients per queue manager)

Petrol
Forecourt

Vehicle

Oil rig

Retai
l
Store

Medical

Pervasive
Device

Sensor
e.g.

RFID

Enterprise

Smartphones

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

Example application architectures (1)

Program B

Program A
Program B

‘Send and Forget’

Request / Response

Put Invoice-Q Get Invoice-Q

Invoice-Q

Target Queue

Reply-to-Queue

Program A

Example application architectures (1)
• These examples show some of the ways in which MQ queues can be used and,

thereby, shows some of the styles of applications that may benefit from the use
of a message/queuing model.

• 'Send and Forget'
• This style is one where there is no (direct) response required to a message. The

message/queuing layer will guarantee the arrival of the data without the
application having to solicit a response from the receiver.

• Request/Response
• This style is typical of many existing synchronous applications where some

response is required to the data sent. This style of operation works just as well in
an asynchronous environment as in a synchronous one. One difference is that -
in this case - the sender does not have to wait for a response immediately. It
could pick up the response at some later time in its processing. Although this is
also possible with the synchronous style, it is less common.

Example application architectures (2)

Chain

Workflow

Program A Program CProgram B

Program D

Program B

Program C

Program A

Example application architectures (2)
• Chain
• Data does not have to be returned to the originating application. It may

be appropriate to pass a response to some other application for
processing, as illustrated in a chain of applications.

• Workflow
• There may be multiple applications involved in the processing before a

response comes back to the originating application.

• These various modes of interaction may be arbitrarily combined to
provide as complex/sophisticated topology as is necessary to support a
particular application. The loosely coupled nature of the message
queuing model makes it ideal for this style of interaction. Furthermore, it
makes it straightforward to develop applications in an iterative style.

B
Q Mgr 1

Queue 1

Q Mgr 2

B

Example application architectures (3) –
Clustering

Queue 1

Q Mgr 4

Queue 1

B

Q Mgr 3

Queue 1

B

A

Q Mgr 5

Cluster A

Example application architectures (3) – Clustering

• The final example given here (though not the last possibility
by any means) is MQ Clustering. In order to enable highly
scalable applications, MQ queue managers provide support
for MQ Clusters. In this environment, there are several
copies (or clones) of a particular target queue and each
message is sent to exactly one of the possible choices.

• WebSphere MQ Cluster support also defines and manages
all MQ resources, such as channels, automatically and
provides automatic notification of failed or new queue
managers in the environment.

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

WebSphere MQ Transactions

• Message level inclusion/exclusion in unit of work
• Single UoW active per connection at any one time
• WebSphere MQ local units of work

• MQCMIT and MQBACK control the unit of work
• Messages and other resources in a global unit of work

• Managed by a Transaction Manager
• WebSphere Application Server, CICS, IMS, z/OS RRS
• Microsoft Transaction Server
• Any XA or JEE App Server Transaction Manager

• Managed by WebSphere MQ
• WebSphere MQ is an XA Transaction Manager
• MQBEGIN, MQCMIT and MQBACK

control the unit of work

MQI C, RPG, COBOL
IBM de facto

Transactions
MQBEGIN
MQCMIT
MQBACK

WebSphere MQ Transactions
• WebSphere MQ supports units of work (UoW) where a set of resource updates

may be considered as an atomic unit - either all of the changes are made or
none of the changes are made. This support is particularly important when using
WebSphere MQ in a commercial environment (it's primary focus) as transactions
play a major part in this arena.

• WebSphere MQ allows messages to be included/excluded from a UoW at the
message level. This differs from some other environments where a UoW starts
and all subsequent actions are included in the UoW. Thus, a set of messages
may be considered to be a UoW. Often, it is necessary to include both MQ
messages and some other recoverable resources (typically database updates) in
a UoW. Typically, this has required the use of some Transaction Monitor and
WebSphere MQ works well with CICS and IMS on z/OS and with any XA
compliant Transaction Manager. In situations where a Transaction Manager
product is not available/suitable, WebSphere MQ itself may be used as the
Transaction Manager. This does not mean that WebSphere MQ is transforming
itself into a Transaction Monitor, it is just providing the Transaction Manager
aspect of a Transaction Monitor product.

• The API used in handling transactions differs according to the environment.
WebSphere MQ provides some verbs to handle UoWs. If a Transaction Monitor
is used, however, its UoW verbs are used in place of the MQI.

WebSphere MQ Security

B

A

QMgr 1 QMgr 2

Xmit Q 2

Queue3

Queue 1

Queue 5

Queue 4

Access
Control

Context

Commands

SSL

Exits

Channels

WebSphere MQ Security
• There are several aspects to WebSphere MQ security:

• Control of WebSphere MQ commands
• Access to MQ commands, like creating and starting queue managers, can be controlled

through operating system facilities and also by MQ facilities; it is necessary to be in a
particular authorisation group to be allowed to use these commands.

• Access to Queue Manager objects
• There is an access control component that is provided by the MQ Queue Manager, called

the Object Authority Manager (OAM), which controls access to Queue Manager objects,
particularly queues. The OAM can control access to resources at a very granular level,
allowing access for different actions, such as GET, PUT, INQ, SET, etc. This access is
(generally) based upon group memberships.

• This security service is a pluggable component of MQ. Thus, if the OAM does not meet the
requirements of the environment it is possible to provide a different (or additional)
component. Note that the OAM is used for all queue managers except for the z/OS queue
manager which uses any SAF compliant security manager.

WebSphere MQ Security (contd)

• Channel Security (Authentication)
• WebSphere MQ 6.0 provides built-in SSL link level security
• MQ also provides a number of exit points during the transfer

of messages between systems. The key exits concerned
with security are :-

• Security Exit : This exit allows for (mutual) authentication of
partner systems when they connect to one another.

• Message Exit: This exit allows allows for customisation at
the message level, allowing individual messages to be
protected, in terms of message integrity, message privacy
and non-repudiation

WebSphere MQ Security (contd)

• Application Security
• This level of security is not implemented directly by the

Queue Manager but such facilities may be implemented at
the application level, outside of the direct control of
WebSphere MQ.

• Advanced Message Security
• Provides end to end security, enabling messages to be

encrypted from the time they are PUT by the sending
application to when they are GET by the receiving
application, so messages are help encrypted when at rest
on queues as well as when in transit.

WebSphere MQ Systems Management

Scripting

System Management
 Applications

e.g.
BMC
CA

Landmark
RYO
Tivoli

MQ
Application

WebSphere
MQ Events

Programmable
Command

Format (PCF)

MQ Explorer

Kernel

Moving
Message

Local
Queuing

MQSC

SupportPac MS0T

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24021041
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24021041

WebSphere MQ Systems Management
• One of the key operational components of any system is management. WebSphere MQ enables

systems management in a number of ways:
• There are facilities provided by the MQ base to enable MQ resources to be managed. There are

'internal' utility programmes (for example, MQSC, the TSO interface for z/OS and the command line
interface for AS/400). There are also documented interfaces, most notably Programmable Command
Format messages which are PUT to a well known queue and are processed accordingly by the queue
manager.

• WebSphere MQ provides events. These events are themselves MQ messages which are PUT (by the
queue manager) to well known queues and provide information on state changes for various queue
manager resources. The format of the event messages is documented. Text based message logs (and
Windows events) are also provided.

• So, WebSphere MQ queue managers provide a set of documented interfaces to allow control and
configuration of resources and to inform external processes of state changes within the queue
manager. These interfaces may be used by any application program. Typically, this occurs in 3 ways:

• There are MQ utilities which make use of these interfaces. Most notably, the MQ Explorer (provided for
Windows and Linux for Intel environments) enables management and configuration of both local and
remote queue managers using PCF messages.

• The majority of the established systems management vendors use the facilities described above to
provide MQ 'personalities' for their products.

• Customers may write their own utilities to provide systems management capabilities within their
organisations. This style often makes use of the messaging APIs to utilise PCF and event messages.
Also scripting languages (most notably PERL) are used to provide systems management scripts for
WebSphere MQ and other environments.

WebSphere MQ Service Definition

• A Specification which allows MQ applications to be described as
SOA assets using WSDL and URI, in the same way as web-
services. Enabling:
• Inventory and cataloguing in a Service Registry
• Re-use as a services in a composite SOA applications
• Management and tracing with SOA tools
• Impact Analysis

• Tooling to generate Service Definitions
supplied in WebSphere MQ Explorer.

WebSphere MQ Service Definition

• MQ users have requested guidance from IBM on how they should describe their MQ applications as
services for use in service oriented architectures.

• There has been particular interest in applying this to unmanaged native WMQ applications (i.e. those
coded to the MQI - not JMS - and those running outside of an application server / CICS etc.)

• This will allow applications to:
– Be inventoried, and catalogued in Service Registry. For example, the WSDL description of an application can be stored in WSRR
– Be managed and traced with SOA tools. which - for example – will be able to monitor the queues associated with a service
– Be re-used in composite applications. For example, once the MQ service definition has been implemented by web services tools, it will be

possible to drop an MQ application into a composite Web services application, and the tools will generate the code required to invoke the MQ
application

• IBM has created the MQ service definition specification to address this. This consists of two
documents.
– An IRI specification, which defines :

– The address of a WMQ message destinations i.e. Queues or Topics for use by messaging applications
– The address of other WMQ resources i.e. Qmgrs, Queues, channels, channel status etc. for use by admin tools

– A Bindings Specification, which defines :
– Properties which may be used to describe and connect to a WMQ app.
– The mapping of properties to message headers for the construction and interpretation of SOAP and non-SOAP messages
– Supported message exchange patterns
– A WSDL binding for SOAP/WMQ and non-SOAP/WMQ
– Examples of IRIs, Messages, and WSDL documents

• The specification is published in SupportPac MA94 with tooling to help generate service definitions
being available in the WMQ Explorer since v7.0.0.1

Agenda

• Introduction
• Fundamentals – The Key Concepts
• The API
• Example Architectures
• Other Key Features
• Related Products
• Summary

WebSphere MQ and the Wider World

WebSphere MQ and the Wider World
• For a messaging engine to be really useful it should allow access to the

messages from many different environments. We have already
discussed MQs programming language and API support but what about
the environments.

• The complexity of overall business applications is increasing every year
as more and more applications are linked together in some way.
WebSphere MQ dramatically reduces an individual applications
complexity by providing a consistent, reliable and transactional method
of communicating between applications from hundreds of different
environments.

• We are now going to look briefly at some of the other WebSphere
Business Integration products that make up the portfolio, and how
WebSphere MQ fits in

Enterprise
Applications

Enterprise
Applications

Mobile
devices

Web
And Portals

Telemetry
Sensors

Multicast
Subscribers

Mobile
devices

Web
And Portals

Telemetry
Sensors

Inbound
Information

Outbound
Information

Event
Monitoring
And Control

Enterprise
Integration
bus,
Web
Services,
Java
Messaging
Services

WebSphere
Message Broker

Internet reach
in a security-rich
environment

Routing

WebSphere Message Broker

• WebSphere Message Broker
• Message transformation (mediations)

• Combine data sources: databases, files, etc.
• Update other data stores: databases, files, etc.

• Content based filtering and routing
• Adapters - SAP, PeopleSoft, ORACLE, Files, e-mail…
• WebSphere Transformation Extender

WebSphere Message Broker
• WebSphere MQ provides the assured delivery backbone to an

Enterprise Service Bus. The queue managers are message content
agnostic. Consequently, any data may be exchanged between
applications. However, many applications are dependent upon their data
being routed to particular destinations and are dependent upon
particular data formats. So, the fact that applications may exchange data
(via WebSphere MQ and/or WebSphere Adapters) does not solve all
possible problems. For the general case of any to any application
integration, an intermediary is required to handle message routing
issues and to handle (both simple and very complex) message
transformation issues.

• Message Broker provides the function that enables complex message
routing and transformation functions to be encapsulated outside of
applications, in a (logically) central component.

82

WebSphere MQ

WebSphere MQ Advanced Message Security

• Secures application data even before it is passed to MQ
• Upgrade from base MQ – No changes to existing applications or

network required
WebSphere MQ standard security:
Industry standard SSL channels (128-bit)
Certified for Common Criteria
Authentication is based on Operating System identifier of
local process
Security admin has to be done at each server
Message data can be encrypted in transport but not when it
resides in the queues

Securing the data and
the applications

WebSphere MQ Advanced Message Security

Application A Application Z

WebSphere MQ Advanced Message Security
adds:
+ Authentication policies are based on certificates
associated with each application
+ Message data is protected end-to-end – including when it
resides in queues
+Centralized admin of security policies across all servers
+ Much finer granularity in security policies
+ Audit logs of data and queue access
+ No changes needed to applications or queues

83

WebSphere MQ Low Latency Messaging

• Extends the WebSphere MQ messaging family
• New product that provides a messaging transport optimized for low latency, high-

throughput delivery
• Provides low Latency, high-throughput messaging

• Capable of 91 million messages per second
• Less than 30µs latency at high throughput rates
• Traffic control with static & dynamic rate control

• Delivers semi-reliable delivery
• Choice of Multicast and Unicast transport

with range of topology, speed and reliability
characteristics

• Ordered (FIFO) delivery
• Stream failover for high availability

• Filters messages flexibly
• Coarse-grained, topic-based and fine-grained filtering

• Included in WebSphere Front Office for Financial Markets

High-Speed Low-Latency

WebSphere MQ
Low Latency Messaging

84

WMQ File Transfer Edition
 MQ FTE solves problems of auditing, monitoring, scheduling, security …

– Automated bulk data transfer between distributed heterogeneous systems.
– Capabilities for integrating, managing, and controlling data movement.

 Built on WebSphere MQ
– Assured delivery of data

over MQ backbone
 Simplicity and ease-of-use

– GUI Driven
– WMQ Explorer Integration
– Scheduled, or Triggered

transfers
– Scriptable

 Complements MB File Nodes
 Product page:

– http://www.ibm.com/software/integration/wmq/filetransfer/v7/

MQ
MQFTE

MQFTE MQFTEMQFTE

MQ MQ

Clients

Servers

MQFTE Eclipse Tooling

MQFTE

MQFTE

MQFTE

MQFTE Eclipse Tooling

Coordination
Queue Manager

http://www.ibm.com/software/integration/wmq/filetransfer/v7/
http://www.ibm.com/software/integration/wmq/filetransfer/v7/

85

Tivoli Omegamon and ITCAM
• Range of IBM products for monitoring and managing

• Common core technologies with product-specific integration
• eg Omegamon for Messaging deals with WMQ and Message Broker

• Enterprise-scale Management with Omegamon
• Much larger environments than the MQ Explorer will handle
• Allows joining of multiple products into single views

• eg there might be a situation only if both
WMQ and DB2 show specific issues

• Part of the "extended" WMQ
development team
• Make sure Tivoli can support new features
• WMQ V7 support available

• Monitor SLAs
• Drill down to appropriate product/OS levels

http://www.ibm.com/developerworks/websphere/downloads

Getting WebSphere MQ : Free Trial

Summary

• WebSphere MQ - World leader in messaging technology

• Runs everywhere your applications do

• Simplifies application communication
• From simple connectivity…..
• ….. to complex workload balancing, transformation and routing

• Provides secure, reliable and high-speed infrastructure

Monday Tuesday Wednesday Thursday Friday

08:00 Free MQ! - MQ Clients
and what you can do
with them

09:30 Clustering – the
easier way to
connect your Queue
Managers

MQ on z/OS
– vivisection

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

11:00 Diagnosing problems
for Message Broker

Lock it down -
WebSphere MQ
Security

Using IBM WebSphere
Application Server and
IBM WebSphere MQ
Together

Spreading the message
– MQ pubsub

12:15 Highly Available
Messaging - Rock
solid MQ

Putting the web into
WebSphere MQ: A look
at Web 2.0
technologies

The Doctor is In and
Lots of Help with the
MQ family - Hands-on
Lab

01:30 WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

What’s new in the
WebSphere MQ
Product Family

Extending IBM
WebSphere MQ and
WebSphere Message
Broker to the Cloud

MQ Performance and
Tuning on distributed
including internals

03:00 First steps with
WebSphere Message
Broker: Application
integration for the
messy

What's new in Message
Broker V8.0

Under the hood of
Message Broker on
z/OS - WLM, SMF and
more

The Do’s and Don’ts of
z/OS Queue Manager
Performance

04:30 The MQ API for
Dummies - the
Basics

What the **** is going
on in my Queue
Manager!?

Diagnosing problems
for MQ

Shared Q using Shared
Message Data Sets

06:00 For your eyes only -
WebSphere MQ
Advanced Message
Security

MQ Q-Box - Open
Microphone to ask the
experts questions

This was session 11386 - The rest of the week ……

© IBM Corporation 2012. All Rights Reserved.

IBM, the IBM logo, ibm.com are trademarks or registered trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other product
and service names might be trademarks of IBM or other companies. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information” at

www.ibm.com/legal/copytrade.shtml.

Copyright and Trademarks

	Presentation Title Here
	Agenda
	Business Challenges (1) - Universal Connectivity
	Slide 4
	Business Challenges (2) - Process Resilience
	Slide 6
	Business Challenges (3) - Process Scalability
	Slide 8
	Business Challenges (4) - Process Flexibility and Cost
	Slide 10
	Slide 11
	Slide 12
	WebSphere MQ – Key Concepts
	WebSphere MQ – Key Concepts (3)
	Vision – Universal Messaging Backbone
	IBM’s Vision – Universal Messaging Backbone
	The WebSphere MQ Product Family
	Slide 18
	WebSphere MQ is not a substitute for…!
	Slide 20
	WebSphere MQ – Messaging Style (1)
	WebSphere MQ – Messaging Topology (1)
	WebSphere MQ – Messaging Styles (2)
	WebSphere MQ – Messaging Topology (2)
	What is a Message?
	Slide 26
	What is a Queue?
	What is a Queue?
	What is a Topic?
	Slide 30
	Publish/Subscribe in Action
	What is Publish/Subscribe?
	What is a Queue Manager?
	What is a Queue Manager?
	Local and Cross-System Communication with WMQ
	Cross-System Communication with WebSphere MQ
	What is an MQ Client?
	Slide 38
	Slide 39
	Slide 40
	Programming API
	Programming API
	The MQ API (MQI)
	The MQ API (MQI)
	The MQ API (MQI) – Publish/Subscribe
	The MQ API (MQI) – Summary of all verbs
	Java Message Service (JMS) and XMS
	Slide 48
	WMQ Custom Channel for WCF
	Slide 50
	HTTP Connectivity to WMQ
	Slide 52
	HTTP-MQI Verb / Resource Mapping
	Example HTTP Flow - POST (= MQPUT)
	WebSphere MQ Telemetry
	Slide 56
	Slide 57
	Example application architectures (1)
	Slide 59
	Example application architectures (2)
	Slide 61
	Example application architectures (3) – Clustering
	Slide 63
	Slide 64
	Slide 65
	WebSphere MQ Transactions
	Slide 67
	WebSphere MQ Security
	Slide 69
	WebSphere MQ Security (contd)
	Slide 71
	WebSphere MQ Systems Management
	Slide 73
	WebSphere MQ Service Definition
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	WebSphere Message Broker
	Slide 81
	WebSphere MQ Advanced Message Security
	WebSphere MQ Low Latency Messaging
	WMQ File Transfer Edition - Summary
	Tivoli Omegamon and ITCAM
	WebSphere MQ Free Trial
	Summary
	Slide 88
	Copyright and Trademarks

