
WebSphere Application Server on z/OS
What Can You Do With The SMF 120s?

David Follis
IBM

August 6, 2012
Session Number 11377

Trademarks
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

The following are trademarks or registered trademarks of other companies.

* Registered trademarks of IBM Corporation

* All other products may be trademarks or registered trademarks of their respective companies.

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Microsoft, Windows and Windows NT are registered trademarks of Microsoft Corporation.

SET and Secure Electronic Transaction are trademarks owned by SET Secure Electronic Transaction LLC.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user
will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload
processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have
achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to
change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the
performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

CICS*
DB2*
GDPS*
Geographically Dispersed Parallel Sysplex
HiperSockets
IBM*
IBM eServer
IBM logo*
IMS
On Demand Business logo

Parallel Sysplex*
RACF*
System z9
WebSphere*
z/OS
zSeries*

3

Disclaimer

• The information contained in this documentation is provided for informational purposes only. While
efforts were many to verify the completeness and accuracy of the information contained in this
document, it is provided “as is” without warranty of any kind, express or implied.

• This information is based on IBM’s current product plans and strategy, which are subject to change
without notice. IBM will not be responsible for any damages arising out of the use of, or otherwise
related to, this documentation or any other documentation.

• Nothing contained in this documentation is intended to, nor shall have the effect of , creating any
warranties or representations from IBM (or its suppliers or licensors), or altering the terms and
conditions of the applicable license agreement governing the use of the IBM software.

• Performance is based on measurements and projections using standard IBM benchmarks in a
controlled environment. The actual throughput that any user will experience will vary depending upon
considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can
be given that an individual user will achieve throughput improvements equivalent to the performance
ratios stated here.

• All customer examples cited or described in this presentation are presented as illustrations of the
manner in which some customers have used IBM products and the results they may have achieved.
Actual environmental costs and performance characteristics will vary depending on individual
customer configurations and conditions.

Session Day Time Room Title Speaker

11377 Monday 11:00 Grand Ballroom
Salon B

What Can I Do With the SMF 120s? David Follis

11371 Monday 3:00 Orange County Salon
2/3

Administrator Hands On Lab David Follis /
Michael Stephen /
Ken Irwin

11378 Tuesday 12:15 Grand Ballroom
Salon B

Spelunking the Admin Console John Hutchinson

11375 Tuesday 4:30 Grand Ballroom
Salon B

Being the Back-Up Administrator Mike Loos

11374 Wednesday 11:00 Grand Ballroom
Salon B

Liberty Profile – Rumors Dispelled David Follis

11373 Thursday 4:30 Grand Ballroom
Salon B

What's New? David Follis /
John Hutchinson /
Michael Stephen

11370 Thursday 6:00 Grand Ballroom
Salon B

Potpourri Anybody

11376 Friday 8:00 Platinum Ballrom
Salon 10

zWAS – In Real Life David Follis /
Rod Feak

WebSphere Application Server on z/OS

"WAS is WAS" -- at Open Specification Layer
This is an important starting concept -- it's what makes application development a
platform-neutral consideration:

Open Standard Specifications
Java EE, Java SE, EJB, Servlet, JSF, JSP, JDBC, JPA, JMS ...

API API API API API API API API API API API API

Code that implements the open standards

Common to WAS across all platforms
Most of the Java code is common to all platforms

Specific to the platform
All platforms have some of this; WAS
z/OS has the most since z/OS has so
much to exploit

Application Application Application

WAS is common
across platforms at
this layer and
above

Under the open
specification line is
where WAS takes
advantage of
platform attributes
where they exist

WLM

Request
Queues

WLMWLM

Request
Queues

Platform Native Code

IBM System z Java SDK and JVM

Web Container

Web Container Specification
Implementation Code

API API API API API

Web
Modules

Web
Modules

EJB Container

EJB Container Specification
Implementation Code

API API API API API

EJB
Modules

EJB
Modules

Servant Region

Platform Native CodePlatform Native Code

IBM System z Java SDK and JVMIBM System z Java SDK and JVM

Web Container

Web Container Specification
Implementation Code

API API API API API

Web
Modules

Web
Modules

EJB Container

EJB Container Specification
Implementation Code

API API API API API

EJB
Modules

EJB
Modules

Web Container

Web Container Specification
Implementation Code

API API API API API

Web
Modules

Web
Modules

Web Container

Web Container Specification
Implementation Code

API API API API API

Web Container Specification
Implementation Code

API API API API APIAPIAPI APIAPI APIAPI APIAPI APIAPI

Web
Modules

Web
Modules

Web
Modules

Web
Modules

Web
Modules

Web
Modules

EJB Container

EJB Container Specification
Implementation Code

API API API API API

EJB
Modules

EJB
Modules

EJB Container

EJB Container Specification
Implementation Code

API API API API API

EJB Container Specification
Implementation Code

API API API API APIAPIAPI APIAPI APIAPI APIAPI APIAPI

EJB
Modules

EJB
Modules

EJB
Modules

EJB
Modules

EJB
Modules

EJB
Modules

Servant Region

Platform Native Code

IBM Request Handling
Java Code

Controller Region

Platform Native Code

IBM Request Handling
Java Code

Controller Region

Platform Native CodePlatform Native Code

IBM Request Handling
Java Code

IBM Request Handling
Java Code

Controller Region

Additional
Servant
Regions

Additional
Servant
Regions

z/OS Platform Functions: WLM SMF SAF JES Cross-Memoryz/OS Platform Functions: WLM SMF SAF JES Cross-Memory

Listener Ports

Structure of WAS on z/OS

History of SMF Records for WAS on z/OS

WAS owns the
SMF 120 Record
Type

Create Server and
Container
Records
Subtypes 1,2,3,4

Remove
Container
Records (2/4)
Add J2EE and
Web Container
Records (5/6 and
7/8)

Request
Activity Record
Subtype 9

Affinity
Tracking

Async Work
Activity PLUS
WOLA
Outbound
Record (10)

Dawn of Time

V4.01

V7

V8

V8.01

Use of subtypes 1, 3, 5, 6, 7, and 8 is discouraged due
to performance impact

Features can be turned on with variables, or dynamically:

 Static definition using WebSphere variables:

server_SMF_request_activity_enabled 0 | 1

server_SMF_request_activity_CPU_detail 0 | 1

server_SMF_request_activity_timestamps 0 | 1

server_SMF_request_activity_security 0 | 1

 Dynamically turn 120.9 records on and off, and set the level of details
collected, through the MVS Modify (F) command:

F <server>,SMF,REQUEST,[ON | OFF]

F <server>,SMF,REQUEST,CPU,[ON | OFF]

F <server>,SMF,REQUEST,TIMESTAMPS,[ON | OFF]

F <server>,SMF,REQUEST,SECURITY,[ON | OFF]

 DISPLAY command tells you the status of SMF recording within a server

F <server>,DISPLAY,SMF

Configuring the SMF 120 Subtype 9

What's in the SMF 120 Subtype 9 Record?

● Platform Neutral Server Information

● z/OS Specific Server Information

● Platform Neutral Request Information

● z/OS Specific Request Information

● Formatted Timestamps

● Network Data

● Classification Data

● Security Information

● CPU Usage Section

● User Data

● Async Work Section

Platform Neutral Server Information
● Always present, one instance
● Contains:

● Cell name
● Node name
● Cluster name
● Server name
● Controller PID
● WAS release (e.g. 7.0.0.19)

● Usage:
● Record sorting by server (c/n/c/s is usually unique)
● Change of PID for CR indicates server recycle (mostly)
● Use release to identify perf. changes across maintenance

z/OS Server Information
● Always present, one instance
● Contains:

● System name
● Sysplex name
● Controller jobname, jobid, stoken, ASID
● Cluster and Server UUID (unique in 'universe' :-)
● GMT offset for timestamps
● Build level

● Usage:
● Sorting by system, jobname
● Stoken is a better indication of a recycle (unique in LPAR)
● GMT offset is important for reports

Platform Neutral Request Information
● Present for regular requests (not async), one instance
● Contains:

● Servant PID
● Dispatch Task ID
● TCB CPU time (all processor types)
● Completion minor code
● Request Type (HTTP, IIOP, etc)

● Usage:
● More sorting
● CPU time to run the request ON THE DISPATCH THREAD
● Non-zero minor code indicates a problem (and probably
missing data)
● Request type helps filter data (internal vs. application)

z/OS Request Information (Part 1)
● Present for regular requests (not async), one instance
● Contains:

● Timestamps (more on this later)
● Servant jobname, JobID, Stoken, ASID
● Dispatch TCB address and TTOKEN
● TCB CPU time on zIIP, zAAP
● Enclave Token

● Usage:
● TTOKEN is unique for LPAR
● Use with other fields to determine how many Servants and
dispatch threads you are really using
● Enclave token can be a correlator (not unique cross-plex,
mostly unique in an LPAR)

z/OS Request Information (Part 2)
● Contains:

● Enclave CPU times so far – IGNORE THESE
● Enclave Delete CPU times (more later)
● GTID value (Global Transaction ID)
● Dispatch timeout value
● Classification Transaction Class name
● Flags (more on this later too)

● Usage:
● Use the GTID to track related requests under the same
global transaction (IIOP)
● Group requests by Transaction Class or make sure
your classification XML file is working as expected

z/OS Request Information (Part 3)
● Contains:

● Granular RAS settings from classification XML:
● Timeout dump actions
● CPU time limit
● DPM interval / action
● Message Tag

● Affinity data (more on this later)

● Usage:
● Validate XML settings are working
● Message tag can be a filter (e.g. by application)

Formatted Timestamps
● Contains:

● Timestamps in human readable form
● Optional
● Mostly just makes the record bigger
● Recommend you leave these off

Network Data Section
● Present for IIOP and HTTP requests, one instance

● Contains:
● Bytes sent and received
● Target port number (-1 for local)
● Origin string (e.g. origin host/port or jobname/asid for local)

● Usage:
● Sort by origin
● Sort by target port
● Correlate response times with size of request/response
● Correlate long response times with network segments

Classification Data Section
● Multiple instances, depends on request type

● Contains:
● HTTP: Target host/port and URI
● IIOP: A/M/C names plus class and mangled method name
● WOLA: CICS transaction name

● Usage:
● Useful when validating classification XML is working
● Sorting CPU and response times by specific application
request (URI, EJB method)

Security Section

● Multiple instances, depends on data available, can be
configured off

● Contains:
● Server identity
● Received identity
● Invocation identity

● Usage:
● Chargeback by who made the request
● Or by the ID the request ran under (invocation vs. received)

CPU Usage Section
● Can be configured off

● Records based on container breach (e.g. servlet->EJB)

● Contains (for each thing recorded)
● CPU time (all types)
● Elapsed time
● Number of invocations
● Strings identifying the thing called

● Usage:
● Can be used to roughly profile application

● NOTE: Enabling this introduces extra overhead

User Data Section
● Up to five sections
● Each section is 2K of user data
● Includes an identifying 'type' so you can tell how to format it
● Compute Grid uses an IBM reserved tag for 'job' data
● Can be set by the application
● Can be set by a servlet filter installed in the server
● See WP101859 for an example
● Usage:

● Whatever you want!
● Data we missed
● Application specific data (function performed, etc)

Async Work Section (Part 1)
● Async Work is also a 120-9 record with:

● Server identification sections
● User Data, CPU Usage sections

● Contains:
● Start and Completion timestamps
● Servant identification (jobname, jobid, stoken, asid)
● Execution context thread identification (tcb, ttoken)
● Dispatch thread identification (tcb, ttoken)
● Execution context and dispatch enclave token

● Usage:
● Where did it run, how long did it take
● Correlate to request that scheduled it

Async Work Section (Part 2)
● Contains:

● Transaction class if an enclave was created
● Daemon work?
● Enclave CPU so far – IGNORE
● Dispatch TCB on GPs and on zIIP/zAAP
● Work classname and package
● Workmanager name

● Usage:
● CPU time for the work
● Help figure out how to use enclave CPU time (Daemon
etc).
● What was it? (Work name, workmanager name)

CPU Times – A closer Look
● Task CPU times

● CPU time spent on the dispatch thread
● Broken into 'all types' and 'just zAAP/zIIP'
● Grabbed at slightly different times than enclave values
● If minor code != zero, no 'end' CPU time grabbed so
calculated values are usually negative

● Enclave CPU times
● For IIOP requests to local servers enclave may propagate

● Thus enclave values include time in other servers
● For IIOP requests in a global transaction, enclave is
reused

● Thus values cover multiple requests, missing on first
through N-1 requests

Enclave CPU values
● For Enclave CPU we get from WLM:

● Time on all processor types
● Time on zAAP and Time on zIIP

● If zAAP on zIIP then zAAP time reported as zIIP
● Normalization factors if at different speeds

● A value of 256 means same speed
● CPU used in service units (MSUs)
● Response Time Ratio

● 1<value<1000
● Actual / Goal * 100
● Identify requests that missed goal
● Correlate with request/response size or time of day
or origin of request, application URI or tag

Controller
ServantServantServant

1 2
3

5 4

Timestamps

1) Arrival Time
2) Time placed on the queue
3) Begin Dispatch
4) Complete Dispatch
5) Response sent (request finished)

Values are in STCK format
Subtract and divide by 4096 to
get (in microseconds):
● Time in CR
● Time on Queue
● Time in Dispatch
● Time to send Response
● Overall Response Time

Flags!
● Contains:

● Created an enclave?
● One-way Request
● Classification Trace Match
● SMF record on (from XML)
● Queued with affinity

● Usage:
● Helpful with tracking enclave propagation
● One way requests don't have a response
● If using classification tracing, records with flag on
produced trace data too
● Affinity – next chart...

SMF 120-9 Updates for affinity routing

Controller WLMWLM

Servant

Servant

ServantServant

ServantServant

1

2

3

5
4

 Some requests establish an affinity to a servant region

 Later requests use that affinity and must run in the same servant
 HTTPSession and Stateful Session Beans are examples

 The SMF 120.9 record already indicates if a request ran in a particular
servant because of an affinity

 In Version 8 we added an affinity token to the SMF record

 Find the request that created the affinity and all the later requests that used it

Uses for Affinity Data

● Find all the requests that establish an affinity
● Find all the requests that use an affinity
● Build the chains and accumulate data for a set of affinity
related requests
● Identify affinities that are never used again
● Build historical data about 'average' affinity usage and flag
outlying cases

● Shopping carts created but never buys anything

Similar to WAS z/OS 120.9 records

120.9 records inbound calls, the new
120.10 is used to record outbound calls

Good information about content and
performance of outbound calls

InfoCenter: rtrb_SMFsubtype10

Similar to WAS z/OS 120.9 records

120.9 records inbound calls, the new
120.10 is used to record outbound calls

Good information about content and
performance of outbound calls

InfoCenter: rtrb_SMFsubtype10

WAS on z/OS

Your
Appl

OLA
RAR

CICS, IMS, Batch, etc.

External
Program

SMF
120.10 record ..
120.10 record ..
120.10 record ..

WAS on z/OS

Your
Appl

OLA
RAR

WAS on z/OS

Your
Appl

OLA
RAR

Your
Appl
Your
Appl

OLA
RAR
OLA
RAR

CICS, IMS, Batch, etc.

External
Program

CICS, IMS, Batch, etc.

External
Program
External
Program

SMFSMF
120.10 record ..
120.10 record ..
120.10 record ..

WAS on z/OS

Your
Appl

OLA
RAR

CICS TS 4.2

External
Program

SMF
120.10 record ..
120.10 record ..
120.10 record ..

SMF
110 record ..
110 record ..
110 record ..

256 Byte
Correlator

Corr Corr

WAS on z/OS

Your
Appl

OLA
RAR

WAS on z/OS

Your
Appl

OLA
RAR

Your
Appl
Your
Appl

OLA
RAR
OLA
RAR

CICS TS 4.2

External
Program
External
Program

SMF
120.10 record ..
120.10 record ..
120.10 record ..

SMF
120.10 record ..
120.10 record ..
120.10 record ..

SMF
110 record ..
110 record ..
110 record ..

SMF
110 record ..
110 record ..
110 record ..

256 Byte
Correlator
256 Byte

Correlator

CorrCorr CorrCorr

Part of the SMF 120.10 record function

256 bytes of specific information about the
outbound request

With CICS 4.2 the correlator ends up in the
CICS 110 records as well

InfoCenter: rtrb_SMFsubtype10

Part of the SMF 120.10 record function

256 bytes of specific information about the
outbound request

With CICS 4.2 the correlator ends up in the
CICS 110 records as well

InfoCenter: rtrb_SMFsubtype10

SMF 120-10 and CICS Correlation with WOLA

SMF 120 Subtype 10
● Contents

● Servant jobname, jobid, stoken, ASID, process id
● Task originating request: TCB, TTOKEN, Task ID
● Enclave token (to correlate with 120-9)
● Bytes sent and received
● Timestamps for request sent and response received
● WOLA register name and service name
● Transaction context, Userid, CICS or IMS-OTMA info

● Usage
● Correlate to WAS request driving into CICS/IMS
● Correlate to CICS SMF data
● Determine if WAS response time delays are coming
from CICS or IMS reached via WOLA

This is all nice, but SO WHAT?
● Most customers use Type 30's or Type 72s to get the big picture
● WAS SMF 120's provide the details

● Use received timestamp to calculate inbound requests per
second
● Find patterns for requests that don't meet goals or use more
CPU than usual
● Spot unusual activity in an application

● Affinity usage (or lack thereof)
● CPU usage detail showing different usage patterns
● Unusually large requests/responses

● Use a servlet filter to get your own info in the User Data
● Use the IBM SMF 120 Browser and write your own plugins!

● WP101726 shows you how
● Share 'em with your friends!

33

System z Social Media

 Leading Blogs related to System z:
 Evangelizing Mainframe

(Destination z blog)
 Mainframe Performance Topics
 Common Sense
 Enterprise Class Innovation:

System z perspectives
 Mainframe
 MainframeZone
 Smarter Computing Blog
 Millennial Mainframer

 System z official Twitter handle:
 @ibm_system_z

 Top Facebook pages related to System z:
 Systemz Mainframe
 IBM System z on Campus
 IBM Mainframe Professionals
 Millennial Mainframer

 Top LinkedIn Groups related to System z:
 Mainframe Experts Network
 Mainframe
 IBM Mainframe
 System z Advocates
 Cloud Mainframe Computing

 YouTube
 IBM System z

	Title of Presentation (Type Size=32, can accommodate up to a maximum of 3 lines)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

