Enterprise Security: Building On All Your Assets

Neil Beesley
Covariant Inc
neil.beesley@covariant-systems.com

Friday August 10th 2012
Session: 11369
Part 1: Introduction
Security requirements

- Authentication of legitimate users, i.e. knowing who someone is… despite:
 - Different ID’s and multiple passwords across platforms
 - z/OS, UNIX, LINUX, Windows [Active Directory]
- Prevent unauthorized access to applications and data
- Integration with platform access control mechanisms
- Accountability and providing reliable audit trail
- Satisfy regulatory requirements
Security Challenges

- Additional cost to deploy applications
- Inconvenience and lost time for users
- Cost of security administration
- Effort required for successful audit
- Multiple layers of security – perimeter, IP security, servers and OS, and the ‘applications’
- Different approaches to authentication: Password, X509 certificate, LDAP, custom password managers and Kerberos

- Which facilities are available with vendor products?
Heterogeneous challenge

• No longer simple security requirement with single environment, TP monitor, language and DBMS
• Extensible platforms: Windows, UNIX, z/OS, .NET, Web services and SOA
• Integration connects separate application components executing on different platforms
 • Typical user may have access to applications on:
 • Windows - Active Directory Forest/Domain(s)
 • Unix Server(s) – Often Kerberos managed
 • Mainframe server(s) e.g. z/OS – RACF/ACF2/TSS

• Different user ID password on each platform
Part 2: Kerberos
What is Kerberos

- A network authentication service
- MIT, Heimdal, Microsoft implementations
- Authentication between disparate security authorities in z/OS, UNIX, Windows
- Kerberos issues tickets for authentication against a service and optionally a session key for data encryption
- Kerberos KDC has the following components
 - Authentication Server (AS)
 - Ticket Granting Server (TGS)
 - Database (KDB)
Kerberos Terminology

- **Ticket**: opaque envelope enabling user identity, dynamic session key, time stamp, ticket lifetime and the service name to be derived
- **Realm**: Kerberos domain which includes all entities known to the KDC
- **Principal**: an identity which is defined to a realm, such as a user
- **Service Principal**: principal under which a service executes
- **Trust**: Two or more realms can be configured to trust the authentication of each other’s Principals, e.g. a Windows AD user can be accepted in a Unix or z/OS KDC realm
Why is Kerberos interesting..

- Method to establish authentication without sending user ID password (user already authenticated to local security authority)
- Leverages one time ticket, valid only for a finite period
- Ticket gives access to just one particular service
- Authentication between separate Kerberos realms
- Incremental deployment plan across databases or other services
- Kerberos suitable for heterogeneous environments

- Therefore a user with different ID’s on each platform can be mapped and the need for storing or supplying password across platforms is avoided
Overview of Kerberos

Information flow for client server in same Kerberos realm

1. User ID password [AS_REQ]
2. Ticket granting ticket (TGT) [AS_REP]
3. Service principal name [TGS_REQ]
4. Service ticket [TGS_REP]
5. Ticket verification request [AP_REQ]
6. Optional server authentication and session encryption key [AP_REP]
Overview of Kerberos

Information flow for client server in **different** Kerberos realms

1. User ID password
2. Ticket Granting Ticket (TGT)
3. Service principal name
4. Service ticket, optional session key
5. Ticket verification request

Realm-1 -- has trust relationship with -- Realm2

© Copyright Covariant Inc 2012
Kerberos on z/OS

- IBM Network Authentication Service
- Integration with RACF/ACF2/Top Secret enables authorization and audit functionality
- RACF/ACF2/Top Secret contain user ID mappings between different platforms
- RACF/ACF2/Top Secret contain the trust relationships between different Kerberos realms
- DB2, WAP, FTP, Telnet, LDAP, Rshd… etc
Kerberos on z/OS

Information flow for client server from Windows to z/OS

1. User ID password
2. Ticket Granting Ticket (TGT)
3. Service principal name
4. Service ticket, optional session key
5. Ticket verification request

Client Application

Service ticket

Server Application

Microsoft Windows™ Domain Controller

IBM® Network Authentication Service

RACF, ACF2, TSS

Trust relationship
Kerberos benefits

- Authentication across Windows, UNIX, z/OS
- Authorization and audit can be applied, for example using RACF/ACF2/Top Secret
- Ability to generate session keys (encryption)
- Applicable to any heterogeneous application

- So, why isn’t Kerberos supported by all applications?
Kerberos requirements

- Peer [components] must exchange ticket data
 - Kerberos does not provide means for transporting ticket to remote peer application components
- Configuration not straight-forward
 - Trust configuration is tricky
 - Mapping to local user profile is platform specific
 - Errors can be cryptic
- Not all vendor products do this yet, but this has not prevented customers implementing Kerberos with them...
Part 3: User Scenarios

- DB2 implementation with DB2 Connect from LINUX, UNIX and Windows clients
- SAP Sybase access from mainframe client
- Software AG webMethods EntireX implementation
DB2 z/OS from DB2 Connect

- Standard IBM product functionality for LUW client authentication against DB2 z/OS for 3GL/Perl/Java
- Finesse is GSS-API DB2 Connect (Kerberos) client side plug-in module for UNIX/LINUX -- 3GL/non JAVA
- Implementation requires revised security definitions on z/OS and distributed systems plus software configuration changes – SPN definitions client side
- JAVA applications require additional properties for JDBC type 4 call
- Non JAVA applications unchanged – DB2 Connect catalog definitions needed
- Standard SAF security access rules used
- PTF to cater for multi-LPAR DB2 servers (different service principal names with different LPARs here)
JAVA code fragment for JDBC type 4 Kerberos properties
(common code -- can be encapsulated)

```
java.util.Properties properties = new java.util.Properties();
// Set security mechanism to Kerberos
properties.put("securityMechanism",
new String("" + com.ibm.db2.jcc.DB2BaseDataSource.KERBEROS_SECURITY + ")");
// Set Kerberos Service Principal Name
properties.put("kerberosServerPrincipal",
new String("" + "db2mstr/lpar1.krbzos.covnt.com@KRBZOS.COVNT.COM" + ")");
url = "jdbc:db2://" + server + ";" + portNumber + "/" + dbName + ":traceDirectory=/var/tmp" + ":traceFile=db2_javat4_trace" + ":traceFileAppend=false" + ":traceLevel=" + 
com.ibm.db2.jcc.DB2BaseDataSource.TRACE_ALL + ";";
Class.forName("com.ibm.db2.jcc.DB2Driver").newInstance();
con = DriverManager.getConnection( url, properties );
```
DB2 z/OS from DB2 Connect: Non JAVA

- DB2 Connect catalog definitions -- database alias and client side plug-in:

 db2 CATALOG DATABASE TESTDB2 AS TESTDB2K AT NODE TESTNOD1 AUTHENTICATION KERBEROS TARGET PRINCIPAL db2mstr/lpar1.krbzos.covnt.com@KRBZOS.COYNT.COM

 db2 UPDATE DBM CFG USING CLNT_KRB_PLUGIN covnt_krb5_plugin
DB2 z/OS from DB2 Connect

- DB2 Connect on Windows
 - DB2 client Side Plug-in
 - Kerberos ticket
 - TGT

- DB2 Connect on LINUX/UNIX
 - DB2 client Side Plug-in
 - Kerberos ticket
 - TGT

- DB2 Connect on Java [type-4]
 - Kerberos ticket
 - TGT

- UNIX KDC

- z/OS and DB2
 - nnnDBM1 - nnnMSTR
 - nnnDIST [Kerb ID] - nnnIRLM

- KERBLINK maps Win/UNIX ID to SAF

- IBM Kerberos Racf/Acf2/Tss

trust relationship
Sybase access from z/OS Client

- Client application z/OS batch/CICS – Sybase servers in UNIX
- No vendor functionality available: implemented with user exits
- Obtain client side Kerberos ticket in application user exit and transport out-of-band to UNIX server where client side ticket is validated via GSS-API in PAM module (pluggable authentication)
- Implementation requires revised security definitions on z/OS and distributed systems plus additional software components and configuration changes
- TSS fixes required for obtaining client side Kerberos service tickets (R_Gensec call)
Sybase access from z/OS Client

- **Sybase Server**
- **PAM security exit**
- **UNIX KDC**
- **Open Client Connect** (no password)
- **NATURAL CICS**
- **NATURAL Batch**
- **Ticket Daemon**
- **IBM Kerberos**
- **Racf/Acf2/Tss**

Steps:
1. SQL Connect: user ID + unique number in pwd
2. Get Kerberos ticket call for same unique number
3. Identify call
4. Trust relationship
5. TGT
6. TGT
7. TGT

Security Exits:
- PAM security exit
- UNIX KDC
- IBM Kerberos
- Racf/Acf2/Tss

Trust Relationship:
- IBM Kerberos
- Racf/Acf2/Tss

License:
© Copyright Covariant Inc 2012
Implementation for Software AG EntireX

- LUW clients using z/OS message service on z/OS – but can be other way round. Similar to IBM MQ
- Implemented using 3-rd party solution
- Out-of-band Kerberos ticket acquisition/verification across platforms using standard IBM and GSS-API interfaces. IBM C/LE written code.
- Implementation requires revised security definitions on z/OS and distributed systems, plus additional software components and configuration changes
- Standard SAF security access rules used
- Newer Kerberos encryption protocols for WS-2008
Implementation for Software AG EntireX

- Windows workstation
- Window App
- message stub
- Plug-in
- Windows 200X Server
- AD/Domain Controller
- z/OS LPAR
- Batch job
- message stub
- Plug-in
- CICS region
- message stub
- Plug-in
- Message Broker
- User exit
- IBM Kerberos
- RACF
- ACF2
- TSS
- Trust relationship
- The message
- Kerb ticket
- TGT
Part 4: Configuration tips

• KDC configuration
 • More than one KDC for resilience
 • Client members
 • Application Service members
• RACF user definitions
• RACF Kerberos Realm Definitions
• Kerberos service principal names
• Kerberos name space considerations
• TCP/IP and network requirements
• Gotchas… and diagnostics
KDC Configuration on z/OS

```
[realms]
KRBZOS.COVNT.COM = {
  kdc            = nasd1.krbzos.covnt.com:88
  kpasswd_server = nasd1.krbzos.covnt.com:464
  admin_server   = nasd1.krbzos.covnt.com:749
  auth_to_local  = { RULE:[2:$1](joe)s/^.*$/guest/
                     RULE:[2:$1;$2](^.*;admin$)s/;admin$//
                     DEFAULT }
} KRBWIN.COVNT.COM = {
  kdc            = addc1.krbwin.covnt.com:88
  kpasswd_server = addc1.krbwin.covnt.com:464
}
[domain_realm]
.krbezos.covnt.com = KRBZOS.COVNT.COM
.krbwin.covnt.com = KRBWIN.COVNT.COM
```

/etc/skrb/krb5.conf

UNIX only: z/OS uses KERBLINK
RACF Definitions: Users

- Local RACF User
 - ADDUSER SAFUSR1 KERB(KERBNAME(kerbusr1))
 - Then logon and change password (if not NDBM)
- Foreign users such as defined on Windows
 - RDEFINE KERBLINK /../KRWIN.COVNT.COM/winusr2 APPLDATA(‘SAFUSR2’) maps between winusr2 and SAFUSR2
 - RDEFINE KERBLINK /../KRWIN.COVNT.COM/ APPLDATA(‘SAFUSR3’) maps all AD Domain users to SAFUSR3
RACF Definitions: Realms

- Local Realm (RACF)

 RDEFINE REALM KERBDFLT
 KERB(KERBNAME(KRBZOS.COVNT.COM) PASSWORD(pwd)
 MINTKTLFE(15) DEFTKTLFE(36000) MAXTKTLFE(86400))

- Foreign Realm (Windows domain controller)

 RDEFINE REALM
 /.../KRBZOS.COVNT.COM/krbtgt/KRBWIN.COVNT.COM
 KERB(PASSWORD(trustpwd))

 RDEFINE
 REALM/.../KRBWIN.COVNT.COM/krbtgt/KRBZOS.COVNT.COM
 KERB(PASSWORD(trustpwd))
Service Principal Name (SPN)

- Server application must run under user ID valid for context acceptance
- KERB segment specifies Kerberos principal name for service, e.g. db2mstr
- If service exists on multiple LPAR use APAR OA32352 – e.g. relevant to DVIPA and DB2 database groups – IBMKLINK statements
- Client application supplies SPN: db2mstr/lpar1.krbzos.covnt.com@KRBZOS.COVNT.COM
TCP/IP Configuration

- Incorrect z/OS and OMVS hosts definitions
- Inconsistencies with Kerberos principals for KDC/password server/admin server
- Required ports to allow AD and KDC (IBM) to communicate blocked by firewall
 - kdc port: 88
 - kpasswd: 464
 - kadmin: 749 (normally not required)
Network Design

• Bad choices for Kerberos Realm / AD domain name
 • Avoid using default names from sample configurations
 • Design your name space
 • Avoid name clashes with registered Internet domain names (e.g. krb390.ibm.com) or different user ID’s in separate domains, e.g. msmith@ibm.krbzos.com ≠ msmith@ibm.krbwin.com
• Windows AD Forest / Domain structure
 • Kerberos realm name fits AD Forest name hierarchy
Windows AD configuration

- Registry setting to make AD use TCP vs UDP for Kerberos traffic (Windows 2003)
 - RFC 4120 now obsoletes RFC 1510. RFC 4120 specifies that a KDC must accept TCP requests and this is what Windows 2008 Server and Windows 7 and onwards do
- Registry settings for debugging Kerberos on Windows
 - http://support.microsoft.com/kb/262177
 - HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa \Kerberos\Parameters
 - LogLevel=1
RACF Configuration tips

• Missing or invalid RACF definitions
 • Kerberos Realm
 • Kadmin
 • Kerberos segments of participating user/server
• If KERB segment of RACF user profile is changed, password must be changed
 • Password change triggers Key generation
• RRSF (Remote RACF) must be configured and running
Clock Skew tips

- Kerberos tolerates up to 5 minutes clock skew
 - If more, cryptic errors occur and authentication will fail
 - NTP time synchronization of all AD DC and all KDC is highly recommended (actually all servers should be time synchronized)
- z9 and z10 and up support STP for time synchronization
 - Licensed feature #1021 required
 - z10+ supports STP synchronization using external NTP time source
Case Sensitivity tips

• Some places are case sensitive
• Using mixed case Kerberos trust password when RACF is configured to support only upper case
• Realm/Domain names MUST be upper case in Trust configuration
• Compare SAF to NDBM Kerberos repository
Summary

• Kerberos provides cross platform enterprise security mechanism. Large investment already on LUW side
• Do a POC especially with existing product already having Kerberos functionality
• Involve cross platform groups and security staff from beginning
• Ensure vendor fixes are researched: talk to vendors up front
• When vendor product does not support Kerberos on z/OS then customer written or 3rd party add-ons can…
References

• http://en.wikipedia.org/wiki/Kerberos_%28protocol%29
• http://web.mit.edu/kerberos/krb5-current/doc/krb_admins/troubleshoot.html
• http://support.microsoft.com/kb/907272
• http://covariant-systems.com