&= #SHAREorg ’ ‘

S e

. -
u SHARE
| Technolegy - Conneczions « Results

When Things Go Wrong:
Abends in Your Assembler Program and
How You Can Recover From Them

(All You Need to Know to Write Your First ESTAE)

Vit Gottwald
CA Technologies

/; August 10, 2012

‘.\\ e®e ®
W/ " . o i‘.n.,;néheim
AU

Agenda = IARE

* Introduction
- Basic Hardware Terms
» Instruction Execution Loop
* Interrupts

 Recovery

Program Error
Recovery/Termination Manager
ESTAE

z/OS Control Blocks

Special Considerations
- References
2 :O. ” .0
Complete your sessions evaluation online at SHARE.org/AnaheimEval .°sr-"i?1?nfheim

Basic terms ==X \ARE

« Storage

- Programs

- Data

- Low Core (first 8K of storage)
- CPU

+ 16 General Purpose Regqisters

» Program Status Word (instruction pointer)
* |nstruction

» Operation code

- Operands

 Length
3

o9 LU
@
- SHARE
Complete your sessions evaluation online at SHARE.org/AnaheimEval ... S T Al

. =
. . SHARE
Instruction Execution Loop = S
« Sequential
Fetch Update PSW
Instruction to point to Execute the
pointed to byp—#»{ The Next -9 struction
PSW into Sequential
CPU Instruction
* How does the CPU know the instruction length?
» First two bits of operation code
00 — instruction is 2 bytes long
01 or 10 — instruction is 4 bytes long
11 — instruction is 6 bytes long
4 ...00.
Complete your sessions evaluation online at SHARE.org/AnaheimEval .'.s HARE

«* inAnaheim

-
. . SHARE
Instruction Execution Loop = e
Update PSW
® BranCh YES—p> F:‘r(‘)arr(?the
instruction
Fetch Update PSW
Instruction to point to Branch tvpe
pointed to by~ The Next insturcioynp’?
PSW into Sequential '
CPU Instruction T
NIO E_xecute_the
instruction
- Branch type instructions
replace the instruction address in PSW
5 .0...0
Complete your sessions evaluation online at SHARE.org/AnaheimEval :.s HARE

«* inAnaheim

Instruction Execution Loop

Update PSW
« Branch & Interrupt yES—»| from the
instruction
Fetch Update PSW
Instruction to point to Branch tvpe
pointed to byp—#»] The Next insturcioynp')
PSW into Sequential '
CPU Instruction
NO
. Execute the
instruction
NO
Is there an
interrupt to
service?
YES Hardware
—p| INTERRUPT
handling
6 - SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval

«.+ inAnaheim

What does the hardware do to handle the i =)
interrupt? .

« Save Iinto Low Core
« Current PSW

+ PSW extension

Interrupt code

Instruction Length Code (ILC)
« TEA

- BEAR
 Load from Low Core

- New PSW assigned to the type
of interrupt that occurred

Hardware

} discussed later |NTERRUPT
handling

7

o9 e,
: SHARE
: : : : . : :
Complete your sessions evaluation online at SHARE.org/AnaheimEval i e T AtHelns

Interrupts LA

« Each interrupt type has its own fields in Low Core
> old-PSW
* new-PSW

 First Level Interrupt Handler (FLIH)

- Routine pointed to by instruction address in new-PSW
 Interrupt types

- Restart, External, Machine Check, I/O

- SVC

» Program Check
CPU recognized problem in execution of an instruction
Categorized by Program Interruption Code (PIC)

8

.o ® LI
- SHARE
s : ; . = : g
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

Program Interruption Code (PIC) e

PIC

0001
’,,//”//?voooz
0003
S0C1 0004
0005
0006
0007
0008
0009
000A
W, 000B
8 000C
% 000D
. 000E
. % 000F
% 530010
. Y0011

Y

9

Reason
Operation
Privileged operation
Execute

Protection
Addressing
Specification

Data

Fixed-point overflow
Fixed-point divide
Decimal overflow
Decimal divide

HFP exp. overflow
HFP exp. underflow
HFP significance
HFP divide
Segment translation
Page translation

Complete your sessions evaluation online at SHARE.org/AnaheimEval

—p
SHARE
Type of instruction ending
suppressed
suppressed
suppressed
suppressed or terminated
suppressed or terminated
suppressed or completed
suppressed, terminated or completed
completed
suppressed or completed
completed
suppressed
completed
completed
For more PICs see, SA22-7832-07 ,
Completed Chapter 6, Figure 6-1 Interruption Action
Suppressed For the explanation of the instruction
nullified ending types (completion, suppression,
.- termination, and nullification) see SA22-
nU”Ierd 7832-07, Chapter 5, page 5-19, Types of

Instruction Ending.

L]
L] ..

: SHARE

..o inAnaheim

-~

SHARE

Technology « Canatclions « Results

RTM terminology

10 ‘SHARE

e.+ inAnaheim

Complete your sessions evaluation online at SHARE.org/AnaheimEval

Sessssoessasas
sese. seessoRaEss b

S) | 'A -
1000008

B
SHARE
Technalogy « Conntclions « Results

Program error

- Hardware detected (subset of Program Checks)
Results in an 0Cx ABENDs
Not every P.C is a program error
- e.g. PIC 11 - page fault — may or may not be a program error
FLIH decides whether the program check is or is not an error
If the P.C. is considered an error, FLIH passes control to RTM(1)

- Software detected

Either a z/OS component or a user program detects that it cannot
successfully continue and chooses to terminate abnormally

Implemented through ABEND macro call - causes an entry to
RTM(2)
Typically the ABEND code is in the form xXNN
* NN - SVC hex number of the z/OS service detecting a problem
11 {%Eﬁ@@

Complete your sessions evaluation online at SHARE.org/AnaheimEval *...* inAnaheim
®

Recovery/Termination manager (RTM)

« Receives control early after the discovery of a
program error (or when a program ends normally)

« Passes control to appropriate recovery routine (if present)
* If recovery not successful and either of
« [ISYSUDUMP, //[SYSABEND, or //[SYSMDUMP DD

present, requests documentation of the error by calling
z/OS dump services (SNAP macro)

- Handles the final termination of the program

 Closing any open datasets
When RTM(2) gets

- Freeing memory control, RTM2WA

» Releasing ENQs control block is
12 created

Complete your sessions evaluation online at SHARE.org/AnaheimEval

‘SHARE
e.+ inAnaheim
2012

.
SHARE
Technology - Caeeclions « Resulls

Recovery routine

* Responsible for

» Fixing the error and giving the failing program another chance

(retry)
- Documenting the error, cleaning up resources, and continuing
with termination process (percolate)

« Two basic types

- ESPIE - to handle Program Checks with PIC 1-F hex
Receives control from RTM(1)

- ESTAE-like — to handle ABENDs
Receives control from RTM(2)

RTM(1) passes control to RTM(2) through ABEND macro call
(0A0D) when last RTM(1) recovery routine percolates

e%e
13 ' SHARE
L]
Complete your sessions evaluation online at SHARE.org/AnaheimEval ‘.. .* inAnaheim

Extended Specify Task Abnormal Exit e)
(ESTAE) AELL

Established through ESTAE macro

Gets control from RTM through a SYNCH macro call (ozoc)

Communicates with RTM via SDWA

At entry receives pointers to
- Parameter specified by the user at ESTAE macro call - R2
- System Diagnostic Work Area (SDWA) - R1

°o® LI
14 .
+SHARE
s : ; . s g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

System Diagnostic Work Area (SDWA) e

May not be available, check if RO equals 0C hex

Contains the ABEND information

Can be updated directly or through SETRP macro call

- Several Fields to read:

SDWAABCC, SDWACRC, SDWAEC1, SDWAILC1, SDWAINCI1,
SDWAGRSV, SDWAFLGS, SDWATRAN, SDWABEA,

- Several Fields to write:
SDWASROO — SDWASRLS,

 THASDWA macro generates SDWA dsect with comments

15

.. ® LI
: SHARE
s ; ; . A g :
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

SETRP macro SHANE

» Used by recovery routine to communicate with RTM(2)
- SETRP fills in SDWA fields as specified by the parameters

- Sample usage
» Choose Whether to retry (RC=4) or percolate (RC=0)
» Specify the retry address (RETADDR=)
* Restore retry registers from SDWA (RETREGS=YES)
» Request/Discard user dump (DUMP=YES/NO/IGNORE)

» See [3] for detailed description

16

e ® LIPS
- SHARE
s . 4 . . g :
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..® iN Anaheim

Physical SDWA structure

« SDWA has extensions
- SDWAXPAD (X'170") points to an main body — SDWA SDWAXPAD
extension mgde up of pointers to -
other extensions SDWARC1 o
- Main body and pointers extension recordable SDWARC? extension
always exist extension SDWARC3
SDWARC4
° —
The other may not. | po—— P
* e.g. 64-bit extension present if @SDWANRC1
ESTAEX was used) @SDWARC1
SDWALOC31=YES specified on ESTAE pointers _J | @sDWARC2
: : extension @SDWANRC2
* Physically the SDWA is ordered: @SDWARC3
. . b d @SDWANRC3
main bo y @SDWARC4
- recordable extensions dab | SDWANRCL
- pointers extension hon-recordable SDWANRC2
. extension
- non-recordable extensions SDWANRC3
17
Complete your sessions evaluation online at SHARE.org/AnaheimEval .'.s.!:l‘i}l':nfheim

Example to show how it works

g ®oe
18 - SHARE
®
. . . . el 3 2
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

_—

Very Simple Example D

Establish an ESTAE

Cause a Program Check by branching to FFFFFFFE hex
Recovery routine gets control and sets retry registers
Retry

Disable the ESTAE

Cause an SOC1 ABEND by DC H'O'

- ESTAE no longer defined - RTM proceeds with termination
« Register content displayed in the “diagnostic dump” in file 1

o0k wWhPE

19 SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval .* inAnaheim

-~

Very Simple Sample, cont’d

COPY ASMMSP ENARLE STRUCTURED PROGRAMMING MACROS
SYSSTATE ARCHLVL=2 USE Z/ARCHITECTURE INSTRUCTIONS
ASMMREIL ON USE RELATIVE BRANCHING

SAUTH CSECT

SAUTH AMODE 31 ABOVE THE LINE TO GET BEAR

SAUTH RMODE ANY
STM 14,12,12(13)
LARL 8, RECOVERY RECOVERY ROUTINE ADDRES
LARL 9, RETRY RECOVERY ROUTINE PARAMETER ADDRESS
ESTAEX (8),CT, PARAM=(9) ESTABLISH ESTAE
LHT 15,-2 MAX EVEN 31 BIT ADDRESS -> S0C4-11 X

SEE BOTH TEA AND BEAR

BR 15 BRANCH TO HELL (PSW USELESS)

RETRY DS OH
ESTAEX O REMOVE THE ESTAE
DC H'O! INVALID OPERATION CODE -> S0C1-01

20 : SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval Se s T Asalsain
(R

—

3

SHARE

Very Simple Sample, cont’d

RECOVERY DS OH
IF CHI,O,EQ,X'0C' Q.SDWA MISSING
* WTO 'SDWA MISSING' may change registers 0,1,14,15

SR 15,15 PERCOLATE
BR 14 RETURN TO RTM

ENDIF

STM 14,12,12(13) SAVE REGISTERS

LR 3,1 SAVE POINTER TO SDWA

USING SDWA, 3 MAP SYSTEM DIAGNOSTIC SAVE AREA

... see next slide and include here
SETRP RC=4,RETADDR=(2),WKAREA=(3) , RETREGS=YES, FRESDWA=YES

DROP 3
LM 14,12,12(13) LOAD REGISTERS
BR 14 RETURN TO RTM
K o *
IHASDWA GENERATE SDWA DSECT
END SAUTH END ASSEMBLY
gj—mplete your sessions evaluation online at SHARE.org/AnaheimEval :°.s..|l-lﬁllznsheim

o

SHARE

Very Simple Sample, cont’d

SR 0,0
ST 0, SDWASROO
MVC SDWASRO1, SDWAABCC SAVE ABEND CODE IN R1
MVC SDWASRO3, SDWATRAN SAVE TRANSLATION EXCEPTION ADDRESS
L 4, SDWAXPAD ADDRESS OF SDWA EXTENSION POINTERS
USING SDWAPTRS, 4
L 5, SDWASRVP RECORDABLE EXTENSION
USING SDWARC1,5
MVC SDWASROZ, SDWACRC SAVE REASON CODE
DROP 5
L 6, SDWAXEME 64-BIT EXTENSION
USING SDWARC4, 6
MVC SDWASRO04, SDWABEA+4 SAVE BREAKING EVENT ADDRESS-31
DROP 6
DROP 4
__T::__
gozmplete your sessions evaluation online at SHARE.org/AnaheimEval :'.s..il-"i?llznsheim

— =
Very Simple Example — retry registers e
The ESTAE routine set the retry registers as follows
- Zeros into RO
- ABEND code into R1
- Reason code into R2
- Translation Exception Address into R3,
- Breaking Event Address into R4
E?mplete your sessions evaluation online at SHARE.org/AnaheimEval .::; ;'ARE

e.e* inAnaheim
2012

Translation Exception Address (TEA) e

Location 168-175,, in Low Core

Filled in when page or segment translation occurs
(PIC 10 and 11)

Bits 0-51 contain address of the page we tried to access

Bits 52-63 are undefined, not part of the address!!!

Provided in SDWA and RTM2WA
» Low 32 bits provided in SDWATRAN

* Full 64 bit in SDWA 64 bit extension (SDWATRNE) and also
in RTM2TRNE

e%e
24 '.s
+ SHARE
s ; ; . N g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

Breaking Event Address Register (BEAR) i

« 8 bytes long CPU register

* When a branch type instruction is executed, it's address is
placed in the breaking-event-address register

* When a program interruption occurs, the current contents
of the BEAR is placed into Low Core location 110-118

* Provided in 64 bit SDWA extension (SDWABEA)
» Also available in RTM2BEA

 Priceless for debugging
“‘wild branches’!

25 SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEv* inAnaheim

OW5s3270 Edit View Options Tools Help

= APPLID(A11IR0OS3) USER(YS8V,GOTVIG1)

= JOB(Y8VSMFL ,1893) SCRL CSR COLS @089 0828 F 81 P 8861

e T~ T T T L T = S
JOB®1893 TSS7001I Count=87696 Mode=Fail Locktime=None HName=GOTTWALD, WVIT
JOB@1893 FHASP373 Y8VSMPL STARTED - WLM INIT - SRVCLASS BATSTHLM — S5 CA31
JOBG®1893 IEF4@3I ¥Y8VsSMPL - STARTED - TIME=04.24.30

JOBG1893 ITEAS95T SYMPTOM DUMP OUTPUT 45
S¥STEM COMPLETION CODE=GCA4 REASON CODE=GG8086311
TIME=84.24.31 SEQ=27556 CPU=G0060 ASID=G23E
PsSHW AT TIME OF ERROR BrysDaasan FFFFFFFE ILc =2 INTC 11
NO ACTIVE MODULE FOURND
NAME=UNKNOKMN
DATA AT PSH TFFFFFFS8 — seasseseacaea BEIE E I 2626 I aeaAQ0G00
GR @: 00008061 _000080008 Ee80e0a_3ADBGBFSC
0800080 _060086406 008868 _aarDADE4
0000080 _aa7DADGE 0000808 _0BT7FF370
20000080 _0BT7TEBFEG 0000808 _FDO0aauan
20000080 _3ADBBF94 20000008 _3ADBBFEC
20000080 _000088aa8a08 2000888 _aar7FF370
aeeeeeee_8acaryabD2 00000 _0uB0G6Fc6o
2e0aeee_8aFDD4BS F: eooeead_FFFFFFFE
END OF SYMPTOM DUMP
JOBG1893 ITEAS95T SYMPTOM DUMP OUTPUT 746
S¥STEM COMPLETION CODE=GC1 REASON CODE=08080801
TIME=84.24.31 SEQ=27557 CPU=G0060 ASID=G23E

MO> 0oL N
DM~ dw e

PsSHW AT TIME OF ERROR BrysDaasan BADBBF94 ILc =2 INTC 81
ACTIVE LOAD MODULE ADDRESS=3ADBAF48 OFFSET—8080804C
NAME=G0O
DATA AT PSH 3ADBBFSE - 80848A3C BOEQATAE BOACAT T4
GR @: 00008061 _000080008 1: 800006806 _840C4000
Z2: 008068080_000600601.1 2: 00000 eRG_YFFFFGAB
4: 00008000 _2ADGAFEA 5: 00000RRBG_0B87FFF3706
G: 000000 _0O7BEBFE® T 00000006_FDaoaoan
8: 0000800 _32ADBGBFO4 9: 00080006 _3ADBBFEC
Al 206000080_000800006 B: 020800068_0B7FF3708
C: 00080 _s8aCarabD2 O: 90000000_00a0G6Fc6a
E: 8000000 _SaFDD4BES I 90000008 _008080aa
END OF SYMPTOM DUMP
JOBG1893 ITEF4568I ¥Ya8VsSMPL RUNPGM - ABEND=5GC1 U888 REASON=6G000881 i i
TIME=84.24.31
JOBB1893 ITEF484T ¥Y8VSMPL - ENDED - TIME=64.24.31

JOBB1893 FHASP395 Y8VSMPL ENDED
Connected to tpx port 23 1,2 MM 04:26:21 IBM-3278-4-E - AS5T3147

OW53270 Edit View Options Tools Help

= APPLID(A11IR0OS3) USER(Y8V,GOTVI®1)
= JOB(¥Y8VsSMPL,1893) SCRL CS5R COLS 98881 0easa F 84 P 8883
FoooPoocodooo e TooooEc oo Too oo o oo Yoo o oMo co o TocooMococ o PooooBooo o Feooo 0o e oo oo ol
aRa0e0 aRe06e eaeB4 1611 SAUTH CSECT
1612 SAUTH AMODE 31 ABOVE
1613 SAUTH RMODE ANY
208088 9BEC Deac ae8acCc 1614 STHM 14.,12,12(13)
200084 CRAE260 0060 624 aea4C 1615 LARL 8, RECOVERY RECOV
2e8e8A CA9E8 G888 881D aaa44 1616 LARL 9, RETRY RECOV
1617 ESTAE (8),CT,PARAM=(9) ,S5SDWALOCS3
1619+ MACDATE 1e/01/94
aRae1i1ie 1621+ CHOP G ,4 E
0868168 AY1S5 GBGBE aaaz2Cc 1622+ BERAS 1,=+28 L
208814 16 1623+ (B AL1(22) F
+ A
208015 00606 1624+ (B AL3I(B) F
20818 0B H 1625+ (B AlCB) S
aeee1Cc QeBern 1626+ oC A(B) S
ageaze 8a 1627 + oC AlL1(128) F
aaez21 a1 1628+ DC AL1(1) T
aoeaz2z2 0eas 1629+ (B AL2(B) R
00624 QAOBRRBH 1636+ (B ACB) £
0028 0RO H 1631 + (B AL4A(B) s
2ae2C 56081 aal14 o014 1632+ =0y 8,20(1,8) P
28838 56091 a4 aeaa4 1633+ = 9,4(1,0) P
aeee34 41068 0160 ae10a 1634+ LA 0,256 (0,0) C
aeea3s8 4116 18460 aeaaa 1635+ LA 1,80(0,1) M
aRae3Cc 0A3C 1636+ SVCe S15] I
B8B83 E AYFE2 FFFE FFFFFE 16837 LHT 15, =2 MAX E
SEE B
20842 O7FF 1638 ER 15 ERAMC
208044 1639 RETRY Ds aH
1646 ESTAE @ REMOV
1642+ MACDATE ie/e1/94
aa0a 44 1644+ DS aH
a2a044 4166 8654 agas4 1645+ LA 8,132(0,0) I
8848 0A3C 1646+ SVC 56 I
a0ee4A 0BG 1647 (B H"&" INWVAL
208e4C 1648 RECOVERY DS aH
1649 IF CHI,®,EQ,X"aCc’ Q.5DK
20804C ATBE 08acC aeaac 1668+ CHI a,xXx"'ac”’

208058 ATYT74 BQOF RacE 1661 + BRC T ,HEBLB1
Connected to tpx port 23 172 MUM 04:29:29 IBM-3278-4-E - ASST3147

Best practices

- Establish your recovery routine when your routine gets
control from system, exit, or other application

« Remove the recovery routine before returning to the caller

- Make sure you free the SDWA
+ e.g. by issuing SETRP FRESDWA=YES

- Learn about TCB and RB chains and how they relate to recovery
routines (especially the difference ESTAE vs ESTAI processing)

- Be careful when dealing with Linkage Stack, see
IEALSQRY macro

28

= ® LIPS
@
+SHARE
. g ; ! =
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

Multiple ESTAES

When your program establishes multiple ESTAES

And an ABEND occurs
1. The most recently defined ESTAE routine gets control

2. When it decides to percolate, previously dedined ESTAE
gets control

3. Ditto
4

ESTAE is represented by a STAE Control Block (SCB)
SCBs form a stack (LIFO) with the newest SCB on the top

When an ESTAE percolates its SCB is removed from the
stack and control is passed to the next one on the top

[] ®e
?9 let i luati li t SHARE AnaheimEval {Sﬁﬁﬁﬁ
omplete your sessions evatuation ontine a .org/ naneimeva o, o® InAnahe".n

4y
i

oS

Other Recovery Routine Types

 ESTAI

+ Subtask recovery

- Defined on ATTACH(X) macro with ESTAI= parameter
» Associated Recovery Routine (ARR)

- Recovery for abends in PC routines

- Defined on ETDEF macro with ARR= parameter,

- |[EAARR macro
» Functional Recovery Routine (FRR)

- Recovery in SRB routines, disabled or authorized programs
 Defined through SETFRR macro,

- SCHEDULE with FRR=YES, IEAMSCHD with FRRADDR=

 SHARE
e.+ inAnaheim
2012

30

Complete your sessions evaluation online at SHARE.org/AnaheimEval

Sessssoessasas
sese. seessoRaEss b

S) | 'A -
1000008

—

S

B
SHARE
Technalogy « Conntclions « Results

Final Tips

Recovery should be part of the application design. Adding it
later can cause lots of troubles and headaches.

Read carefully “Providing recovery” in [1], especially the
section called “Special considerations” if you plan to code
recovery routine for your product.

If you think you finally understand it, read it again!

Don not underestimate the subject and write a test for

every scenario to make sure you really understand it.

31 : SHARE

*e.s® inAnaheim
2012

Complete your sessions evaluation online at SHARE.org/AnaheimEval

Y
References A
* [1] - MVS Programming Assembler Services Guide (SA22-7605)
* [2] - MVS Programming Assembler Services Reference (SA22-7606)
« [3] - MVS Data Areas (GA32-0853 - GA32-0858)
* [4] - Principles of Operation (SA22-7832)
* [5] - MVS Control Blocks, Hank Murphy, McGraw Hill 1995

[JB] - Joachim von Buttlar, “System z Architecture”, [big, but worth
reading, skip the IBM propaganda at the beginning],

[EJ] - Ed Jaffe, How to Make Assembler Programs Easier to Read and
Maintain Using Structured Programming Macros,

32 SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval e.o* inAnaheim

http://public.dhe.ibm.com/software/dw/university/systemz/SystemzArchitectureCourse.pdf
http://public.dhe.ibm.com/software/dw/university/systemz/SystemzArchitectureCourse.pdf
https://share.confex.com/share/115/webprogram/Handout/Session7175/Structured_Assembler.pdf
https://share.confex.com/share/115/webprogram/Handout/Session7175/Structured_Assembler.pdf

Technology « Corneclions - Results

Please do not forget to fill in the
evaluation forms.

33 | SHARE

Complet i i] i . 2
plete your sessions evaluation online at SHARE.org/AnaheimEval e..* inAnaheim

—

1

SHARE
Technalogy « Coeneclions - Results

34

Complete your sessions evaluation online at SHARE.org/AnaheimEval inAnaheim

2012

Additional content (unsorted)
::)OSmplete your sessions evaluation online at SHARE.org/AnaheimEval .::.s.l‘:'enlznfheim

z/OS Dispatcher Control Blocks RRALE
TCB |«

+1C (RBLINK)
+0 (TCBRBP) PRB

* +1C (RBLINK)
SVRB

4 +1C (RBLINK)
PRB

:(?OGmplete your sessions evaluation online at SHARE.org/AnaheimEval i:; ;IARE

«* inAnaheim

z/OS Dispatcher Control Blocks

TCB

+88
>

TceLTC | @

37

TCB

+88
D

TCBLTC

TCB

+80 (TCBNTC)
+0 (TCBRBP)

C

TCB

Yy

+80 (TCBNTC)

TCB
b

Complete your sessions evaluation online at SHARE.org/AnaheimEval

Technalogy « Connsclions « Results

+1C (RBLINK)

PRB

f +1C (RBLINK)

SVRB

* +1C (RBLINK)

PRB

!

‘SHARE

«* inAnaheim

z/OS control blocks = ARE

» Piece of storage that has a meaning to z/OS

« Described in IBM manual “MVS Data Areas, Vol1. — Vol6.

* Not very verbose, useful if you know what you are looking for
and are familiar z/OS (MVS) terminology

°o® LS
38 'S
+SHARE
- " ; A = g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

_

z/OS control blocks — PSA, CVT LA

* Prefix Save Area (PSA)

 Prefix Area contains several fields that have hard wired
addresses in the CPU for interrupt handling. The rest is used
by FLIH and various other components of z/OS

* In z/OS terminology Prefix Area is called Prefixed Save Area

- Contains pointers to other control blocks
Task Control Block (TCB) at offset 21C
Address Space Control Block (ASCB) at offset 224
Communication Vector Table (CVT) at offset 10

- Communication Vector Table (CVT)
- Anchor to most If not all z/OS control blocks!

39

® onupm s =
- SHARE
®eee® IN Anahelm

Complete your sessions evaluation online at SHARE.org/AnaheimEval

z/OS control blocks — ASCB, TCB

» Address Space Control Block (ASCB)

» Represents single instance of virtual storage to z/OS (recall
MVS = Multiple Virtual Storage)

- Usually one ASCB per Job — XTCB

» Task Control Block (TCB)

- Represents unit of work to z/OS (a task)
- Think of a “task” being a “thread” in PC/UNIX terminology

* Jtis an anchor to all resources z/OS allocated on behalf of the
task, when TCB is removed, all resources for the task are
deallocated

40 SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval e..* inAnaheim

z/OS control blocks - PRB, SVRB AL

» Request Block (PRB, SVRB, IRB)

While TCB represents a unit of work to z/OS, RB represents a
particular item we want z/OS to do on behalf of our task

When we request a particular program to be run, Program
Request Block is created

When our program wants to use operating system services, it
Issues a suitable SVC and a SerVice Request Block is created

External interrupt may generate an asynchronous exit routine
to be run (e.g. IRB created for STIMER exit routine)

The sequence of the Request Blocks is then called an RB
chain, it is chained of a TCB in a reverse order than it was
created

L]
e®e,
[I @ - =
1 (el P . ¥ n] o
& Bl A BP B
[] t‘:rr‘:') LR \ =5 { |

'.W. «* inAnaheim

Complete your sessions evaluation online at SHARE.org/AnaheimEval

RB Chain

- TCB at offset O contains a TCB
fullword pointer to the most

recently created RB *0

(TCBRBP)
- Each RB points to the
previously created RB

- Last RB in the chain (the

first created) points back to
the TCB

Technalogy « Connsclions « Results

+1C (RBLINK)

PRB

* +1C

(RBLINK)

SVRB

A +1C

(RBLINK)

SVRB

++4c

(RBLINK)

PRB

f

42

Complete your sessions evaluation online at SHARE.org/AnaheimEval

SHARE

«* inAnaheim

08 OBS S
LI
JOEOPNORNE NS

TCB chain

« TCB created by ATTACH

macro, DETACH removes a TCB

* Program running under
a TCB can request further TCBs to be
created -> multi-threaded application

« Here the mother task a)

attached three daughter tasks (subtasks)

b), c), and d) in the respective order

TCBLTC (+88) field points to the subtask the current TCB attached last
TCBOTC (+84) —not shown on picture- points to the parent task

TCBNTC (+80) — points to the task attached previously by parent task

43

Complete your sessions evaluation online at SHARE.org/AnaheimEval

+88
——» TCB
TCBLTC L@
+80 (TCBNTC)
Y
TCB
C
l +80 (TCBNTC)
TCB
b
{Sﬁﬂﬁﬁ

e.e* inAnaheim

How does RTM receive control?

* Through an ABEND macro call (SVC 13 - 0A0D)

- Terminates either current TCB or the job step TCB in the
current address space

* Through a CALLRTM macro call

- TYPE=ABTERM
a “super” version of ABEND
Allows to terminate a (TCB=) in current or other address space

- TYPE=EMEMTERM

Terminates an address space without giving control to task level
recovery routines and resource managers

e%e
44 SHARE
Complete your sessions evaluation online at SHARE.org/AnaheimEval . .* inAnaheim

Recovery/Termination macros = e

« CALLRTM
- TYPE=ABTERM is used by CANCEL operator command
- TYPE=EMEMTERM is used by he FORCE oper. command

+ You definitely want to stay away from it, supervisor state and
key O is required to do a CALLRTM

45

.o ® LS
- SHARE
- : ; A A g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

Recovery/Termination macros nmARE

- ABEND
» Generates an SVC 13 (0A0D)

- Also has a branch entry

* Allows to specify
ABEND code (12 bits) - separate values for System/User ABEND
Reason code (RETURN=, 32 bits) - passed to recovery routines
Dump options
* DUMP — request a dump
* DUMPOPT — parm. list for the SNAP macro
Scope of the ABEND
« STEP - if specified, the job step TCB is terminated, if not
specified, the default is to terminate the current TCB
LC]-onplete your sessions evaluation online at SHARE.org/AnaheimEval .:. s !.-I%lﬁnfheim

4y
i

oS

RTM1 and RTM2 i

 RTM is composed of two parts
 RTM1 aka “System Level RTM”
* RTM2 aka “Task Level RTM”
- RTM1
- Entered via CALLRTM (e.g. from FLIH for an erroneous P.C.)
* Runs under the environment of the failing program
- ESPIE registers with RTM1 — low overhead recovery routine
« RTM2
- Entered via ABEND macro call either from RTM1 or directly
* Runs as an z/OS subroutine (RB created — 0AQOD)
- ESTAE registers with RTM2 (another RB created when called)

SH&RE

*e.s® inAnaheim
2012

47

Complete your sessions evaluation online at SHARE.org/AnaheimEval

Termination X \ARE

» Releasing all resources acquired by the task being
terminated
 RTM calls Resource Managers to do the actual cleanup
 Closing any open datasets
* Freeing memory
* Releasing ENQs

» Performed for both normal and abnormal program end

°o® LS
48 {SHARE
. ; ; A = g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

_—

ESTAE macro SHARE

« Assume you are writing your first ESTAE routine for your
very simple program to recover from a B37 system ABEND

 You will use
ESTAE EXIT ADDR,CT, PARAM=PARM LIST
- EXIT ADDR — address of the recovery routine

- PARM LIST - parameter list passed to the recovery routine
when it is invoked by RTM

» CT — create as opposed to OV - override an existing ESTAE

49

.. ® LI
: SHARE
. ; ; " A g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *«..* inAnaheim

Technalogy « Connsclions « Results

Virtual Storage

 Virtual storage
* Introduced in S/370 in early 1970’s

- Each “application” (address space) can use the full range of
addresses available on the architecture independently of all
other applications

- Implemented in hardware via Dynamic Address Translation

- VIRTUAL ADDRESSES translated into REAL ADDRESSES

°o® LI
50 3
L]
Complete your sessions evaluation online at SHARE.org/AnaheimEval '.S tIiArl'ITnEheim
®

z/Architecture Virtual Storage

Real address
space

Virtual
address space 2

Virtual
address space 1

e ‘SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval "o T Asiahaims

BRI
s
z/Architecture Virtual Storage

Real address
space

Virtual
address space 2

Virtual
address space 1

o ‘SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval "o T Asiahaims

z/Architecture Virtual, Real, Absolute

- How to handle this with multiple CPUs?

 Prefix register
+ 64 bits, bits 0-32 are always O

» Used for assigning a range of real addresses 0-1FFF to a
different block in absolute storage for each CPU

» The mechanism is called Prefixing, the storage Prefix Area

53 SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval .* inAnaheim

z/Architecture Prefixing e
Real Address Absolute Real Address
CPU 1 Address CPU 2
?:]-mplete your sessions evaluation online at SHARE.org/AnaheimEval .:.s HARE

«* inAnaheim

=
z/Architecture Prefixing e
Real Address Absolute say Prefix register value
CPU 1 Address in CPUL1 is 6000, then
5 - Real Addresses 1-1FFF
% are translated to
5 Absolute Addresses
g 6000-7FFF

 Real Addresses
6000-7FFF are
translated to Absolute
Addresses 1-1FFF

e®e
55 3
L
Complete your sessions evaluation online at SHARE.org/AnaheimEval '.s HARE

«* inAnaheim

z/Architecture Prefixing = Ell
Real Address Absolute Real Address
CPU 1 Address CPU 2
5
g .
= SHARE

Complete your sessions evaluation online at SHARE.org/AnaheimEval Se s T Asalsain
(R

=

General Purpose Registers i
» 16 General (Purpose) Registers (GPR 0 — 15)

* 64 bits numbered 0 (MSB) — 63 (LSB)

* Integer arithmetic

- Address generation/calculation

0 7z /Arch 32 z/Arch 63

[0] ESA/390 [31]
?Zmplete your sessions evaluation online at SHARE.org/AnaheimEval ‘::; ;lARE

«* inAnaheim

z/Architecture Program Status Word weaenas
olRlo[o OT‘CIDE(Key OM\NPAS ccl o9 00000003
0 5 8 12 16 20 24 31
E: 000000000000000000000C0O0O0O0OO0OOOOO
32 63
Instruction Address
64 95
Instruction Address
% 127
: SHARE

* inAnaheim

58
Complete your sessions evaluation online at SHARE.org/AnaheimEval L
(R

ESA/390 Program Status Word AN

« So far z/OS doesn’t support execution of instructions above
the 2GB bar (no room in current control blocks to save all 8
bytes of the instruction address upon an interrupt)

» Usually we still deal with the ESA/390 style PSW in dumps
and within various z/OS control blocks

| [E Prog
OROOOTOX Key 1IVII\N‘PASCC Mask 00000000
0 5 8 12 16 20 24 31
E Instruction Address
32 63

59

o9 ®e,
- SHARE
s ; ; . A g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

Types of Instruction Ending LELT

« Completion
+ Successful completion or partial completion (for interruptible
Instructions at a unit of work boundary — CC=3)
« PSW points to the next sequential instruction
* Suppression

 As if the instruction just executed was a no-operation (NOP)

 contents of any result fields, including condition code are not
changed

- PSW points to next sequential instruction

60

o9 ®e,
- SHARE
s ; ; . A g .
Complete your sessions evaluation online at SHARE.org/AnaheimEval *e..* inAnaheim

Types of Instruction Ending, cont’d

 Nullification
- Same as Suppression but
- PSW points to the instruction just executed

« Termination?

- causes the contents of any fields due to be changed by the
Instruction to be unpredictable (some may change, other not)

- The operation may replace all, part, or none of the contents of
the designated result fields and may change the condition
code

- PSW points to the next sequential instruction

1) For detailed description see SA22-7832-07, Chapter 5, Type Of Instruction Ending

.o'o.
61 .
Complet i luation online at SHARE.org/AnaheimEval :SHARE
Omp efe yOUr sessions evaluation ontine a .Org/ naneimecva .. '. InAnahelm

