Agenda

- APPN Node Types
- Control Point (CP-CP) Sessions
- APPN Topology
- APPN Directory - Locating Resources
- Choosing Session Paths
- Interchange TGs and Virtual Route TGs
- High Performance Routing
- Enterprise Extender
- Dependent LU Requester/Server (DLUR/DLUS)
- Extended Border Node (EBN) and Branch Extender
- Roadmap
- References
Subarea SNA to Enterprise Extender

Subarea SNA

Enterprise Extender

Subarea (FID4) connections

Enterprise Extender logical links
End Nodes (ENs)

- Do not participate in network topology exchanges (only local topology)
- Must be a session endpoint (cannot perform intermediate node routing)
- Typically require assistance from Network Nodes (NNs) to:
 - Locate session partners
 - Choose session paths
 - Route BINDs to establish sessions
 - Allows local resources (CPU, memory, etc.) to be dedicated to production work
Network Nodes (NNs)

- Comprise the backbone of the APPN network
- Participate in network topology exchanges and network search algorithms
- Can be a session endpoint or an intermediate node on a session path
- Provide Network Node Server (NNS) functions for served ENs

APPN Node Types - Network Nodes (NNs)
• Central Directory Server (CDS or CDSERVR)
 • Focal point for network broadcast searches
 • Central repository of resource location information

• Extended or Peripheral Border Node (BN, EBN or PBN)
 • Provides connectivity to other APPN networks (APPN version of SNI)

• Branch Extender (BEX or BrEx)
 • Provides limited EBN-like functions to small branches environments
• Composite Network Nodes (CNNs)
 • VTAM and owned NCPs work together to present the appearance of a single NN

• Interchange (Network) Nodes (ICNs)
 • APPN network nodes that are also have SSCP-SSCP sessions
 • Provide "interchange" function for sessions that cross APPN/subarea boundary

• Migration Data Hosts (MDHs)
 • APPN end nodes that are also have SSCP-SSCP sessions
Control Point (CP-CP) Sessions

- CP-CP sessions are a pair of LU 6.2 sessions
 - CONWINNER and CONLOSER (BIND sender versus BIND receiver)
- Established between adjacent nodes only
 - One hop session path
- Used to send (CONWINNER) and receive (CONLOSER):
 - Network and/or local topology information
 - Network search requests and replies
Control Point (CP-CP) Sessions - ENs

• EN CP-CP sessions are established:
 • To an adjacent NN only (no EN-to-EN CP-CP sessions)
 • To only ONE NN at a time (the EN's Network Node Server or NNS)
 • NOTE: ENs can have active links to many NNs and/or ENs at the same time. But each EN can only have CP-CP sessions to ONE NN at a time. If CP-CP sessions fail, an EN can immediately choose another adjacent NN to act as its NNS.

• EN always initiates CP-CP activation

• ENs can register local resources (LUs) with NNS
• NN CP-CP sessions are established:
 • Between adjacent NNs (as many as needed or desired)
 • To adjacent ("served") ENs, but only when requested by the EN

• How many CP-CP sessions are recommended?
 • Minimum CP-CP spanning tree of order 2 (no single point of failure)
 • Most customers establish CP-CP sessions between all adjacent NNs, but...
 • Too many CP-CP sessions can cause unnecessary network traffic
Control Point (CP-CP) Sessions - NETIDs

- **NN-to-NN CP-CP sessions**
 - Only allowed between NNs that have the same NETID, unless
 - One or both NNs are defined as border nodes

- **EN-to-NN CP-CP sessions**
 - ENs are allowed to have a different NETID than their network node server
 - When this occurs, the EN is said to be "Casually Connected"
APPN Network Topology - APPN’s Roadmap

- Describes the nodes and links (Transmission Groups or TGs) in the network, including node and TG characteristics
- Network topology describes NNs and TGs between NNs (the backbone)
 - Changes are propagated to other adjacent NNs via Topology Database Updates (TDUs)
 - When node or TG states or characteristics change
 - When CP-CP sessions are started or ended
 - All NNs should have identical representations
- Local topology includes adjacent ENs and the links to them
 - Changes are not propagated to other nodes
 - ENs have a limited topology DB (to establish CP-CP sessions to an NNS)
 - Can be check-pointed to reduce topology flows when rejoining the network
Sample TDUs that flow when a new link becomes active

- TDU (1) describes the TG from NN1 to NN2
 - NN2 propagates TDU (1) to all adjacent NNs (NN4 and NN3)
 - Adjacent NNs also propagate TDU (1) to all adjacent NNs
- TDU (2) describes the entire network topology
 - Including the TG from NN2 to NN1
Directory Services Database - APPN’s Telephone Book

- Describes where resources (LUs) reside in the network
 - Owning CP name and NNS name (resource hierarchy)
 - Can include other information (non-native, in subarea, etc.)
 - Can be check-pointed to reduce broadcast searches when rejoining the network
 - DS DB entries are created by loading a check-pointed DB, registration, or searching

- If target resource's location is (thought to be) known:
 - Directed search sent to suspected destination

- If target resource's location is not known (or directed search fails):
 - Broadcast search of served ENs
 - Broadcast search of APPN network
 - Serial (directed) search of interchange nodes (to perform subarea search)
 - Serial (directed) search of non-native networks (border node search)

- Directory Services Management Exit (DSME)
 - Allows search steps to be eliminated
• LUA on ENA wants to start a session with LUB
 • ENA sends a one-hop Directed Search to its NNS (NN1)
 • NN1 sends a network Broadcast Search to all adjacent NNs at the same time
 • Search of other served ENs is performed first
 • Adjacent NNs propagate the broadcast search to all adjacent NNs
 • BEFORE searching local node or served ENs
 • After propagating the broadcast search, NNs search local node and served ENs
 • The positive reply is returned along the same path
 • NNS(OLU) and NNS(DLU) each save location of both the OLU and DLU
• LU2 on NN2 wants to start a session with LUB

• NN2 does not know the location of LUB
 • Instead of initiating a broadcast search, NN2 sends a directed search to the CDS
 • CDS is now completely responsible for locating LUB. This may include:
 • Sending a directed search to verify the location of LUB, if it is known
 • Sending directed search "queries" to other CDSs in the network
 • Sending a network broadcast search to determine the location of LUB
 • The positive reply is returned to the CDS along the same path
 • The CDS returns a positive reply to the requesting NN
 • NNS(OLU), NNS(DLU), and CDS all save location of both the OLU and DLU
Once the target resource has been located:

- The NNS (PLU) calculates the session path based on APPN COS and topology
 - For sessions between NNs, network topology is all that is needed
 - For sessions to/from ENs, network and local topology are used

How are routes calculated to/from remote ENs?

- Remote EN's links are not in the topology database, so
- EN (or its NNS) sends TG vectors (TGVs) on Locate request or reply
 - EN TGVs are "temporarily added" to the topology database
Choosing Session Paths - TG/Node Characteristics & COS

• TG characteristics are defined for each APPN TG
 • CAPACITY, COSTTIME, COSTBYTE, SECURITY, PDELAY, UPARM1, UPARM2, UPARM3

• If TG characteristics are not defined:
 • VTAM tries to use reasonable defaults, based on the type of link
 • If VTAM cannot tell, APPN architectural defaults are used (often not accurate)

• TG profiles can be used instead of defining each operand
 • IBM TGPS contains quite a few common TG Profiles (TR, MPC, XCF, EE)
 • Individual TG characteristics can be overridden by coding the appropriate operands
 • Defining accurate TG Characteristics is VERY important!

• Nodes have characteristics, too: CONGEST (Congested) and ROUTERES (Route Resistance)

• Each APPN class of service (COS) has a table of definitions
 • TG or node weight is determined by finding the first row in which all TG or node characteristics fit within the specified range
 • Least weight path (sum of TG and node weights) is used for the session

• APPN class of service definitions in COSAPPN
 • COSAPPN contains default definitions for all standard APPN COS names
High Performance Routing - Components

- HPR has 3 primary components

 - **Rapid Transport Protocol (RTP)**
 - Logical pipe between end points
 - Multiple users (sessions) per RTP
 - Error detection and retransmission
 - Congestion control
 - Prioritization
 - Non-disruptive rerouting of sessions

 - **Automatic Network Routing (ANR)**
 - ANR label created at initiation
 - Label contains all routing information
 - ANR router strips label and forwards packet

 - **Adaptive Rate-Based Flow Control (ARB)**
 - Congestion control algorithm
Rapid Transport Protocol (RTP) pipes

- Created and destroyed during normal session establishment and termination
- Multiple sessions can traverse the same RTP pipe, provided:
 - RTP path (RSCV), APPN class of service (COS) and Network Connection Endpoints (NCEs) are identical
 - ANR labels created during RTP setup (Route Setup and Connection Setup)
- ANR labels are included in header of each packet that flows over RTP
- Intermediate nodes strip off their ANR label and forward the packet
High Performance Routing - Link Failures & Path Switch

- **Link failures**
 - Detected by RTP Pipe endpoints when:
 - First link on RTP Pipe path fails (INOPs)
 - Data packets (or periodic status queries) are not acknowledged
 - One (or both) RTP endpoints detect the failure and re-drive RTP setup
 - Send another APPN Locate, if necessary (like when EBNs are involved)
 - Compute a new (or the same) RTP path (RSCV)
 - Sessions are non-disruptively switched to new path

- **Other causes of RTP path switches:**
 - MODIFY RTP,ID=CNRxxxxx (RTP PU name)
 - Periodic path switches triggered by using the PSRETRY start option
EE is "APPN/HPR over IP Networks"

- EE is a logical connection (link) that represents IP connectivity from this host to the specified partner IP address or host name
- EE allows:
 - Enablement of IP applications on the host
 - Convergence to a single (IP) network transport while preserving investment in SNA applications and SNA endpoints (workstations)
 - SNA functions to take full advantage of advances in IP routing
EE connection (link) vs HPR connection (RTP pipe)

- In the example above, there is a single RTP connection (pipe) that is composed of two hops:
 - The first is an HPR hop of unspecified type
 - The second an EE connection
- SNA's view of EE: EE is just another DLC.
- IP's view of EE: EE is just another (UDP) application.
Dependent LU Requester/Server - Overview

- **APPN supports dependent LUs without DLUR!**
 - Dependent LUs attach as usual
 - Usually through NCPs
 - Session path must include owning VTAM
 - HPR is only possible to VTAM (not NCP)

- **DLUR extends this support to:**
 - Remove VTAM/NCP adjacency requirement
 - DLURs can be located in remote sites
 - More fully exploit HPR (out to the DLUR)
 - DLUR routes traffic intelligently
 - Session path need not include owning VTAM

- **Most APPN platforms support DLUR:**
 - IBM Distributed Communications Server
 - iSeries
 - Cisco SNASw
 - Microsoft HIS
• APPN (topology) subnetwork
 • APPN NNs that share a common topology database
 • Node or resource in the same subnetwork is said to be "native"
 • Node or resource in a different subnetwork is said to be "non-native"
 • EN's subnetwork is determined by its NNS (not by NETID)

• Subnetwork boundary
 • By default, only between NNs with different NETIDs
 • With definition, can also be between NNs with the same NETID (clustering)
 • Link between networks: InterSubnetwork Link (ISL) or InterCluster Link (ICL)
 • Parallel ISLs are allowed; load balancing over them is automatic
Extended Border Nodes - Description

- **Border node description**
 - Enhancement to base NN
 - Limits topology exchange
 - Allows intersubnetwork searching
 - User controlled
 - Completely dynamic
 - Combination of both

- **Peripheral subnetwork connection**
 - EBN to non-native NN (only one EBN)
 - EBN presents EN image to NN
 - Restricted to first and/or last subnetworks
 - Must be **ONLY** connection to that subnet!

- **Extended subnetwork connection**
 - EBN to EBN
 - Both EBNs present NN image
 - Allows intermediate subnetwork routing
Branch Extenders

• A common configuration:
 • Central data center; many branches
 • Topology updates and searches can overwhelm branch network nodes

• Branch Extender (BEX or BX):
 • Designed for use within a single network
 • Supports DLUR at the BEX node
 • Supports HPR to all branch nodes
 • No NNs downstream from BEX node
 • Downstream VTAMs not recommended!

• How it works:
 • BEX presents EN image upstream
 • BEX presents NN image downstream

• Benefits:
 • Reduces branch topology size & traffic
 • Resource registration into WAN
 • Supports independent & dependent LUs
Subarea SNA to Enterprise Extender

Subarea SNA

Enterprise Extender

Subarea (FID4) connections

Enterprise Extender logical links
Roadmap

- Determine scope of the migration
 - Just SNI replacement at enterprise border, or complete elimination of legacy SNA?
- Determine node roles and control session placement
 - Minimize number of network nodes
 - Is subarea presence still needed? (ICN/MDH vs. pure NN/EN)
 - Identify CP-CP session partners
 - Enough for redundancy, but avoid mesh CP-CP sessions
 - Which VTAMs will provide DLUS services? Which will be the Extended Border Nodes?
- Optimize the search strategy
 - Avoid unproductive (CPU and network bandwidth-wasting) searches
 - Enhances security as well as improves performance
 - More complex (and important) in mixed APPN/subarea environments
- Understand logmode/COS resolution
 - Converging on one logmode table will make it easier
 - More complex in mixed APPN/subarea environments
Roadmap ...

- Learn diagnostic controls and commands
 - xSIRFMSG
 - HPRPSMSG
 - DISPLAY Commands
 - CPCP, DIRECTRY, EE, EEDIAG, RTPS, SRCHINFO, TOPO
- Consider security aspects
 - For a good overview of SNA security considerations, read the white paper:
 “Securing an SNA Environment for the 21st Century”
 http://www-01.ibm.com/support/docview.wss?rs=852&uid=swg27013237
- Assuming you already have a robust IP infrastructure, enabling EE is a relatively simple final step
 - For details, see session 11332: “Modernizing SNA: Enterprise Extender Concepts & Considerations”, and session 11333: “z/OS CS Enterprise Extender Hints and Tips”
- Education: Along the way, make extensive use of the references on the next two charts!
References

• Redbooks
 • SG24-5957-00 Migrating Subarea to an IP Infrastructure
 • SG24-7359-00 Enterprise Extender Implementation Guide
 • SG24-7334-00 A Structured Approach to Modernizing the SNA Environment

• Screencasts
 • APPN Configurations: Recommendations & Limitations:
 ▶ http://www.youtube.com/zoscommsserver#p/a/u/0/TC1gaiARPgM
 • APPN Logmodes and Class of Service:
 ▶ http://www.youtube.com/zoscommsserver#p/u/14/-rPxj2lmP-Y
 • Practical Guide to Optimizing APPN and Extended Border Node Searches:
 ▶ http://ibm.co/mxWyE3

• Sessions at SHARE in Anaheim
 • 11330: Exploring VTAM’s Performance Parameters (Monday, 3:00 PM)
 • 11332: Modernizing SNA: Enterprise Extender Concepts & Considerations (Tuesday, 9:30 AM)
 • 11333: z/OS CS Enterprise Extender Hints and Tips (Tuesday, 11:00 AM)
 • 11343: A Journey Through the Layers of Enterprise Extender Packets or How to Translate VTAM Messages into IP Talk (Thursday, 8:00 AM)
References ...

• Prior SHARE sessions
 • Searching in Mixed APPN/Subarea Networks
 ‣ http://proceedings.share.org/client_files/SHARE_in_Austin/S3618JH145212.pdf
 • APPN Logmodes and Class of Service
 ‣ Presentation: http://proceedings.share.org/client_files/SHARE_in_Austin/S3620JH145658.pdf
 ‣ Script: http://proceedings.share.org/client_files/SHARE_in_Austin/S3620JH145712.pdf
 • APPN Configurations: Recommendations & Limitations
 ‣ http://proceedings.share.org/client_files/SHARE_in_Austin/S3608JH144707.pdf
 • Searching and Security in APPN/HPR Border Node Networks (Parts 1 and 2)
 ‣ http://proceedings.share.org/client_files/SHARE_in_Austin/S3615JH145455.pdf
 • Enterprise Extender: Implementing Connection Network
 ‣ http://proceedings.share.org/client_files/SHARE_in_Austin/S3602SR224007.pdf
 • SNA Security Considerations
 ‣ http://proceedings.share.org/client_files/SHARE_in_Austin/S3612RW083850.pdf
 • SNA 101: Basic VTAM, APPN, and EE Concepts:
 ‣ http://proceedings.share.org/client_files/SHARE_in_San_Jose/S3431SR132942.pdf
 • Diagnosing Enterprise Extender Problems
 ‣ http://proceedings.share.org/client_files/SHARE_in_San_Jose/S3611MB092402.pdf
 • It’s Gr-EE-k to Me! What Do All those Enterprise Extender Messages Mean?
 ‣ http://proceedings.share.org/client_files/SHARE_in_Orlando/S3618GD171929.pdf
Please Complete Session Evaluation

• Modernizing SNA: APPN & HPR - A Foundation for Enterprise Extender
• Session # 11329
• QR Code:

Find us on Facebook at http://www.facebook.com/IBMCommsserver

Follow us on Twitter at http://www.twitter.com/IBM_Commsserver

Read the z/OS Communications Server blog at http://tinyurl.com/zoscsblog

Visit the z/OS CS YouTube channel at http://www.youtube.com/user/zOSCommServer
Appendix
Interchange Transmission Groups (ICTGs)

- Logical connection between APPN VTAM APPN node and subarea node
 - Subarea node need not be adjacent nor be enabled for APPN
 - Allows base APPN nodes to interoperate with ICNs by representing subarea network resources in terms that they currently understand
 - All subarea-attached nodes look like ENs that are served by the ICN
 - ICTG always looks like an endpoint (EN) TG
 - ICTGs are not "real" APPN TGs though....
 - No definitions required
 - Not displayable using DISPLAY TOPO command
 - No HPR support
Virtual Route TGS - Description

• Virtual Route Transmission Groups (VRTGs)
 • Logical connection between same-network VTAM APPN nodes (no SNI)
 • Represents all possible virtual routes between the two VTAM domains
 • Activated when CDRM session between VTAMs is activated
 • TDU reported to TRS and propagated (DISPLAYable)
 • No need to mesh VRTGs; but meshed CDRM sessions are still required

• Why use VRTGs?
 • Allows CMCs to share (or takeover/giveback) NCP resources
 • Allows APPN CP-CP sessions and HPR over subarea links
 • Resolves NCP performance/storage concerns
 • Integrates APPN topology and directory
Virtual Route TGs - Network Views

- Real topology:
 - Subarea
 - Environments (EN)

- APPN view without VR-TG:
 - APPN
 - Subarea
 - Environments (EN)

- APPN view with VR-TG:
 - VR-TG
 - APPN
 - Environments (EN)