

The Many CPU Fields Of SMF

Cheryl Watson Watson & Walker, Inc.

www.watsonwalker.com - home of Cheryl Watson's Tuning Letter, CPU Charts, BoxScore and GoalTender

> August 7, 2012 Session 11309

Agenda

- Sources of SMF CPU Usage
- What is a CPU Second?
- CPU Field Precision
- Normalization
- Address Space CPU Usage
- Service Class CPU Usage
- LPAR Usage
- CEC Usage
- CPU Variability
- References

Sources of CPU Information in SMF

- RMF CPU Records (Type 70)
 - CEC CPU usage, LPAR usage, zIIP usage, zAAP usage, IFL usage, CF usage
- RMF Workload Activity Records (Type 72)
 - CPU usage by service class period
- SMF Address Space Activity (Type 30)
 - CPU usage by address spaces, including cross-address space, and cross-system usage

Additional Sources of CPU Information

- DB2 Records (Type 102)
- CICS Records (Type 110)
- MQ Records (Type 115)
- WAS Records (Type 120)
- WebSphere Message Broker (Type 117)
- HTTP Server (Type 103)
- Hardware (Type 113)
- RMF Monitor II (Type 79)
 - CPU usage by address spaces and enclaves
- TSO/E (Type 32)

CPU Time Precision

CPU fields

- .01 most fields are in hundredths of seconds
- .001 milliseconds
- .001024 1024-microseconds units (and 1.024-millisecond units)
- .000128 128-microsecond units
- .000001 TOD field, where bit 51 is one microsecond
- .000000625 one service unit (a sixteenth of a microsecond)

What is a Second?

- A CPU second is defined as one clock second
- Theoretically, a job that takes one second of CPU time on a machine will take two seconds of CPU time on a machine that is half as fast, or one-half second on a machine that is twice as fast. Does this happen?
- For chargeback or capacity planning, how do you measure the speed of a machine?

Normalization

- Different Speed CECs
 - What is the normalization factor for chargeback or capacity planning?
 - Most sites use LSPR ratios, MIPS from CPU charts, or service units
 - Example:

- z196 2817-501 1-way has an LSPR ratio of 1.05, is 588 MIPS, and has a published service unit/second (su/sec) rate of 30888.0309
- z196 2817-701 1-way has an LSPR ratio of 2.15, is 1202 MIPS, and has a published su/sec rate of 61776.0618
- Notice ratios: 1202/588 = 2.04; 61776.0618/30888.0309 = 2.0;
 2.15 / 1.05 = 2.05

Normalization

- Base CPs run at a slower (degraded) speed, while zIIPs and zAAPs run at base speed
- For example, the zIIP and zAAP on a 2817-501 1-way are the same speed as the 2817-701, which is twice as fast.
- SMF records include normalization factor
- Much of the session deals with handling the situations where specialty processors are not the same speed as the general CPs.
- From Harv Emery's presentation in Atlanta (see references), the z196 has three series of machines that are knee-capped. The 4xx series is about 20% of a 7xx; the 5xx is about 49%; and the 6xx is about 64%

Complete your sessions evaluation online at SHARE.org/AnaheimEval

Address Space CPU Usage

- SMF Type 30 Records
 - 30.2 & 30.3 Written at end of interval
 - 30.4 Written at end of step
 - 30.5 Written at end of job
 - CPU times are in hundredths of seconds (.01 seconds)
 - Some of the CPU time can be from CPs, some from zIIPs, some from zAAPs, and some from other LPARs or CECs

10

•...• in Anaheim 2012

- Work that ran on the standard CPs (1 of 2)
 - SMF30CPT TCB time, enclave time, preemptable SRB time, client SRB time and CPU time for work that was eligible for zIIPs & zAAPs, but that ran on the CP (last 2 fields on next page)
 - SMF30CPS SRB CPU time that ran on the CP
 - SMF30ICU TCB CPU time for initiator work; sum of SMF30ICU_STEP_INIT for this step and SMF30ICU_STEP_TERM from the previous step
 - SMF30ISB SRB CPU time for initiator work; sum of SMF30ISB_STEP_INIT for this step and SMF30ISB_STEP_TERM from the previous step

- Work that ran on the standard CPs (2 of 2)
 - SMF30IIP CPU time processing I/O interrupts (SLIH)
 - SMF30RCT Region control task CPU time (startup and swapping)
 - SMF30HPT CPU time spent moving Hiperspace data
 - SMF30_TIME_IFA_ON_CP Work that is eligible for a zAAP, but that ran on the CP
 - SMF30_TIME_ZIIP_ON_CP Work that is eligible for a zIIP, but that ran on the CP

SHARE Technology - Generations - Results

- Work that ran on a zAAP or zIIP
 - SMF30_TIME_ON_IFA Work that ran on a zAAP
 - SMF30_TIME_ON_ZIIP Work that ran on a zIIP
- Potential work for zAAP
 - (SMF30_TIME_IFA_ON_CP * 256 / SMF30ZNF) + SMF30_TIME_ON_IFA
- Potential work for zIIP
 - (SMF30_TIME_ZIIP_ON_CP * 256 / SMF30SNF) + SMF30_TIME_ON_ZIIP

- Total work that ran on a CP
 - SMF30CPT + SMF30CPS + SMF30ICU + SMF30ISB + SMF30ICU + SMF30IIP + SMF30RCT + SMF30HPT
- Potential work for the CP
 - Total of above + (SMF30_TIME_ON_IFA * SMF30ZNF / 256)
 + (SMF30_TIME_ON_ZIIP * SMF30SNF / 256)
- SMF30ZNF and SMF30SNF = 256 if SPs are same speed as CPs

- SMF30SUS Copy of RmctAdjC number of sixteenths of one CPU microsecond per CPU service unit
- SMF30CPC CPU service definition coefficient, scaled by 10
- SMF30SRC SRB service definition coefficient, scaled by 10
- SMF30CSU_L CPU service units; this is equivalent to SMF30CPT plus normalized SMF30_TIME_ON_IFA plus normalized SMF30_TIME_ON_ZIIP; new in z/OS 1.11
- SMF30SRB_L SRB service units; this is equivalent to SMF30CPS; new in z/OS 1.11
- SMF30ESU_L Independent enclave CPU service units; new in z/OS 1.11

S H A R E Technology - Canneclians - Results

SMF Type 30

- Obtaining CPU time from service units:
 - To convert service units to CPU time in microseconds (.000001 seconds):

TCB time = (SMF30CSU_L * (SMF30SUS / 16))

/ (SMF30CPC / 10)

SRB time = (SMF30SRB_L * (SMF30SUS / 16))

/ (SMF30SRC / 10)

Independent enclave time = (SMF30ESU_L * (SMF30SUS / 16)) / (SMF30CPC / 10)

• Why?

- Use when precision of .01 is not sufficient
- For TCB time from service units, remember to back out the zIIP and zAAP normalized times

17 Complete your sessions evaluation online at SHARE.org/AnaheimEval

•..• in Anaheim 2012

Consistency?

- Most consistent is to normalize everything back to a CP and charge on that time (from diagram, that would be W304CPU of 130 seconds of 300 MIPS processor)
- Also consistent is to have two values and charge different rates, so one is non-specialty work that can only run on a CP and the other is specialty work that would prefer to run on an SP (from diagram, that would be W304NSP of 100 seconds and W304CPU_SP of 15 seconds of 600 MIPS processor)
- Actual time spent on each isn't consistent because it depends on parameter settings and the current load on the CPs and SPs

- SMF30ASR CPU time used by preemptable SRBs and client SRBs; this is included in SMF30CPT
- SMF30ENC CPU time used by independent enclaves when in a WLM enclave; this is included in SMF30CPT
- SMF30DET Similar field for dependent enclaves
- SMF30_ENCLAVE_TIME_ON_IFA Independent enclave time spent on zAAP; this is included in SMF30_TIME_ON_IFA
- SMF30_DEP_ENCLAVE_TIME_ON_IFA Similar field for dependent enclaves

- SMF30_ENCLAVE_TIME_IFA_ON_CP CPU time used by independent enclaves on a CP that are eligible for zAAPs; this is included in SMF30_TIME_IFA_ON_CP
- SMF30_DEP_ENCLAVE_TIME_IFA_ON_CP Similar field for dependent enclaves
- SMF30_ENCLAVE_TIME_ON_ZIIP Independent enclave time spent on zIIP; this is included in SMF30_TIME_ON_ZIIP
- SMF30_DEPENC_TIME_ON_ZIIP Similar field for dependent enclaves

- More CPU times if you want to get down and dirty:
 - SMF30_ENCLAVE_TIME_ZIIP_ON_CP CPU time used by independent enclaves on a CP that are eligible for zIIPs; this is included in SMF30_TIME_ZIIP_ON_CP
 - SMF30_DEPENC_TIME_ZIIP_ON_CP Similar field for dependent enclaves
 - SMF30_ENCLAVE_TIME_ZIIP_QUAL Normalized independent enclave time qualified to be on a zIIP; the eligible time achieved is in SMF30_TIME_ON_ZIIP and SMF30_TIME_ZIIP_ON_CP
 - SMF30_DEPENC_TIME_ZIIP_QUAL Similar field for dependent enclaves

- SMF30ICU_STEP_TERM Initiator TCB time for step termination of the previous step; included in the SMF30ICU field of that step; new in z/OS 1.12
- SMF30ISB_STEP_TERM Similar field for SRB time; included in the SMF30ISB field of that step; new in z/OS 1.12
- SMF30ICU_STEP_INIT Initiator TCB time for step initiation of this step; is included in the SMF30ICU; new in z/OS 1.12
- SMF30ISB_STEP_INIT Similar field for SRB time; included in the SMF30ISB field; new in z/OS 1.12
- SMF30OST z/OS UNIX services requested by APPC/MVS work; included in SMF30CPT or SMF30CPS

- And even more:
 - SMF30UCT TCB time for registered product; included in other fields; also recorded in Type 89 record
 - SMF30UCS SRB time for registered product; included in other fields; also recorded in Type 89 record
 - SMF30_Highest_Task_CPU_Percent Largest percent of TCB time used by any task in this address space; new with APAR OA39629 (13Jul2012) for z/OS 1.12/1.13
 - SMF30_HIGHEST_Task_CPU_Program Program name associated with previous field; new with APAR OA39629

- Work that executes on another system:
 - Enclaves may run on other systems (other LPARs, and even other CECs)
 - SMF type 30 record can have multiple segments to show that work (each system is identified by field SMF30MRS)
 - SMF30MRA CPU rate adjustment factor (the number of sixteenths of one microsecond per CPU service unit)
 - SMF30MRD CPU time used by dependent enclaves on another system
- SMF Type 97
 - Contains CPU time for work run on this system, but sent by another system

Complete your sessions evaluation online at SHARE.org/AnaheimEval

Service Class Period CPU Usage

- RMF Type 72.3 Records
 - 72 Written at end of RMF interval
 - CPU times are in service units and microseconds

SHARE Technology - Cannetilans - Results

RMF Type 72.3

CPU Usage

- R723CCPU TCB service units including zAAP & zIIP time on CP, client SRBs, and enclaves
- R723CSRB SRB service units
- R723RCT RCT in microseconds
- R723IIT I/O interrupt time in microseconds
- R723HST Hiperspace time in microseconds
- R723IFAT zAAP time in microseconds
- R723IFCT zAAP time spent on CPs in microseconds
- R723CSUP zIIP time in microseconds
- R723CSUC zIIP service units spent on CPs; included in R723CCPU
- R723CIFA zAAP service units
- R723CIFC zAAP service units spent on CPs; included in R723CCPU

S H A R E Tethnology - Cannetions - Results

RMF Type 72.3

- Fields used for normalization:
 - R723MCPU CPU (TCB) service definition coefficient * 10,000
 - R723MSRB SRB service definition coefficient * 10,000
 - R723MADJ Adjustment factor for CPU rate
 - R723NFFI Normalization factor for zAAP; calculate normalized time on CP by multiplying with this value and dividing by 256
 - R723NFFS Normalization factor for zIIP; use same calculation
 - R723NADJ Nominal adjustment factor for CPU rate (see note)
 - R723CECA CEC adjustment factor (see note)
 - Note: z196 capacity change supported with APAR OA30968 in z/OS 1.12/1.13

RMF Type 72.3

- Obtaining CPU time from service units:
 - To convert service units to CPU time in microseconds (.000001 seconds):

TCB_time = (R723CCPU * (R723MADJ / 16))

/ (R723MCPU / 10000)

SRB time = (R723CSRB * (R723MADJ / 16))

/ (R723MSRB / 10000)

Total CPU time on CPs =

TCB_time + SRB_time + R723RCT + R723IIT + R723HST

Total zIIP and zAAP time = R723IFAT + R723CSUP

SHARE Technology - Cancellas - Results

RMF Type 72.3

- Relating RMF type 72.3 CPU total usage with SMF type 30 data:
 - RMF does not contain initiator time
 - RMF does not contain eligible zIIP/zAAP time
 - SMF precision of .01 is not very accurate
 - It's sometimes difficult to get good times for comparison (SMF and RMF would need to have similar intervals, with the same SYNC, and SMF would need to be creating interval records)

RMF Type 72.3

RMF Workload Activity Report

... INTERVAL 29.59.998

REPORT BY: POLICY=DAYTIME

			DAYTIME	WLM SEE	RVICE POI	LICY
SERVICE		SERV	/ICE TIME	API	PL %	
IOC	156748K	CPU	18505.31	CP	1079.1	
CPU	6609M	SRB	3388.175	AAPCP	1.48	
MSO	0	RCT	6.049	IIPCP	3.19	
SRB	1210M	IIT	171.501			
		HST	13.059	AAP	60.34	
		AAP	1086.112	IIP	87.50	
		IIP	1575.015			

Service time is in seconds; APPL % is in percent of a single CP

RMF Type 72.3

RMF Workload Activity Report

... INTERVAL 29.59.998

. . INTERVAL 29.59.998

SERVICE POLICY PAGE

-SERVICE DEFINITION COEFFICIENTS-

IOC	CPU	SRB	MSO
6.0	10.0	10.0	0.0000

SYSTEMS

---ID--- OPT SU/SEC CAP% --TIME-- INTERVAL SYS1 00 35714.3 100 10.00.00 00.29.59

SHARE Tethnology - Canneelins - Results

RMF Type 72.3

- Sample calculations:
 - CPU SUs (6609M) + SRB SUs (1210M) = 7819M
 - CPU time = (7,819,000,000 / 10) / 35714.3 = 21893.20 seconds
 - From RMF report, CPU time = 18505.31 + 3388.175 = 21893.5 (COOL – it matches!)
 - Total CPU time is 21893.20 + 6.049 +171.501 +13.059 = 22083.809
 - zAAP CPU time on zAAP = 1086.112 seconds; and from AAP % .
 6034 * 1800 1086.12 (COOL!)
 - zIIP CPU time on zIIP = 1575.015 seconds; and from IIP% .8750 * 1800 = 1575.0 (COOL!)
 - CP % = 1079.1%, and from (22083.809 1086.112 1575.015) / 1800 = 10.79% (This just gives me goosebumps!)

Complete your sessions evaluation online at SHARE.org/AnaheimEval

SHARE Technology - Connections - Results

LPAR CPU Usage

• Source is RMF Type 70 CPU Record

C	PU		TIME		LOG PROC			INTERRUPTS	
NUM	TYPE	ONLINE	LPAR BUSY	MVS BUSY	PARKED	SHARE	90	RATE	% VIA TPI
0	CP	100.00	68.61	68.51	0.00	100.0	HIGH	331.3	33.30
1	CP	100.00	70.04	69.97	0.00	100.0	HIGH	228.2	33.38
2	CP	100.00	64.05	63.99	0.00	100.0	HIGH	177.9	33.86
3	CP	100.00	69.16	69.09	0.00	100.0	HIGH	405.8	31.88
4	CP	100.00	68.57	68.49	0.00	100.0	HIGH	280.0	31.94
5	CP	100.00	62.20	62.14	0.00	100.0	HIGH	203.5	32.82
6	CP	100.00	68.69	68.58	0.00	100.0	HIGH	376.8	32.03
7	CP	100.00	68.25	68.18	0.00	100.0	HIGH	243.9	31.87
8	СР	100.00	62.86	62.81	0.00	100.0	HIGH	182.4	32.92
9	СР	100.00	68.40	68.31	0.00	100.0	HIGH	329.1	31.85
А	СР	100.00	81.74	81.39	0.00	100.0	HIGH	1319	28.34
В	СР	100.00	60.66	60.60	0.00	100.0	HIGH	208.3	33.54
С	СР	100.00	72.18	74.15	0.00	100.0	HIGH	296.2	33.13
D	СР	100.00	78.85	84.13	0.00	100.0	HIGH	1196	30.66
Е	СР	100.00	66.20	66.16	0.00	100.0	HIGH	12018	14.35
F	СР	100.00	66.64	66.59	0.00	100.0	HIGH	151.8	34.25
10	СР	100.00	65.29	65.22	0.00	95.0	MED	182.1	34.65
11	CP	100.00	0.00		100.00	0.0	LOW	0.00	0.00

33 Complete your sessions evaluation online at SHARE.org/AnaheimEval

S H A R E Tethnology - Cannetions - Results

LPAR CPU Usage

• More of RMF Type 70 Record:

CPU			TIM	Е %		LOG PR	OC	I/0 I	INTERRUPTS
NUM	TYPE	ONLINE	LPAR BUSY	MVS BUSY	PARKED	SHARE	00	RATE	% VIA TPI
3B	CP	100.00	0.00		100.00	0.0	LOW	0.00	0.00
тота	L/AVERA	GE	19.37	68.73		1695		18130	20.10
Му са	lculati	on:		1168.31 (sar	ne as 17 *	68.73)			
40	AAP	100.00	43.69	43.58	0.00	100.0	HIGH		
41	AAP	100.00	20.78	20.75	0.00	50.0	MED		
тота	L/AVERA	GE	16.12	32.17		150.0			
Му с	alculat	ion:		64.33					
3C	IIP	100.00	56.56	56.34	0.00	100.0	HIGH		
3D	IIP	100.00	36.94	36.91	0.00	50.0	MED		
тота	L/AVERA	GE	23.37	46.62		150.0			
Му с	calcula	tion:		93.25					

Complete your sessions evaluation online at SHARE.org/AnaheimEval

SHARE Tethnology - Cannetilans - Results

LPAR CPU Usage

- Capture Ratios
 - CPs from LPAR view 1168.31%
 - CPs from Workload view 1079.1%
 - CP capture ratio = (100 * 1079.1) / 1168.31 = 92.4%
 - zAAPs from LPAR view 64.33%
 - zAAPs from workload view 60.34%
 - zAAP capture ratio = (100 * 60.34) / 64.33 = 93.8%
 - zIIPs from LPAR view 93.25%
 - zIIPs from workload view 87.50%
 - zIIP capture ratio = (100 * 87.5) / 93.25 = 93.8%

CEC CPU Usage

• RMF Type 70 Record

MVS PARTITION NAME	SYS1	NUMBER OF PHYSICAL PROCESSORS	80	
IMAGE CAPACITY	5001	CP	60	
NUMBER OF CONFIGURED PARTITIONS	16	AAP	4	
WAIT COMPLETION	NO	IFL	4	
DISPATCH INTERVAL	DYNAMIC	ICF	8	
		IIP	4	
PARTITION DATA		AVERAGE PROCESSOR UTILIZATION E	PERCENTAGES	
MSU NAME S WGT DEF ACT	PROCESSOR NUM TYPE	. LOGICAL PROCESSORS PHYSICAL E EFFECTIVE TOTAL LPAR MGMT EFF	PROCESSORS FECTIVE TOTAL	
SYS1 A 339 0 969 0	50.0 CP	19.15 19.37 0.22	19.15 19.37	
PHYSICAL		0.85	1.21	
TOTAL		1.52	51.19 53.07	

- LPAR usage here is 19.37% of 60 CPs, which is 1162% compared to LPAR view of 1168%
- 60 CPs of CEC are 53.07% busy or 3184.2% (only 32 CPs needed)

S H A R E Tethnology - Cannecilous - Results

CEC CPU Usage

• RMF Type 70 Record

PARTITION DATA							AVERAGE PROCESSOR UTILIZATION PERCENTAGES						
NAME	S	WGT	MS DEF	U АСТ	PROCI NUM	ESSOR- TYPE	•	••	LOGICAL PRO EFFECTIVE	CESSORS TOTAL	PHYSIC LPAR MGMT	AL PROCESSO EFFECTIVE	DRS TOTAL
SYS1	A	375	0		4	AAP			15.95	16.12	0.17	15.95	16.12
*PHYSICAL	*										1.05		1.05
TOTAL											1.51	98.01	99.52
SYS1	A	375	0		4	IIP			22.93	23.37	0.44	22.93	23.37
*PHYSICAL	*										2.50		2.50
TOTAL											3.46	45.64	49.10

- zAAP usage is 16.12% of 4 zAAPs or 64.48% compared to LPAR view of 64.33%
- zIIP usage is 23.37% of 4 zIIPs or 93.48% compared to LPAR view of
- 93.25%

SHARE Technology - Cannetlians - Reults

CPU Variability

- Now that you are comfortable with the CPU fields and their precision, consider the variability of a CPU second.
- In my last Hot Flashes presentation, I included the following slide. It shows how jobs behaved after an upgrade. The average improvement was 127%, but some steps saw no improvement and others saw 300% improvement.
- Conclusion there is NO golden normalization factor!

CPU Variability

References

- IBM MVS System Management Facilities (SMF) SA22-7630
- SHARE in Anaheim #11264 SMF 101 Everything You Should Know About SMF and More, Thu, 3 pm, Cheryl Watson
- SHARE in Anaheim #11609 z/OS WLM Update for z/OS 1.13 & 1.12, Horst Sinram
- RMF Performance Management Guide SC33-7992
- RMF Report Analysis SC33-7990
- Redbook Effective zSeries Performance Monitoring using Resource Measurement Facility (RMF) – SG24-6645
- Cheryl Watson's Tuning Letter 2004 No. 3 & 2012 No. 4 SMF CPU fields
- SHARE in Atlanta #10606 IBM z196 & z114 Hardware Overview & Update, Harv Emery

Introduction

- Currently
 - Author of Cheryl Watson's Tuning Letter (40-60 pages six times a year) and Cheryl Watson's CPU Charts
 - Author of free email Cheryl's List (sign up on website)
 - Developer of two Watson & Walker's software products, *BoxScore* and *GoalTender*
 - Long-time SHARE member/contributor (ribbon wearer since 1978)
 - CMG past director/contributor
 - CMG A. A. Michelson Award winner
 - zJournal Mainframe Hall of Fame
 - Presenter of "Hot Flashes" at every SHARE to talk about the things I'm passionate about

Introduction

History

- 1965 Math & physics major at Portland State; worked at Consolidated Freightways, wrote Autocoder on 1401 and 7010; installed MFT in 1966; wrote Assembler & COBOL
- 1967-1982 Several software companies, Amdahl, and EDS (training, CICS admin, performance and capacity)
- 1982-1986 Morino Associates (England, Germany, Virginia)
- 1986 Met Tom Walker, partner and future husband, started Watson & Walker, Inc. as a training company (taught SMF, RMF, performance, WLM, capacity planning until 1999)
- 1991 Started Cheryl Watson's Tuning Letter
- 1995 Created WLM QuickStart Policy
- Never met an SMF record I didn't like!

See You in San Francisco!

Cheryl Watson Walker with partner, husband, and best friend Tom Walker in the Galapagos (www.tomandcheryltravels.me)

- Email: <u>technical@watsonwalker.com</u>
- Website: <u>www.watsonwalker.com</u>

Complete your sessions evaluation online at SHARE.org/AnaheimEval

