ELOCITY S O F T W A R E

Linux on z/VM Performance

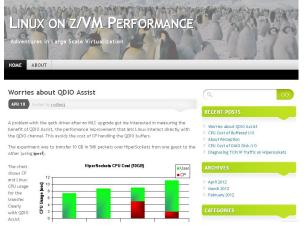
Understanding Disk I/O

Rob van der Heij Velocity Software http://www.velocitysoftware.com/ *rvdheij@velocitysoftware.com*

Copyright © 2012 Velocity Software, Inc. All Rights Reserved. Other products and company names mentioned herein may be trademarks of their respective owners.

Agenda

- I/O Performance Model
- ECKD Architecture
- RAID Disk Subsystems
- Parallel Access Volumes
- Virtual Machine I/O
- Linux Disk I/O
- SAN Devices


Linux on z/VM Tuning Objective

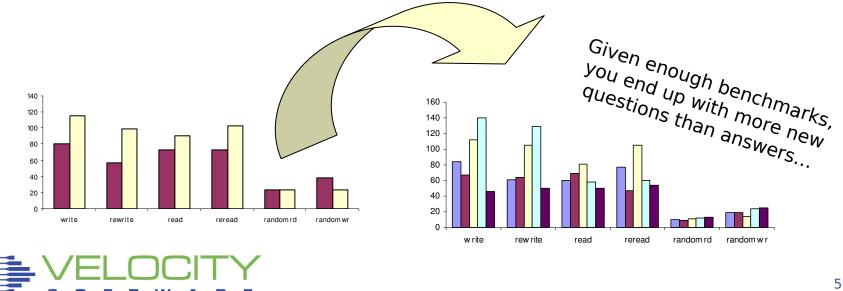
Resource Efficiency

- Achieve SLA at minimal cost
 - "As Fast As Possible" is a very expensive SLA target
- Scalability has its limitations
 - The last 10% peak capacity is often the most expensive

Recommendations are not always applicable

- Every customer environment is different
- Very Few Silver Bullets
- Consultant skills and preferences

http://zvmperf.wordpress.com/


Benchmark Challenges

Benchmarks have limited value for real workload

- Every real life workload is different
 - All are different from synthetic benchmarks
 - There are just too many options and variations to try
- Benchmarks can help understand the mechanics
 - Provide evidence for the theoretical model

Use performance data from your real workload

Focus on the things that really impact service levels



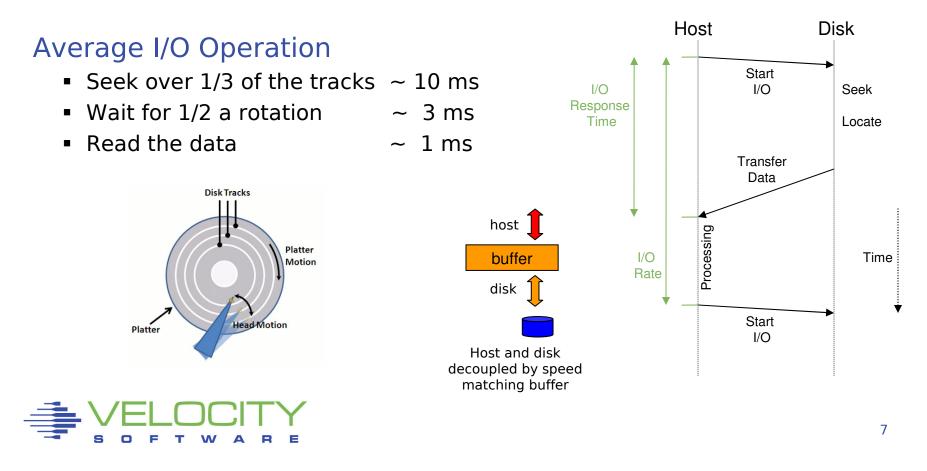
Anatomy of Basic Disk I/O

Who Cares About Disk "Disks are very fast today" "Our response time is a few ms"

Selection Criteria

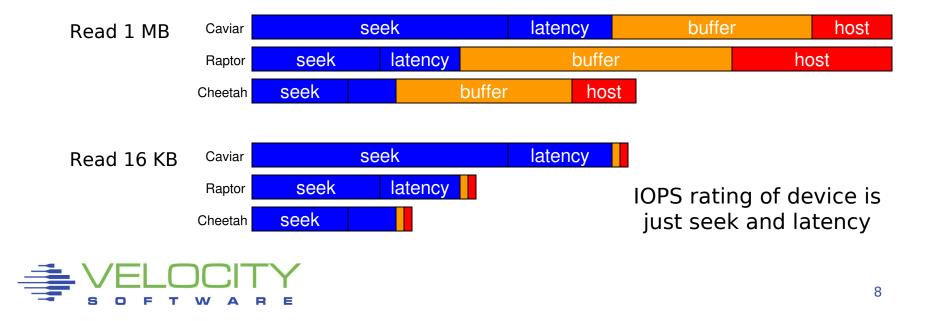
- Capacity
- Price

© 2010 Brocade, SHARE in Seattle, "Understanding FICON I/O Performance"

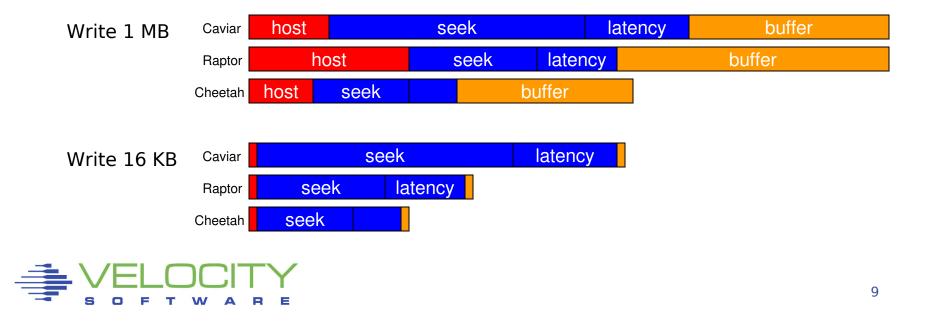


	IBM 3380-AJ4 (1981)	Seagate Momentus 7200.3 (2011)
Price	\$80K	\$60
Capacity	2.5 GB	250 GB
Latency	8.3 ms	4.2 ms
Seek Time	12 ms	11 ms
Host Interface	3 MB/s	300 MB/s
Device Interface	2.7 MB/s	150 MB/s

Anatomy of Basic Disk I/O


Reading from disk

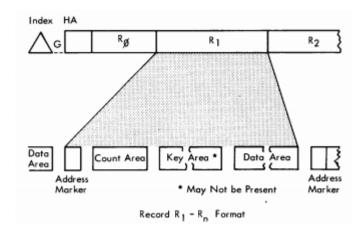
- Seek Position the heads over the right track
- Latency Wait for the right sector
- Read Copy the data into memory


Basic Disk Read Performance

	(1)		WD Caviar SE16 500	WD Raptor 150 GB	Cheetah 15K
(3)		(1) Buffer to host	300 MB/s	150 MB/s	400 MB/s
buff	er	(2) Transfer rate	120 MB/s	84 MB/s	100 MB/s
		(3) Buffer size	16 MB	16 MB	16 MB
		(4) Average seek	10.9 ms	5.2 ms	3.5 ms
4		(4) Average latency	4.2 ms	3.0 ms	2.0 ms

Basic Disk Write Performance

		WD Caviar SE16 500	WD Raptor 150 GB	Cheetah 15K
(3)	(1) Buffer to host	300 MB/s	150 MB/s	400 MB/s
buffer	(2) Transfer rate	120 MB/s	84 MB/s	100 MB/s
	(3) Buffer size	16 MB	16 MB	16 MB
	(4) Average seek	10.9 ms	5.2 ms	3.5 ms
4	(4) Average latency	4.2 ms	3.0 ms	2.0 ms


Classic DASD Configuration

CKD – Count Key Data Architecture

- Large system disk architecture since 60's
- Track based structure
 - Disk record size to mach application block size
- Disk I/O driven by channel programs
 - Autonomous operation of control unit and disk
 - Reduced CPU and memory requirements
- ECKD Extended Count Key Data
 - Efficient use of cache control units
 - Improved performance with ESCON and FICON channel

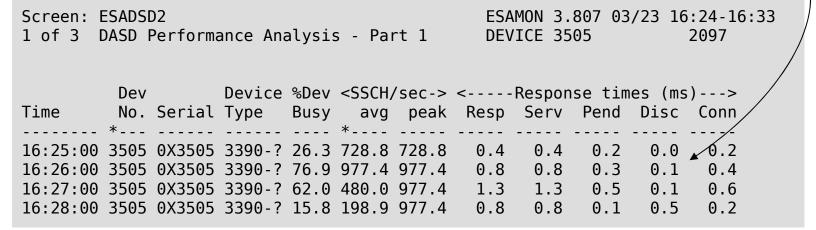
FBA – Fixed Block Architecture

- Popular with 9370 systems
- Not supported by z/OS
- Access by block number
- Uniform block size

Classic DASD Configuration

Channel Attached DASD

- Devices share a channel
- Disconnect and reconnect
- Track is cached in control unit buffer



Classic DASD Configuration

Instrumentation provided by z/VM Monitor

- Metrics from z/VM and Channel
 - Traditionally used to optimize disk I/O performance
- Response time improvement through seek optimization
 - Relocating data sets to avoid multiple hot spots
 - I/O scheduling elevator algorithm

DISC = Seek + Rotational Delay

Contemporary Disk Subsystem

Big Round Brown Disk

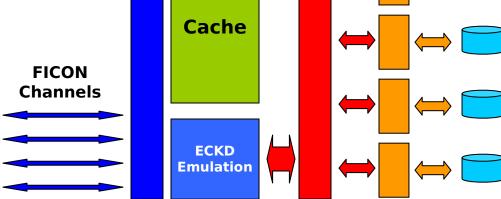
- Specialized Mainframe DASD
- One-to-one map of Logical Volume on Physical Volume
- Physical tracks in CKD format
- ECKD Channel Programs to exploit hardware capability

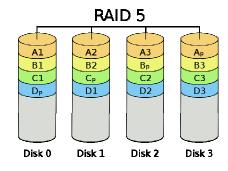
Contemporary Disk Subsystem

- Multiple banks of commodity disk drives
 - RAID configuration
 - Dual power supply
 - Dual controller
- Microcode to emulate ECKD channel programs
 - Data spread over banks, ranks, array sites
- Lots of memory to cache the data

RAID: Redundant Array of Independent Disks

- Setup varies among vendors and models
- Error detection through parity data
- Error correction and hot spares
- Spreading the I/O over multiple disks


Performance Considerations

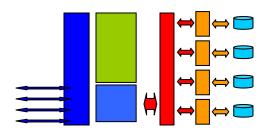

- The drives are "just disks"
- RAID does not avoid latency
- Large data cache to avoid I/O
- Cache replacement strategy

Additional Features

- Instant copy
- Autonomous backup
- Data replication

Provides Performance Metrics like 3990-3

- Model is completely different
- DISC includes all internal operations
 - Reading data into cache
 - Data duplication and synchronization


Bimodal Service Time distribution

- Cache read hit
 - Data available in subsystem cache
 - No DISC time
- Cache read miss
 - Back-end reads to collect data
 - Service time unrelated to logical I/O

Average response time is misleading

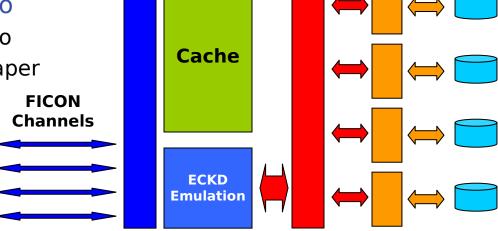
- Cache hit ratio
- Service time for cache read miss

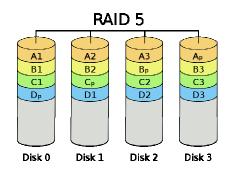
Statistics obtained from DASD subsystem

- Many DASD subsystems implement the 3990 metrics
 - Model is different so metrics don't map completely
 - Some vendors cheat a bit to please z/OS Storage Management
 - Additional performance data with dedicated tools

Screen: E 1 of 3 3		-	nalys:	is					ON 3.8 CE 350		-		-16:33 7 40F3	
	Dev					al I/O Cache						-		
Time	No.	Serial	Samp	I/0	Hits	Hit%	Read%	I/0	Hits	Hit%	I/0	Hits	Hit%	
							/							
16:27:00	3505	0X3505	100	1573	1573	100.0	0.0	0	0		0.0	0.0	100	
16:28:00	3505	0X3505	100	199	180	90.7	100.0	174	155	89.4	24.8	24.8	99.9	
16:29:00	3505	0X3505	100	1151	1069	92.9	100.0	1006	925	91.9	145	145	99.8	
16:30:00	3505	0X3505	100	1291	1232	95.4	100.0	1127	1068	94.8	164	164	99,9	
16:31:00	3505	0X3505	100	1407	1361	96.7	100.0	1230	1184	96.3	177	177	99.9	
16:32:00	3505	0X3505	100	321	313	97.3	100.0	281	272	97.0	40.5	40.5	100	
											-			

Example:

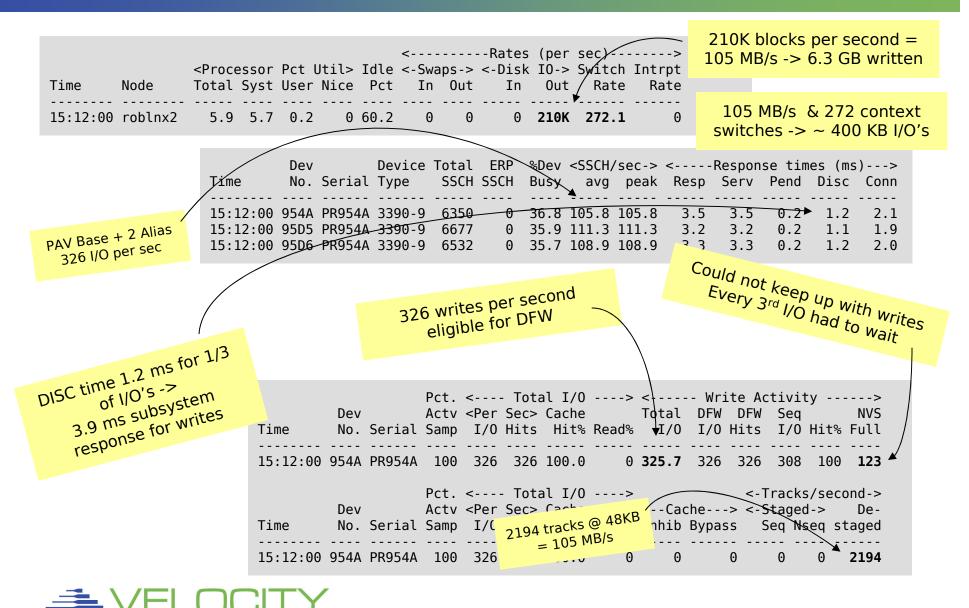

- Cache Hit Ratio 90%
- Average DISC 0.5 ms
- Service Time Miss 5 ms


Read Prediction

- Detecting sequential I/O
- ECKD: Define Extent

RAID does not improve hit ratio

- Read ahead can improve ratio
- RAID makes read ahead cheaper



Write statistics obtained from DASD subsystem

- DFW: DASD Fast Write Stored in Non-Volatile Storage
- Write penalty for RAID configurations

Screen: E 2 of 3 3		-	nalysi	ĹS				ESAMON DEVICE					L6:33 40F32
Time 16:25:00 16:26:00 16:27:00 16:28:00	3505 3505 3505	Serial 0X3505 0X3505 0X3505	Actv Samp 100 100	<per I/0 729 2070</per 	Sec> Hits 728 2069	Cache Hit% 100.0 100.0 100.0	Read%	728.3 2069 1573	DFW I/0 728 2069	DFW Hits 728	Seq		NVS Full 0 0 0 0
16:29:00	3505	0X3505	100	1151	1069	92.9	100.0	0.0	0	0	0	100	0

Disk I/O Example

Channel Instrumentation

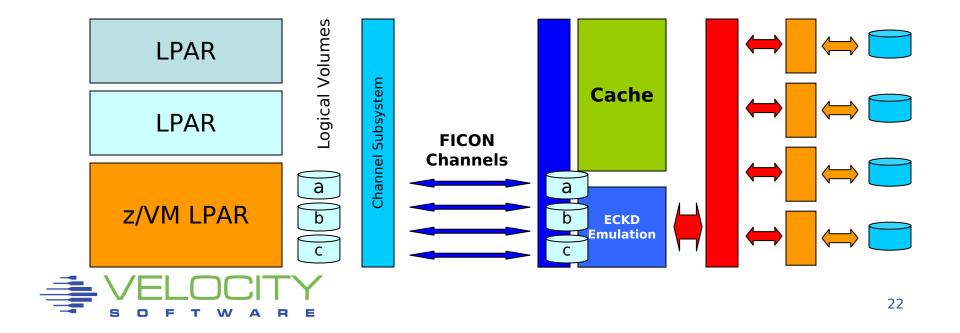
Instrumentation provided by Channel Subsystem

- Channels often shared with other LPARs in the system
- Channel is a little computer system of its own
 - Processor and memory, different buses with different capacity
- High channel utilization will slow down the I/O
 - FICON is packet switched longer PEND and CONN times
 - ESCON is connection switched longer DISC times

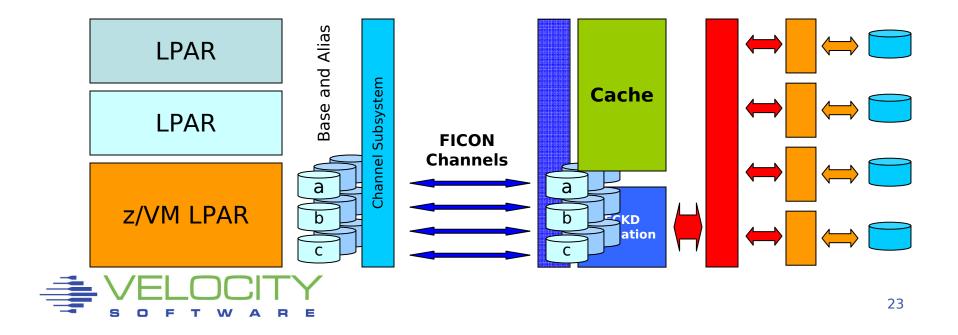
Screen: I								Е				/23 16	-) E 1	16.75	
			_								-				
1 of 3 (Chanr	net H	Pertorn	nance	e Analy	/SlS		Cl	HANNE	=L 40	-4F	4	2097	40F32	
					Pct Ch	nannel	<			Data	Units	5		>	
			<chanr< td=""><td>nel></td><td>Utiliz</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></chanr<>	nel>	Utiliz										
Time		Chm						-				-			
Time	CHP	Snr	Class	тур	LPAR	Totat	LPAR	TUTAL	PCL	Max	LPAR	IUIAL	ρει	PIAX	
											<u> </u>				
16:26:00	48	Yes	FICON	FC	4.2	4.5	0	92	0	391K	5625	5645	1	391K	
	4A	Yes	FICON	FC	4.2	4.5	1	98	0	391K/	5620	5643	1	391K	
			FICON		4.2	4.4	Ō	76	-	/	5612	5634		391K	
							-	-	-						
	4C	Yes	FICON	FC	4.2	4.5	1	82	0	39.TK	5632	5655	T	391K	
	4E	Yes	FICON	FC	4.2	4.5	1	86	0	391K	5621	5646	1	391K	
	4F	Yes	FICON	FC	4.2	4.5	1	94	0	391K	5615	5635	1	391K	
											\backslash				

Channel Instrumentation

FICON Fabric can present some challenges


- FICON switches provide additional instrumentation
 - High bandwidth and long distance buffer credits
- Strange numbers may indicate configuration issues
 - Channels not configured
- Report is useful to see I/O volume and block size
 - Do the math to see whether connect time makes sense

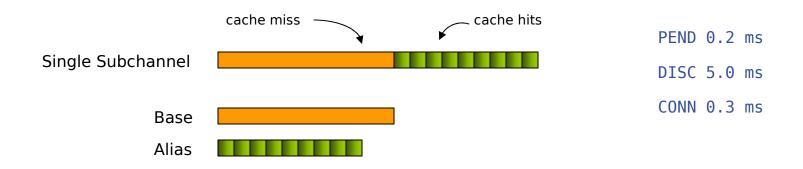
Screen: ESACHAN 1 of 3 Channel Perfor	mance Anal	ysis		MON 3.80 NNEL 48-	-			4:34 40F32
<char Time CHP Shr Class</char 	nel> Utili	zation <-	Reads/Se	cond>	<wr< td=""><td>ites/S</td><td>Secon</td><td></td></wr<>	ites/S	Secon	
14:34:00 48 Yes FICOM	IFC 0.1	10.9	0 17907	5 391K	91	2125	1	391K
49 Yes FICOM	IFC 0	Θ	0 4	0 195K	0	0	0	195K
4A Yes FICOM	IFC 0.1	10.9	2 17839	5 391K	91	2156	1	391K
4B Yes FICOM		10.8	2 17860	5 391K	92	2109		391K
4C Yes FICON	IFC 0.1	10.9	1 17883	5 391K	101	2100	1	391K


S/390 I/O Model: Single Active I/O per Logical Volume

- Made sense with one logical volume per physical volume
- Too restrictive on contemporary DASD subsystems
 - Logical volume can be striped over multiple disks
 - Cached data could be accessed without real disk I/O
 - Even more restrictive with large logical volumes

Base and Alias Subchannels

- Alias appear like normal device subchannel
 - Host and DASD subsystem know it maps on the same set of data
 - Simultaneous I/O possible on base and each alias subchannel
- DASD subsystem will run them in parallel when possible
 - Operations may be performed in different order

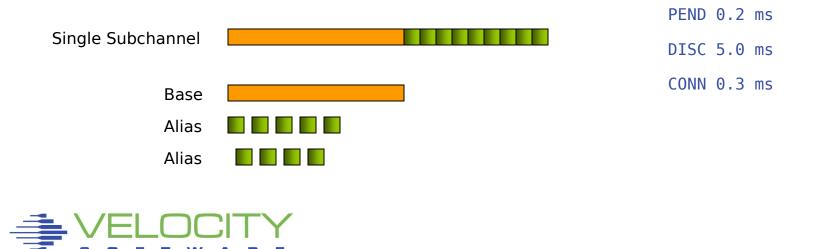


Access to cached data while previous I/O is still active

- I/O throughput mainly determined by cache miss operations
 - Assumes moderate hit ratio and an alias subchannel

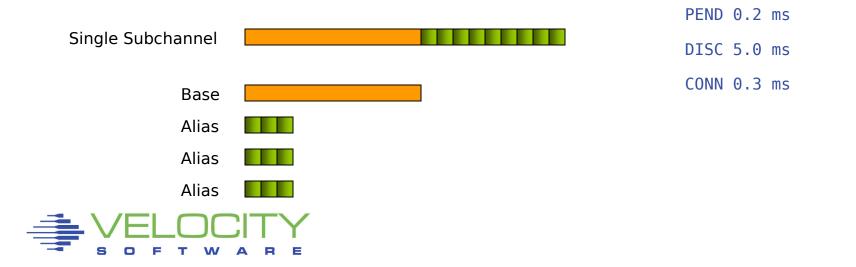
Example

- Cache hit ratio of 90%
 - Cache hit response time 0.5 ms
 - Cache miss response 5.5 ms



Queuing of next I/O closer to the device

- Interesting with high cache hit ratio when PEND is significant
- Avoids delay due to PEND time
 - Service time for cache hit determined only by CONN time
 - Assuming sufficient alias subchannels


Example

- Cache hit ratio of 90%
 - Cache hit response time 0.5 ms
 - Cache miss response 5.5 ms

Multiple parallel data transfers over different channels

- Parallel operations retrieving from data cache
 - Depends on DASD subsystem architecture and bandwidth
 - Configuration aspects (ranks, banks, etc)
 - Implications on FICON capacity planning
- Cache hit service time improved by the number of channels
 - Combined effect: service time determined by aggregate bandwidth
 - Assumes infinite number of alias subchannels
 - Assumes sufficiently high cache hit ratio

Performance Benefits

- 1. Access to cached data while previous I/O is still active
 - Avoids DISC time for cache miss
- 2. Queuing the request closer to the device
 - Avoid IOSQ and PEND time
- 3. Multiple operations in parallel retrieving data from cache
 - Utilize multiple channels for single logical volume
- Lots of things to learn about device utilization

Restrictions

- Reordering of operations must not change the function
 - Scope of operation in Define Extent CCW
- PAV is chargeable feature on DASD subsystems
 - Infinite number of alias devices is unpractical and expensive
- Workload must issue multiple independent I/O operations
 - Typically demonstrated by I/O queue for the device (IOSQ time)

Static PAV

- Alias devices assigned in DASD Subsystem configuration
- Association observed by host Operating System

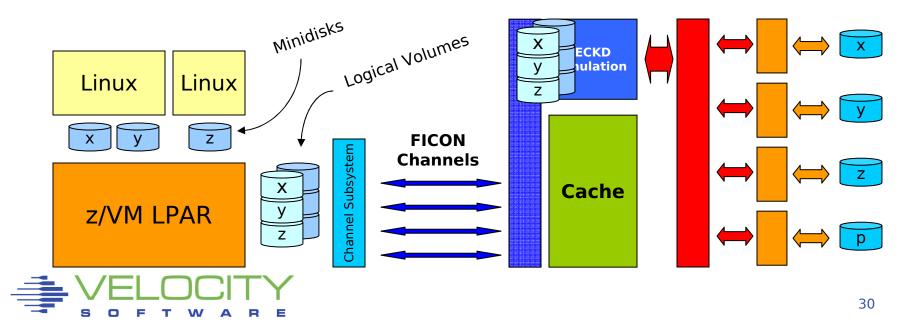
Dynamic PAV

- Assignment can be changed by higher power (z/OS WLM)
- Moving an alias takes coordination between parties
- Linux and z/VM tolerate but not initiate Dynamic PAV

HyperPAV

- Pool of alias devices is associated with set of base devices
- Alias is assigned for the duration of a single I/O
- Closest to "infinite number of alias devices assumed"

CP does not exploit PAV for its own I/O (page, spool)

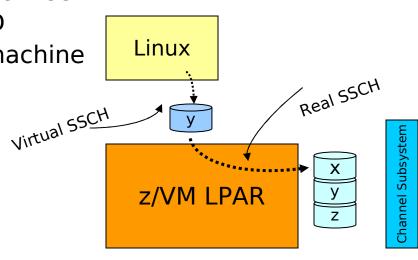

Virtual machines can exploit PAV

	Dedicated DASD	z/VM Minidisks
PAV-unaware	Limited to single threaded I/O	Transparently exploits PAV for stacked minidisks
PAV-aware	Exploits PAV through dedicated base and alias devices	Over-committted multi-threaded I/O

Stacked minidisks results in parallel I/O

- Different minidisks on the same logical volume
 - For different guests
 - For the same guest
- Common desire to reduce the number of subchannels
 - Small pseudo full-pack volumes without PAV
 - Large stacked volumes with PAV
 - Large pseudo full-pack volumes with PAV

Virtual machines are just like real machines

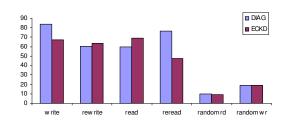

- Prepare a channel program for the I/O
- Issue a SSCH instruction to virtual DASD (minidisk)
- Handle the interrupt that signals completion

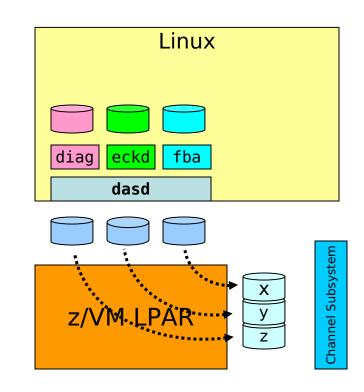
z/VM does the smoke and mirrors

- Translate the channel program
 - Virtual address translation, locking user pages
 - Fence minidisk with a Define Extent CCW
- Issue the SSCH to the real DASD
- Reflect interrupt to the virtual machine

Diagnose I/O

- High-level Disk I/O protocol
- Easier to manage
- Synchronous and Asynchronous

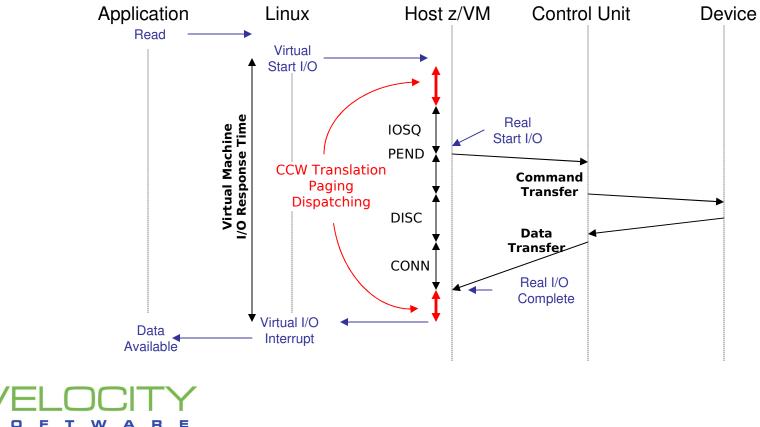




Linux provides different driver modules

- ECKD Native ECKD DASD
 - Minidisk or dedicated DASD
 - Also for Linux in LPAR
- FBA Native FBA DASD
 - Does not exist in real life
 - Virtual FBA z/VM VDISK
 - Disk in CMS format
 - Emulated FBA EDEVICE
- DIAG z/VM Diagnose 250
 - Disk in CMS reserved format
 - Device independent
- Real I/O is done by z/VM
- No obvious performance favorite
 - Very workload dependent

Instrumentation provided by z/VM Monitor

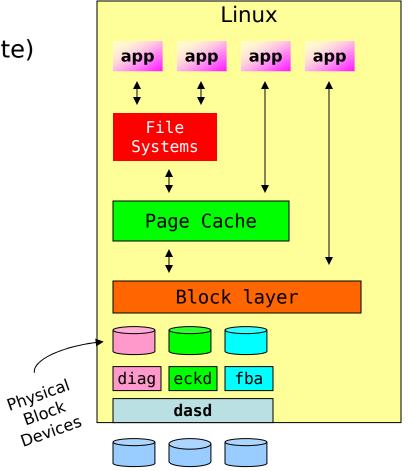

I/O counters kept by z/VM

	Screen:	ESAUSR3 User Reso	urce U	tilizat	tion -	Part	2
	Time	UserID /Class		DASD Block I/O		Disk	Hit
Screen: ESASEEK DASD Seeks Analysis	08:48:00 08:47:00	ROB01 ROB01 ROB01 ROB01 ROB01	6542 16982	14720	28	0 0 0 0	
Time Dev Device Time No. Serial Type Ownerid		ylinder-> art Stop					
08:47:00 954A PR954A 3390-9 PR954A: 08:47:00 ROB02 08:47:00 ROB02		0 10016 1 3138 580 9729	7923 5471 2452	7923 5471 2452	100 1	266 .93 .29	

Virtual Machine I/O also uses other resources

- CPU CCW Translation, dispatching
- Paging Virtual machine pages for I/O operation

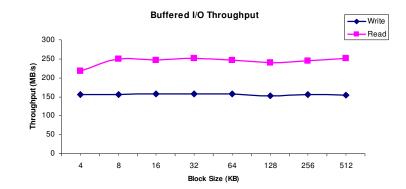
Linux Physical Block Device


- Abstract model for a disk
 - Divided into partitions
- Data arranged in blocks (512 byte)
- Blocks referenced by number

Linux Block Device Layer

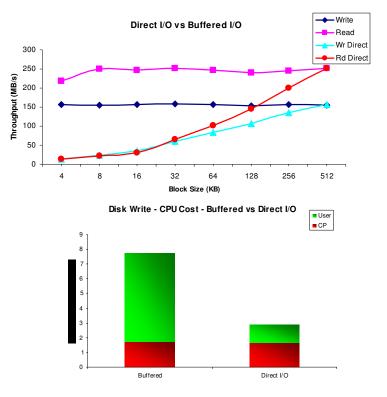
- Data block addressed by
 - Device number (major / minor)
 - Block number
- All devices look similar

Linux Page Cache


- Keep recently used data
- Buffer data to be written out

Buffered I/O

- By default Linux will buffer application I/O using Page Cache
 - Lazy Write updates written to disk at "later" point in time
 - Data Cache keep recently used data "just in case"
- Performance improvement
 - More efficient disk I/O
 - Overlap of I/O and processing



Buffered I/O

- By default Linux will buffer application I/O using Page Cache
 - Lazy Write updates written to disk at "later" point in time
 - Data Cache keep recently used data "just in case"
- Performance improvement
 - More efficient disk I/O
 - Overlap of I/O and processing

Direct I/O

- Avoids Linux page cache
 - Application decides on buffering
 - No guessing at what is needed next
- Same performance at lower cost
 - Not every application needs it

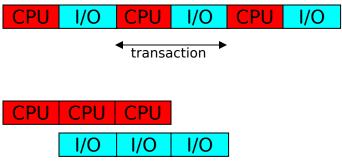
Synchronous I/O

- Single threaded application model
- Processing and I/O are interleaved

Asynchronous I/O

- Allow for overlap of processing and I/O
- Improves single application throughput
- Assumes a balance between I/O and CPU

Matter of Perspective


- From a high level everything is asynchronous
- Looking closer, everything is serialized again

Linux on z/VM

- Many virtual machines competing for resources
- Processing of one user overlaps I/O of the other
- Unused capacity is not wasted

"What is the value of good I/O response when nobody is waiting ?"

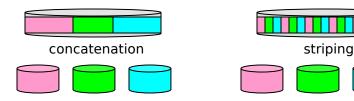
Myth of Linux I/O Wait Percentage

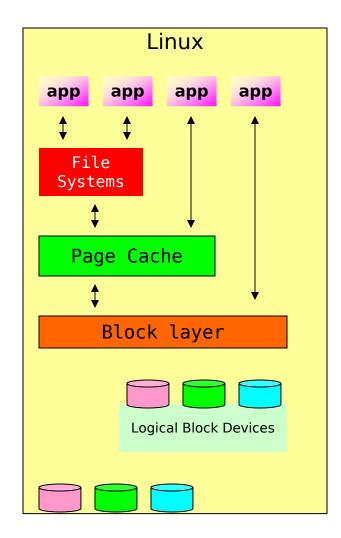
- Shown in "top" and other Linux tools
- High percentage: good or bad?
- Just shows there was idle CPU and active I/O
 - Less demand for CPU shows high iowait%
 - Adding more virtual CPUs increases iowait%
 - High iowait% does not indicate an "I/O problem"

top - 11:49:20 up 38 days, 21:27, 2 users, load average: 0.57, 0.13, 0.04	
Fasks: 55 total, 2 running, 53 sleeping, 0 stopped, 0 zombie	
Cpu(s): 0.3%us, 1.3%sy, 0.0%ni, 0.0%id, 96.7%wa, 0.3%hi, 0.3%si, 1.0%st	
top - 11:1 Ust less 38 days, 21:31, 2 users, load average: 0.73, 0.38, 0.15	
top - 11:5, 10, 28 days, 21:31, 2 users, load average: 0.73, 0.38, 0.15	
Tasks: 55 total, 3 running, 52 steeping, 0 stopped, 0 zombie	
Cpu(s): 0.0%us, 31.1%sy, 0.0%ni, 0.0%id, 62.5%wa, 0.3%hi, 4.3%si, 1.7%st	
	39

Myth of Linux Steal Time

- Shown in "top" and other Linux tools
 - "We have steal time, can the user run native in LPAR?"
- Represents time waiting for resources
 - CPU contention
 - Paging virtual machine storage
 - CP processing on behalf of the workload
- Linux on z/VM is a shared resource environment
 - Your application does not own the entire machine
 - Your expectations may not match the business priorities
- High steal time may indicate a problem
 - Need other data to analyze and explain


top - 11:53:32 up 38 days, 21:31, 2 users, load average: 0.73, 0.38, 0.15
Tasks: 55 total, 3 running, 52 sleeping, 0 stopped, 0 zombie
Cpu(s): 0.0%us, 31.1%sy, 0.0%ni, 0.0%id, 62.5%wa, 0.3%hi, 4.3%si, 1.7%st



"It was not yours, so nothing was stolen ... "

Logical Block Devices

- Device Mapper
- Logical Volume Manager
- Creates new block device
- Rearranges physical blocks
 Avoid excessive mixing of data
 Be aware for more exotic methods
 - Mirrors and redundancy
 - Anything beyond RAID 0
 - Expensive overkill

Disk Striping

- Function provided by LVM and mdadm
- Engage multiple disks in parallel for your workload

Like shipping with many small trucks

- Will the small trucks be faster?
 - What if everyone does this?
- What is the cost of reloading the goods?
 - Extra drivers, extra fuel?
- Will there be enough small trucks?
 - Cost of another round trip?

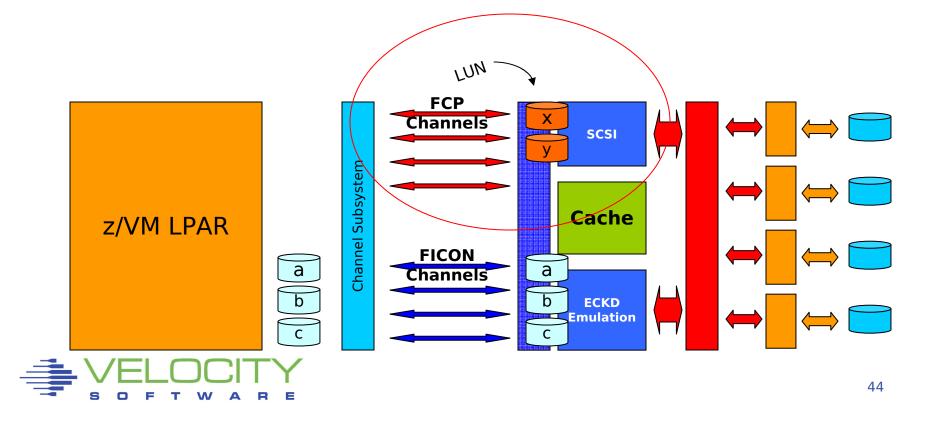


Split large I/O into small I/O's

queue for the proper devices

Performance Aspects of Striping

- Break up a single large I/O into many small ones
 - Expecting that small ones are quicker than a large ones
 - Expect the small ones to go in parallel
- Engage multiple I/O devices for your workload
 - No benefit if all devices already busy
 - Your disk subsystem may already engage more devices
 - You may end up just waiting on more devices


Optimal Stripe Size

- Large stripe may not result in spreading of the I/O
- Small stripe increases cost
 - Cost of split & merge proportional to number of stripes
- Some applications will also stripe the data

FCP Attached Disks - SCSI Disk Architecture

- SCSI provides Fixed Block Device
 - World Wide Port Number (WWPN)
 - Logical Unit Number (LUN)
- FCP channels instead of FICON

DASD subschannel

- Corresponds to a DASD volume
 - Some amount of disk space
- Minidisk Virtual DASD
 Part of real volume minidisk
- ECKD Channel programs
 - Less attractive for large volume
 - Improvements with zHPF
- I/O configuration done in IOCP

FCP subchannel

- Path that leads to the SAN
 - One FCP can access multiple LUNs
 - Distributions encourage FCP-LUN relationship
- QDIO high-level I/O protocol
 - Suitable for large data volume
- Configuration in several places
 - Disk Subsystem
 - FCP switch
 - Linux guest

Linux and ECKD is not a natural fit

- Linux expects blocks rather than tracks
 - Does not exploit ECKD features
 - ECKD channel programs are tedious for Linux disk I/O
 - Linux relies on 512-byte blocks rather than 4K blocks
- Traditional 3390 devices are small
 - Modern DASD subsystems do large volumes via EAV
 - Single I/O per subchannel limitation addressed by PAV
- Social aspects
 - It is different and "your devices have funny names"
 - ECKD "probably has a lot of overhead"
 - ECKD "is wasting disk space"

The Mystery of Lost Disk Space

SCSI disks do not waste

Claim: ECKD formatting is less efficient

"because it requires low-level format"

Is this likely to be true?

- (no low-level formatting) Design is from when space was very expensive
- Fixed Block has low level format too but hidden from us.

ECKD allows for very efficient use of disk space

- Allows application to pick most efficient block size
- Capacity of a 3390 track varies with block size
 - 48 KB with 4K block size
 - 56 KB as single block
- Complicates emulation of 3390 tracks on fixed block device
 - Variable length track size (eg log-structured architecture)
 - Fixed size a maximum capacity (typically 64 KB for easy math)

Flexibility - No limit on LUN size

Security

- LUN Masking and Zoning
 - FCP Channel is a single host port
- NPIV N-Point ID Virtualization
 - Configured in HMC Requires a SAN switch with NPIV

Implications on High Availability

- Administrative effort may be considerable
- Storage WWPN configured inside each Linux guest
- Dual Path configured inside each Linux guest

Performance

- Easier to get high throughput
- Instrumentation is less mature

FICON versus FCP

- Performance aspects depend heavily on the workload
 - Things are moving and change with each release
- No miracles no obvious "always best" winner
 - Same hardware technology
- Other aspects also influence the selection
 - Existing investment in either architecture
 - Available skills and processes

EDEV – Emulated Device

- Emulates a 9336 FBA device
- Data on FCP attached SCSI
- Managed by z/VM
 - Security through CP and RACF
 - Allocation with DIRMAINT
- Appears to Linux as channel attached FBA

Performance of EDEV

- Initial version in z/VM 5.1 had some issues
- Linux FBA driver limited to 32KB per I/O
 - Increased CP overhead due to number of SSCH's 2 CPU seconds for reading 1 GB in 32K blocks (z9-BC)
 - Reduced throughput due to latency
- Useful with moderate I/O load

Conclusion

Avoid doing synthetic benchmarks

Hard to correlate to real life workload

Measure application response

- Identify any workload that does not meet the SLA
- Review performance data to understand the bottleneck
 - Be aware of misleading indicators and instrumentation
 - Some Linux experts fail to understand virtualization
- Address resources that cause the problem
 - Don't get tricked into various general recommendations

Performance Monitor is a must

- Complete performance data is also good for chargeback
- Monitoring should not causes performance problems
- Consider a performance monitor with performance support

