
Copyright © 2012 Velocity Software, Inc. All Rights Reserved.
Other products and company names mentioned herein may be
trademarks of their respective owners.

Linux on z/VM Performance

Understanding Disk I/O

Rob van der Heij

Velocity Software

http://www.velocitysoftware.com/

rvdheij@velocitysoftware.com

2

Agenda

• I/O Performance Model

• ECKD Architecture

• RAID Disk Subsystems

• Parallel Access Volumes

• Virtual Machine I/O

• Linux Disk I/O

• SAN Devices

4

Linux on z/VM Tuning Objective

Resource Efficiency

� Achieve SLA at minimal cost

• “As Fast As Possible” is a very expensive SLA target

� Scalability has its limitations

• The last 10% peak capacity is often the most expensive

Recommendations are not always applicable

� Every customer environment is different

� Very Few Silver Bullets

� Consultant skills and preferences

http://zvmperf.wordpress.com/

5

0

20

40

60

80

100

120

140

writ e rewrit e read reread random rd random wr
0

20

40

60

80

100

120

140

160

w rite rew rite read reread random rd random w r

Benchmark Challenges

Benchmarks have limited value for real workload

� Every real life workload is different

• All are different from synthetic benchmarks

• There are just too many options and variations to try

� Benchmarks can help understand the mechanics

• Provide evidence for the theoretical model

Use performance data from your real workload

� Focus on the things that really impact service levels

Given enough benchmarks,

you end up with more new

questions than answers…

6

Anatomy of Basic Disk I/O

Who Cares About Disk

“Disks are very fast today”

“Our response time is a few ms”

Selection Criteria

� Capacity

� Price

150 MB/s2.7 MB/sDevice Interface

300 MB/s3 MB/sHost Interface

250 GB2.5 GBCapacity

11 ms12 msSeek Time

4.2 ms8.3 msLatency

$60$80KPrice

Seagate Momentus
7200.3 (2011)

IBM 3380-AJ4

(1981)

© 2010 Brocade, SHARE in Seattle, “Understanding FICON I/O Performance”

7

Anatomy of Basic Disk I/O

Reading from disk

� Seek – Position the heads over the right track

� Latency – Wait for the right sector

� Read – Copy the data into memory

Average I/O Operation
� Seek over 1/3 of the tracks ~ 10 ms

� Wait for 1/2 a rotation ~ 3 ms

� Read the data ~ 1 ms

Host Disk

Start

I/O Seek

Locate

Transfer

Data

I/O

Response

Time

P
ro

c
e
s
s
in

g

I/O

Rate
buffer

Host and disk
decoupled by speed
matching buffer

disk

host

Start

I/O

Time

8

3.0 ms

5.2 ms

16 MB

84 MB/s

150 MB/s

WD Raptor 150 GB

2.0 ms

3.5 ms

16 MB

100 MB/s

400 MB/s

Cheetah 15K

10.9 ms(4) Average seek

16 MB(3) Buffer size

4.2 ms(4) Average
latency

120 MB/s(2) Transfer rate

300 MB/s(1) Buffer to host

WD Caviar SE16 500

buffer

4

3

2

1

Read 16 KB seek latency

seek latency

Caviar

Raptor

bufferseek latency hostRead 1 MB

bufferseek latency host

Caviar

Raptor

Basic Disk Read Performance

bufferseek hostCheetah

seekCheetah

IOPS rating of device is

just seek and latency

9

3.0 ms

5.2 ms

16 MB

84 MB/s

150 MB/s

WD Raptor 150 GB

2.0 ms

3.5 ms

16 MB

100 MB/s

400 MB/s

Cheetah 15K

10.9 ms(4) Average seek

16 MB(3) Buffer size

4.2 ms(4) Average
latency

120 MB/s(2) Transfer rate

300 MB/s(1) Buffer to host

WD Caviar SE16 500

buffer

4

3

2

1

Write 16 KB seek latency

seek latency

Caviar

Raptor

bufferseek latencyhostWrite 1 MB

bufferseek latencyhost

Caviar

Raptor

Basic Disk Write Performance

bufferseekhostCheetah

seekCheetah

10

Classic DASD Configuration

CKD – Count Key Data Architecture

� Large system disk architecture since 60’s

� Track based structure

• Disk record size to mach application block size

� Disk I/O driven by channel programs

• Autonomous operation of control unit and disk

• Reduced CPU and memory requirements

� ECKD – Extended Count Key Data

• Efficient use of cache control units

• Improved performance with ESCON and FICON channel

FBA – Fixed Block Architecture

� Popular with 9370 systems

� Not supported by z/OS

� Access by block number

� Uniform block size

Linux disk I/O does not

exploit CKD features

11

Classic DASD Configuration

Channel Attached DASD
� Devices share a channel
� Disconnect and reconnect
� Track is cached in control unit buffer

IOSQ
� Device Contention
� Interrupt Latency

PEND
� Channel Busy
� Path Latency
� Control Unit Busy
� Device Busy

DISC
� Seek
� Latency
� Rotational Delay

CONN
� Data Transfer
� Channel Utilization

Host OS Control Unit Device

Start I/O

I/O Complete

IOSQ

PEND
Command
Transfer

DISC

CONN

Data
Transfer This is an abstraction

In reality the process consists

of many small steps

Application
Read

Data

Available

12

Classic DASD Configuration

Instrumentation provided by z/VM Monitor

� Metrics from z/VM and Channel

• Traditionally used to optimize disk I/O performance

� Response time improvement through seek optimization

• Relocating data sets to avoid multiple hot spots

• I/O scheduling – elevator algorithm

Screen: ESADSD2 ESAMON 3.807 03/23 16:24-16:33
1 of 3 DASD Performance Analysis - Part 1 DEVICE 3505 2097

Dev Device %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type Busy avg peak Resp Serv Pend Disc Conn
-------- *--- ------ ------ ---- *---- ----- ----- ----- ----- ----- -----
16:25:00 3505 0X3505 3390-? 26.3 728.8 728.8 0.4 0.4 0.2 0.0 0.2
16:26:00 3505 0X3505 3390-? 76.9 977.4 977.4 0.8 0.8 0.3 0.1 0.4
16:27:00 3505 0X3505 3390-? 62.0 480.0 977.4 1.3 1.3 0.5 0.1 0.6
16:28:00 3505 0X3505 3390-? 15.8 198.9 977.4 0.8 0.8 0.1 0.5 0.2

DISC = Seek +
Rotational Delay

13

Contemporary Disk Subsystem

Big Round Brown Disk

� Specialized Mainframe DASD

� One-to-one map of Logical Volume on Physical Volume

� Physical tracks in CKD format

� ECKD Channel Programs to exploit hardware capability

Contemporary Disk Subsystem

� Multiple banks of commodity disk drives

• RAID configuration

• Dual power supply

• Dual controller

� Microcode to emulate ECKD channel programs

• Data spread over banks, ranks, array sites

� Lots of memory to cache the data

14

RAID Configuration

RAID: Redundant Array of Independent Disks

� Setup varies among vendors and models

� Error detection through parity data

� Error correction and hot spares

� Spreading the I/O over multiple disks

Performance Considerations

� The drives are “just disks”

� RAID does not avoid latency

� Large data cache to avoid I/O

� Cache replacement strategy

Additional Features

� Instant copy

� Autonomous backup

� Data replication
ECKD

Emulation

Cache

FICON
Channels

15

RAID Configuration

Provides Performance Metrics like 3990-3
� Model is completely different
� DISC includes all internal operations

• Reading data into cache

• Data duplication and synchronization

Bimodal Service Time distribution
� Cache read hit

• Data available in subsystem cache
• No DISC time

� Cache read miss
• Back-end reads to collect data
• Service time unrelated to logical I/O

Average response time is misleading
� Cache hit ratio
� Service time for cache read miss

Response Time

P
ro

b
a
b

il
ti

y

16

RAID Configuration

Statistics obtained from DASD subsystem

� Many DASD subsystems implement the 3990 metrics

• Model is different so metrics don’t map completely

• Some vendors cheat a bit to please z/OS Storage Management

• Additional performance data with dedicated tools

Screen: ESADSD5 ESAMON 3.807 03/23 16:24-16:33
1 of 3 3990 Cache Analysis DEVICE 3505 2097 40F32

Pct. <---- Total I/O ----> <------ Read Activity ------>
Dev Actv <Per Sec> Cache <-- Random --> <-Sequential->

Time No. Serial Samp I/O Hits Hit% Read% I/O Hits Hit% I/O Hits Hit%
-------- ---- ------ ---- ---- ---- ----- ----- ---- ---- ---- ---- ---- ----
16:27:00 3505 0X3505 100 1573 1573 100.0 0.0 0 0 . 0.0 0.0 100
16:28:00 3505 0X3505 100 199 180 90.7 100.0 174 155 89.4 24.8 24.8 99.9
16:29:00 3505 0X3505 100 1151 1069 92.9 100.0 1006 925 91.9 145 145 99.8
16:30:00 3505 0X3505 100 1291 1232 95.4 100.0 1127 1068 94.8 164 164 99.9
16:31:00 3505 0X3505 100 1407 1361 96.7 100.0 1230 1184 96.3 177 177 99.9
16:32:00 3505 0X3505 100 321 313 97.3 100.0 281 272 97.0 40.5 40.5 100

17

RAID Configuration

Example:

� Cache Hit Ratio 90%

� Average DISC 0.5 ms

� Service Time Miss 5 ms

Read Prediction

� Detecting sequential I/O

� ECKD: Define Extent

RAID does not improve hit ratio

� Read ahead can improve ratio

� RAID makes read ahead cheaper

ECKD
Emulation

Cache

FICON
Channels

18

RAID Configuration

Write statistics obtained from DASD subsystem

� DFW: DASD Fast Write – Stored in Non-Volatile Storage

� Write penalty for RAID configurations

Screen: ESADSD5 ESAMON 3.807 03/23 16:24-16:33
2 of 3 3990 Cache Analysis DEVICE 3505 2097 40F32

Pct. <---- Total I/O ----> <------ Write Activity ------>
Dev Actv <Per Sec> Cache Total DFW DFW Seq NVS

Time No. Serial Samp I/O Hits Hit% Read% I/O I/O Hits I/O Hit% Full
-------- ---- ------ ---- ---- ---- ----- ----- ----- ---- ---- ---- ---- ----
16:25:00 3505 0X3505 100 729 728 100.0 0.0 728.3 728 728 92 100 0
16:26:00 3505 0X3505 100 2070 2069 100.0 0.0 2069 2069 2069 261 100 0
16:27:00 3505 0X3505 100 1573 1573 100.0 0.0 1573 1573 1573 199 100 0
16:28:00 3505 0X3505 100 199 180 90.7 100.0 0.0 0 0 0 100 0
16:29:00 3505 0X3505 100 1151 1069 92.9 100.0 0.0 0 0 0 100 0

19

Disk I/O Example

Dev Device Total ERP %Dev <SSCH/sec-> <-----Response times (ms)--->
Time No. Serial Type SSCH SSCH Busy avg peak Resp Serv Pend Disc Conn
-------- ---- ------ ------ ----- ---- ---- ----- ----- ----- ----- ----- ----- -----
15:12:00 954A PR954A 3390-9 6350 0 36.8 105.8 105.8 3.5 3.5 0.2 1.2 2.1
15:12:00 95D5 PR954A 3390-9 6677 0 35.9 111.3 111.3 3.2 3.2 0.2 1.1 1.9
15:12:00 95D6 PR954A 3390-9 6532 0 35.7 108.9 108.9 3.3 3.3 0.2 1.2 2.0

Pct. <---- Total I/O ----> <------ Write Activity ------>
Dev Actv <Per Sec> Cache Total DFW DFW Seq NVS

Time No. Serial Samp I/O Hits Hit% Read% I/O I/O Hits I/O Hit% Full
-------- ---- ------ ---- ---- ---- ----- ----- ----- ---- ---- ---- ---- ----
15:12:00 954A PR954A 100 326 326 100.0 0 325.7 326 326 308 100 123

Pct. <---- Total I/O ----> <-Tracks/second->
Dev Actv <Per Sec> Cache <--Cache---> <-Staged-> De-

Time No. Serial Samp I/O Hits Hit% Read% Inhib Bypass Seq Nseq staged
-------- ---- ------ ---- ---- ---- ----- ----- ----- ------ ----- ---- ------
15:12:00 954A PR954A 100 326 326 100.0 0 0 0 0 0 2194

326 wri
tes per

second

eligible
 for DFW

Could not keep up with writes

Every 3 rd I/O had to wait

<----------Rates (per sec)-------->
<Processor Pct Util> Idle <-Swaps-> <-Disk IO-> Switch Intrpt

Time Node Total Syst User Nice Pct In Out In Out Rate Rate
-------- -------- ----- ---- ---- ---- ---- ---- ---- ----- ----- ------ ------
15:12:00 roblnx2 5.9 5.7 0.2 0 60.2 0 0 0 210K 272.1 0

210K blocks per second =
105 MB/s -> 6.3 GB written

105 MB/s & 272 context
switches -> ~ 400 KB I/O’s

DISC
 tim

e 1.
2 m

s for
 1/3

of I/
O’s

->

3.9
ms s

ubsy
stem

resp
onse

 for
writ

es

2194 tr
acks @

 48KB

= 105 M
B/s

PAV Ba
se + 2 A

lias

326 I/O
 per sec

20

Channel Instrumentation

Instrumentation provided by Channel Subsystem

� Channels often shared with other LPARs in the system

� Channel is a little computer system of its own

• Processor and memory, different buses with different capacity

� High channel utilization will slow down the I/O

• FICON is packet switched – longer PEND and CONN times

• ESCON is connection switched – longer DISC times

Screen: ESACHAN ESAMON 3.807 03/23 16:25-16:25
1 of 3 Channel Performance Analysis CHANNEL 40-4F 2097 40F32

Pct Channel <--------------Data Units ------------>
<Channel> Utilization <---Reads/Second--> <--Writes/Second-->

Time CHP Shr Class Typ LPAR Total LPAR TOTAL Pct Max LPAR TOTAL pct MAX
-------- --- --- ----- --- ----- ----- ---- ----- --- ---- ---- ----- --- ----
16:26:00 48 Yes FICON FC 4.2 4.5 0 92 0 391K 5625 5645 1 391K

4A Yes FICON FC 4.2 4.5 1 98 0 391K 5620 5643 1 391K
4B Yes FICON FC 4.2 4.4 0 76 0 391K 5612 5634 1 391K
4C Yes FICON FC 4.2 4.5 1 82 0 391K 5632 5655 1 391K
4E Yes FICON FC 4.2 4.5 1 86 0 391K 5621 5646 1 391K
4F Yes FICON FC 4.2 4.5 1 94 0 391K 5615 5635 1 391K

21

Channel Instrumentation

FICON Fabric can present some challenges

� FICON switches provide additional instrumentation

• High bandwidth and long distance – buffer credits

� Strange numbers may indicate configuration issues

• Channels not configured

� Report is useful to see I/O volume and block size

• Do the math to see whether connect time makes sense

Screen: ESACHAN ESAMON 3.808 04/16 14:33-14:34
1 of 3 Channel Performance Analysis CHANNEL 48-FF 2097 40F32

Pct Channel <--------------Data Units ------------>
<Channel> Utilization <---Reads/Second--> <--Writes/Second-->

Time CHP Shr Class Typ LPAR Total LPAR TOTAL Pct Max LPAR TOTAL pct MAX
-------- --- --- ----- --- ----- ----- ---- ----- --- ---- ---- ----- --- ----
14:34:00 48 Yes FICON FC 0.1 10.9 0 17907 5 391K 91 2125 1 391K

49 Yes FICON FC 0 0 0 4 0 195K 0 0 0 195K
4A Yes FICON FC 0.1 10.9 2 17839 5 391K 91 2156 1 391K
4B Yes FICON FC 0.1 10.8 2 17860 5 391K 92 2109 1 391K
4C Yes FICON FC 0.1 10.9 1 17883 5 391K 101 2100 1 391K

22

Parallel Access Volumes

S/390 I/O Model: Single Active I/O per Logical Volume

� Made sense with one logical volume per physical volume

� Too restrictive on contemporary DASD subsystems

• Logical volume can be striped over multiple disks

• Cached data could be accessed without real disk I/O

• Even more restrictive with large logical volumes

ECKD
Emulation

Cache

FICON
Channels

C
h
a
n
n
e
l
S
u
b
s
y
s
te
m

z/VM LPAR

c

b

a

L
o
g
ic
a
l
V
o
lu
m
e
s

c

b

a

LPAR

LPAR

23

ECKD
Emulationc

b

a

c

b

a

c

b

a

c

b

a

c

b

a

Parallel Access Volumes

Base and Alias Subchannels

� Alias appear like normal device subchannel

• Host and DASD subsystem know it maps on the same set of data

• Simultaneous I/O possible on base and each alias subchannel

� DASD subsystem will run them in parallel when possible

• Operations may be performed in different order

Cache

FICON
Channels

C
h
a
n
n
e
l
S
u
b
s
y
s
te
m

LPAR

LPAR

z/VM LPAR

c

b

a

B
a
s
e
 a
n
d
 A
li
a
s

24

Parallel Access Volumes

Access to cached data while previous I/O is still active

� I/O throughput mainly determined by cache miss operations

• Assumes moderate hit ratio and an alias subchannel

Example

� Cache hit ratio of 90%

• Cache hit response time 0.5 ms

• Cache miss response 5.5 ms

0.3 msCONN

5.0 msDISC

0.2 msPEND

Single Subchannel

Base

Alias

cache miss cache hits

25

Parallel Access Volumes

Queuing of next I/O closer to the device

� Interesting with high cache hit ratio when PEND is significant

� Avoids delay due to PEND time

• Service time for cache hit determined only by CONN time

• Assuming sufficient alias subchannels

Example

� Cache hit ratio of 90%

• Cache hit response time 0.5 ms

• Cache miss response 5.5 ms

0.3 msCONN

5.0 msDISC

0.2 msPEND

Single Subchannel

Base

Alias

Alias

26

Parallel Access Volumes

Multiple parallel data transfers over different channels

� Parallel operations retrieving from data cache

• Depends on DASD subsystem architecture and bandwidth

• Configuration aspects (ranks, banks, etc)

• Implications on FICON capacity planning

� Cache hit service time improved by the number of channels

• Combined effect: service time determined by aggregate bandwidth

• Assumes infinite number of alias subchannels

• Assumes sufficiently high cache hit ratio

0.3 msCONN

5.0 msDISC

0.2 msPEND

Single Subchannel

Base

Alias

Alias

Alias

27

Parallel Access Volumes

Performance Benefits

1. Access to cached data while previous I/O is still active
•Avoids DISC time for cache miss

2. Queuing the request closer to the device

•Avoid IOSQ and PEND time

3. Multiple operations in parallel retrieving data from cache

•Utilize multiple channels for single logical volume

� Lots of things to learn about device utilization

Restrictions

� Reordering of operations must not change the function
•Scope of operation in Define Extent CCW

� PAV is chargeable feature on DASD subsystems
• Infinite number of alias devices is unpractical and expensive

� Workload must issue multiple independent I/O operations
•Typically demonstrated by I/O queue for the device (IOSQ time)

28

Parallel Access Volumes

Static PAV

� Alias devices assigned in DASD Subsystem configuration

� Association observed by host Operating System

Dynamic PAV

� Assignment can be changed by higher power (z/OS WLM)

� Moving an alias takes coordination between parties

� Linux and z/VM tolerate but not initiate Dynamic PAV

HyperPAV

� Pool of alias devices is associated with set of base devices

� Alias is assigned for the duration of a single I/O

� Closest to “infinite number of alias devices assumed”

29

Parallel Access Volumes

CP does not exploit PAV for its own I/O (page, spool)

Virtual machines can exploit PAV

PAV-aware

PAV-unaware

z/VM MinidisksDedicated DASD

Over-committted
multi-threaded I/O

Exploits PAV through

dedicated base and
alias devices

Transparently exploits
PAV for stacked

minidisks

Limited to single
threaded I/O

30

z

y

x

z

y

x

Parallel Access Volumes

Stacked minidisks results in parallel I/O

� Different minidisks on the same logical volume

• For different guests

• For the same guest

� Common desire to reduce the number of subchannels

• Small pseudo full-pack volumes without PAV

• Large stacked volumes with PAV

• Large pseudo full-pack volumes with PAV

ECKD
Emulation

x

y

z

p

Cache

FICON
Channels

C
h
a
n
n
e
l
S
u
b
s
y
s
te
m

z/VM LPAR

zyx

Linux Linux z

y

x

z

y

x

Log
ical

 Vo
lum

esMin
idis

ks

31

Linux Disk I/O

Virtual machines are just like real machines

� Prepare a channel program for the I/O

� Issue a SSCH instruction to virtual DASD (minidisk)

� Handle the interrupt that signals completion

z/VM does the smoke and mirrors

� Translate the channel program
• Virtual address translation, locking user pages

• Fence minidisk with a Define Extent CCW

� Issue the SSCH to the real DASD

� Reflect interrupt to the virtual machine

Diagnose I/O

� High-level Disk I/O protocol

� Easier to manage

� Synchronous and Asynchronous z

y

x

C
h
a
n
n
e
l
S
u
b
s
y
s
te
m

z/VM LPAR

y

Linux

Virt
ual
 SS
CH

Rea
l SS

CH

32

Linux Disk I/O

Linux provides different driver modules

� ECKD – Native ECKD DASD
• Minidisk or dedicated DASD

• Also for Linux in LPAR

� FBA – Native FBA DASD
• Does not exist in real life

• Virtual FBA – z/VM VDISK

• Disk in CMS format

• Emulated FBA – EDEVICE

� DIAG – z/VM Diagnose 250
• Disk in CMS reserved format

• Device independent

� Real I/O is done by z/VM

� No obvious performance favorite
• Very workload dependent z

y

x

C
h
a
n
n
e
l
S
u
b
s
y
s
te
m

z/VM LPAR

Linux

dasd

diag eckd fba

0

10

20

30

40

50

60

70

80

90

w rite rew rite read reread random rd random w r

DIAG

ECKD

33

Linux Disk I/O

Instrumentation provided by z/VM Monitor

� I/O counters kept by z/VM

Screen: ESASEEK ESAMON 3.808 04/19 08:46-0
DASD Seeks Analysis MDISKS DEVICE 954A 2097

Time Dev Device Mdisk <Cylinder-> Total <--non-zero-->
Time No. Serial Type Ownerid Addr Start Stop Seeks Seeks Pct Dist
-------- ---- ------ ------ -------- ---- ----- ----- ----- ----- --- ----
08:47:00 954A PR954A 3390-9 PR954A: 0 10016 7923 7923 100 266
08:47:00 ROB02 0300 1 3138 5471 5471 100 193
08:47:00 ROB02 0302 6680 9729 2452 2452 100 429

Screen: ESAUSR3
User Resource Utilization - Part 2

DASD MDisk Virt Cache
UserID DASD Block Cache Disk Hit

Time /Class I/O I/O Hits I/O Pct
-------- -------- ----- ----- ----- ---- -----
08:49:00 ROB01 1701 1059 0 0 0
08:48:00 ROB01 6542 7197 28 0 0.4
08:47:00 ROB01 16982 14720 0 0 0
08:46:00 ROB01 56 0 0 0 0

34

Linux Disk I/O

Virtual Machine I/O also uses other resources

� CPU – CCW Translation, dispatching

� Paging – Virtual machine pages for I/O operation

Host z/VM Control Unit Device

Real

Start I/O

Real I/O

Complete

IOSQ

PEND

Command
Transfer

DISC

CONN

Data
Transfer

Linux

Virtual

Start I/O

Virtual I/O

Interrupt

Application
Read

Data

Available

CCW Translation
Paging

Dispatching

V
ir
tu
a
l
M
a
c
h
in
e

I/
O
 R
e
s
p
o
n
s
e
 T
im
e

35

Linux Disk I/O

Linux Physical Block Device

� Abstract model for a disk
• Divided into partitions

� Data arranged in blocks (512 byte)

� Blocks referenced by number

Linux Block Device Layer

� Data block addressed by
• Device number (major / minor)

• Block number

� All devices look similar

Linux Page Cache

� Keep recently used data

� Buffer data to be written out

Linux

dasd

diag eckd fba

Phy
sica

l

Blo
ck

Dev
ices

Block layer

Page Cache

File
Systems

app app app app

36

Linux Disk I/O

Buffered I/O

� By default Linux will buffer application I/O using Page Cache

• Lazy Write – updates written to disk at “later” point in time

• Data Cache – keep recently used data “just in case”

� Performance improvement

• More efficient disk I/O

• Overlap of I/O and processing

Buffered I/O Throughput

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512

Block Size (KB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Write

Read

37

Direct I/O vs Buffered I/O

0

50

100

150

200

250

300

4 8 16 32 64 128 256 512

Block Size (KB)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

Write

Read

Wr Direct

Rd Direct

Linux Disk I/O

Buffered I/O

� By default Linux will buffer application I/O using Page Cache

• Lazy Write – updates written to disk at “later” point in time

• Data Cache – keep recently used data “just in case”

� Performance improvement

• More efficient disk I/O

• Overlap of I/O and processing

Direct I/O

� Avoids Linux page cache

• Application decides on buffering

• No guessing at what is needed next

� Same performance at lower cost

• Not every application needs it

Disk Write - CPU Cost - Buffered vs Direct I/O

0

1

2

3

4

5

6

7

8

9

Buf fered Direct I/O

User

CP

38

Linux Disk I/O

Synchronous I/O
� Single threaded application model

� Processing and I/O are interleaved

Asynchronous I/O
� Allow for overlap of processing and I/O
� Improves single application throughput

� Assumes a balance between I/O and CPU

Matter of Perspective
� From a high level everything is asynchronous
� Looking closer, everything is serialized again

Linux on z/VM
� Many virtual machines competing for resources

� Processing of one user overlaps I/O of the other
� Unused capacity is not wasted

“What is the value of good I/O response when nobody is waiting ?”

CPU I/OCPU I/O CPU I/O

transaction

CPU

I/O

CPU

I/O

CPU

I/O

39

Linux Disk I/O

Myth of Linux I/O Wait Percentage

� Shown in “top” and other Linux tools

� High percentage: good or bad?

� Just shows there was idle CPU and active I/O

• Less demand for CPU shows high iowait%

• Adding more virtual CPUs increases iowait%

• High iowait% does not indicate an “I/O problem”

top - 11:49:20 up 38 days, 21:27, 2 users, load average: 0.57, 0.13, 0.04

Tasks: 55 total, 2 running, 53 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.3%us, 1.3%sy, 0.0%ni, 0.0%id, 96.7%wa, 0.3%hi, 0.3%si, 1.0%st

top - 11:53:32 up 38 days, 21:31, 2 users, load average: 0.73, 0.38, 0.15

Tasks: 55 total, 3 running, 52 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.0%us, 31.1%sy, 0.0%ni, 0.0%id, 62.5%wa, 0.3%hi, 4.3%si, 1.7%st

High iowait%
I/O problem?

No
 I/O

 pr
obl
em

Jus
t le
ss
CPU

 us
age

40

Linux Disk I/O

Myth of Linux Steal Time

� Shown in “top” and other Linux tools

• “We have steal time, can the user run native in LPAR?”

� Represents time waiting for resources

• CPU contention

• Paging virtual machine storage

• CP processing on behalf of the workload

� Linux on z/VM is a shared resource environment

• Your application does not own the entire machine

• Your expectations may not match the business priorities

� High steal time may indicate a problem

• Need other data to analyze and explain

top - 11:53:32 up 38 days, 21:31, 2 users, load average: 0.73, 0.38, 0.15

Tasks: 55 total, 3 running, 52 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.0%us, 31.1%sy, 0.0%ni, 0.0%id, 62.5%wa, 0.3%hi, 4.3%si, 1.7%st

“It was not yours, so

nothing was stolen…”

41

Linux Disk I/O

Logical Block Devices

� Device Mapper

� Logical Volume Manager

Creates new block device

� Rearranges physical blocks

Avoid excessive mixing of data

Be aware for more exotic methods

� Mirrors and redundancy

� Anything beyond RAID 0

� Expensive overkill

Linux

Block layer

Page Cache

File
Systems

app app app app

Logical Block Devices

concatenation striping

42

Linux Disk I/O

Disk Striping

� Function provided by LVM and mdadm

� Engage multiple disks in parallel for your workload

Like shipping with many small trucks

� Will the small trucks be faster?

• What if everyone does this?

� What is the cost of reloading the goods?

• Extra drivers, extra fuel?

� Will there be enough small trucks?

• Cost of another round trip?

Split large I/O into
small I/O’s

queue for the
proper devices

merge into large
I/O’s

43

Linux Disk I/O

Performance Aspects of Striping

� Break up a single large I/O into many small ones

• Expecting that small ones are quicker than a large ones

• Expect the small ones to go in parallel

� Engage multiple I/O devices for your workload

• No benefit if all devices already busy

• Your disk subsystem may already engage more devices

• You may end up just waiting on more devices

Optimal Stripe Size

� Large stripe may not result in spreading of the I/O

� Small stripe increases cost

• Cost of split & merge proportional to number of stripes

� Some applications will also stripe the data

44

SAN Devices

FCP Attached Disks - SCSI Disk Architecture

� SCSI provides Fixed Block Device

• World Wide Port Number (WWPN)

• Logical Unit Number (LUN)

� FCP channels instead of FICON

ECKD
Emulation

c

b

a

Cache

FICON
Channels

C
h
a
n
n
e
l
S
u
b
s
y
s
te
m

z/VM LPAR

c

b

a

SCSI

FCP
Channels

y

x

LUN

45

SAN Devices

DASD subschannel

� Corresponds to a DASD volume
• Some amount of disk space

� Minidisk - Virtual DASD
• Part of real volume – minidisk

� ECKD Channel programs
• Less attractive for large volume

• Improvements with zHPF

� I/O configuration done in IOCP

FCP subchannel

� Path that leads to the SAN
• One FCP can access multiple LUNs

• Distributions encourage FCP-LUN
relationship

� QDIO – high-level I/O protocol
• Suitable for large data volume

� Configuration in several places
• Disk Subsystem

• FCP switch

• Linux guest

46

SAN Devices

Linux and ECKD is not a natural fit

� Linux expects blocks rather than tracks

• Does not exploit ECKD features

• ECKD channel programs are tedious for Linux disk I/O

• Linux relies on 512-byte blocks rather than 4K blocks

� Traditional 3390 devices are small

• Modern DASD subsystems do large volumes via EAV

• Single I/O per subchannel limitation addressed by PAV

� Social aspects

• It is different and “your devices have funny names”

• ECKD “probably has a lot of overhead”

• ECKD “is wasting disk space”

47

The Mystery of Lost Disk Space

Claim: ECKD formatting is less efficient

� “because it requires low-level format”

Is this likely to be true?

� Design is from when space was very expensive

� Fixed Block has low level format too – but hidden from us

ECKD allows for very efficient use of disk space

� Allows application to pick most efficient block size

� Capacity of a 3390 track varies with block size
• 48 KB with 4K block size

• 56 KB as single block

� Complicates emulation of 3390 tracks on fixed block device
• Variable length track size (eg log-structured architecture)

• Fixed size a maximum capacity (typically 64 KB for easy math)

48

SAN Devices

Flexibility - No limit on LUN size

Security
� LUN Masking and Zoning

• FCP Channel is a single host port

� NPIV – N-Point ID Virtualization
• Configured in HMC - Requires a SAN switch with NPIV

Implications on High Availability
� Administrative effort may be considerable
� Storage WWPN configured inside each Linux guest
� Dual Path configured inside each Linux guest

Performance
� Easier to get high throughput
� Instrumentation is less mature

49

SAN Devices

FICON versus FCP

� Performance aspects depend heavily on the workload

• Things are moving and change with each release

� No miracles – no obvious “always best” winner

• Same hardware technology

� Other aspects also influence the selection

• Existing investment in either architecture

• Available skills and processes

50

SAN Devices

EDEV – Emulated Device

� Emulates a 9336 FBA device

� Data on FCP attached SCSI

� Managed by z/VM

• Security through CP and RACF

• Allocation with DIRMAINT

� Appears to Linux as channel attached FBA

Performance of EDEV

� Initial version in z/VM 5.1 had some issues

� Linux FBA driver limited to 32KB per I/O

• Increased CP overhead due to number of SSCH’s
2 CPU seconds for reading 1 GB in 32K blocks (z9-BC)

• Reduced throughput due to latency

� Useful with moderate I/O load

51

Conclusion

Avoid doing synthetic benchmarks

� Hard to correlate to real life workload

Measure application response

� Identify any workload that does not meet the SLA

� Review performance data to understand the bottleneck
• Be aware of misleading indicators and instrumentation

• Some Linux experts fail to understand virtualization

� Address resources that cause the problem
• Don’t get tricked into various general recommendations

Performance Monitor is a must

� Complete performance data is also good for chargeback

� Monitoring should not causes performance problems

� Consider a performance monitor with performance support

