
Using List Prefetch Optimizer and Solid State Disk to
Improve DB2 Perf and Avoid DB2 Reorgs

Jeffrey Berger

IBM

August 6, 2012

Session 11294

Abstract

Efficient I/O operations is the key ingredient of a well
performing database management system. Ensuring optimal

I/O performance is a time consuming and resources

intensive work that regularly includes frequent data and
index reorganization. Recent enhancements in System z

and disk technology, combined with DB2 10 for z/OS
features deserve a fresh look at how to achieve optimal I/O

performance without continuous monitoring and tuning and
with greatly reduced need for costly and obtrusive database

reorganization.

© Copyright IBM Corporation 2010. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

The information contained in this presentation is provided for informational purposes only. While efforts were
made to verify the completeness and accuracy of the information contained in this presentation, it is provided “as
is” without warranty of any kind, express or implied. In addition, this information is based on IBM’s current
product plans strategy, which are subject to change by IBM without notice. IBM shall not be responsible for
damages arising out of the use of, or otherwise related to, this presentation or any other documentation. Nothing
contain in this presentation is intended to, nor shall have the effect of, creating any warranties or representations
from IBM (or its suppliers or licensors), or altering the terms and conditions of any agreement or license governing
the use of IBM products and/or software.

Information regarding potential future products is intended to outline our general product direction and it should
not be relied on in making a purchasing decision. The information mentioned regarding potential future products
is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about
potential future products may not be incorporated into any contract. The development, release, and timing of any
future features or functionality described for our products remains at our sole discretion.

This information may contain examples of data and reports used in daily business operations. To illustrate them as

completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names
are fictitious, and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

Trademarks The following terms are trademarks or registered trademarks of other companies and have been used in at least

one of the pages of the presentation:

The following terms are trademarks of International Business Machines Corporation in the United States, other countries, or

both: DB2, DB2 Connect, DB2 Extenders, Distributed Relational Database Architecture, DRDA, eServer, IBM, IMS, iSeries,
MVS, z/OS, zSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other

countries, or both.
Intel and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.
Other company, product, or service names may be trademarks or service marks of others.

Disclaimer

This document contains performance information based on measurements
done in a controlled environment. The actual throughput or performance
that any user will experience will vary depending upon considerations such
as the amount of multiprogramming in the user’s job stream, the I/O
configuration, the storage configuration, and the workload processed.
Therefore, no assurance can be given that an individual user will achieve
throughput or performance improvements equivalent to the numbers
stated here.

Performance Disclaimer

Agenda

• Disorganized data versus organized data

• New disk technology enhancements, trends in System z

• DB2 10 improvements

• Future DB2 strategy to reduce the need for Reorgs

• REORG

• The pain of REORG

• Why do we use it

• Which of these reasons can be alleviated if disorganized
tables and indexes perform better

• Member Cluster

DB2 Prefetch Techniques

• Index scan

• Organized indexes: dynamic prefetch (otherwise known as

“sequential detection”)

• Disorganized indexes

• Prior to DB2 10, DB2 did synch I/Os

• DB2 10 uses list prefetch

• Index-to-data access

• High cluster ratio (organized data)

• Dynamic prefetch for clustered pages, synch I/O for unclustered
pages

• Low cluster ratio (disorganized data)

• DB2 Optimizer may choose a sorted RID list and use list prefetch
on that RID list

DB2 10 for z/OS Enhancements

• Index scans

• Progressive prefetch quantity (read 8 pages, then 16 pages,

then 32)

• First dynamic prefetch I/O may be triggered after 5 Getpages

• Use list prefetch for disorganized indexes

• Index-to-data access, RID list scans

• The RID pool may spill over to a work file instead of falling back

to a table scan

• The default RID pool size (MAXRBLK) increased from 8 MB to

400 MB

• Index-to-data access, sequential detection

• Row-level sequential detection, may trigger first dynamic

prefetch I/O after 5 rows

• Progressive prefetch quantity

Hardware Positioning

• Solid State Disks

• Introduced in 2009

• Sub-milliseconds synch I/O response time

• No mechanical parts, insensitive to data/index organization

• zHPF

• Introduced in 2009

• Initially limited to reads and update writes <=64K contiguous

• The 64K limit was removed in the z196

• In 2011, zHPF made applicable to all DB2 I/Os

• Format writes and list prefetch means faster DB2 utilities and

queries

• FICON Express 8S

• Introduced in 2011 with z196 GA2 processor

• Optimized for zHPF

List Prefetch

• List prefetch I/O is unique to z/OS

• zHPF list prefetch introduced in Nov., 2011

• DB2 list prefetch I/Os are made eligible for zHPF

• Improves channel performance of DB2 list prefetch

• Requirements:

• z196 processor and z/OS R11 or above (with PTFs)

• IBM DS8700 or DS8800 with R6.2 or above

• Non-IBM storage does not yet support zHPF list prefetch

• List Prefetch Optimizer (LPO) is the DS8000’s caching

algorithm, introduced in R6.2. LPO requires zHPF.

• Improves the cache hit ratio by taking advantage of RAID 5
architecture to increase I/O parallelism

FICON Express 8S, z196, DS8800

I/O response time for 128K (cache hits)

0.620.64 0.983

2.4

0

0.5

1

1.5

2

2.5

3

FICON 4K zHPF 4K

M
il

li
s

e
c

o
n

d
s

Contiguous pages Noncontiguous pages

+3.7x

+58%

Index Scans

Disorganized index scan, cold cache

DB2 10 versus DB2 9 with FICON

4K pages (throughput)

0

10

20

30

40

50

60

0 20 40 60 80 100

% of index read

M
B

/s
e
c

DB2 10 10K

DB2 10 SSD

DB2 9 10K

DB2 9 SSD

� DB2 10 is 2x to 10x faster than DB2 9

Disorganized index scans, cold cache, 4K pages

Throughput

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

% of Index Scan

M
B

/s
e

c

DB2 10 zHPF SSD

DB2 10 FICON SSD

DB2 10 FICON 10K

DB2 9 zHPF SSD

DB2 9 zHPF 10K
60x

14x

� Migration from 10K HDD to SSD, DB2 9 to DB2 10, and FICON to
zHPF is 14x to 60x faster

Index-to-data access

Sorted RID List Scans

Throughput

0

2

4

6

8

10

12

0 20 40 60 80 100 120
Skip distance (4K page)

M
B

/s
e

c

zHPF

FICON 3.7x

Sparse skip sequential using list prefetch
10K HDD

Throughput

0

25

50

75

100

0 20 40 60 80 100 120

Skip distance (4K page)

M
B

/s
e

c

zHPF SSD

FICON SSD

8x

Sparse skip sequential using list prefetch
Solid State Disks

Dense skip sequential using list prefetch

Throughput

0

50

100

150

200

250

300

350

1 10Skip Distance (4K pages)

(log scale)

M
B

/s
e
c SSD zHPF

SSD FICON

HDD zHPF

HDD FICON

� Migration from 10K HDD to SSD and FICON to zHPF is 4x to 8x faster

Dynamic Prefetch

and

Sequential Detection

Dynamic prefetch: Index—>Data Range Scan
Row size = 49 bytes, page size = 4K (81 rows per page)

Test case Cluster ratio Cardinality NPAGES

1 100% 20,000,000 253167

2 98% 20,200,000 256024

3 96% 20,400,000 258882

4 94% 20,600,000 261740

5 92% 20,800,000 264598

Read 10% of the rows in key sequential order

Dynamic Prefetch I/Os

0

100

200

300

400

500

100 98 96 94 92

Cluster ratio

DB2 9

DB2 10

�Row level sequential detection (RLSD) preserves good sequential
performance for the clustered pages

Query time

0

2

4

6

8

10

100 98 96 94 92

Cluster ratio

S
e
c
o
n
d
s

DB2 9

DB2 10

Dynamic Prefetch

• DB2 10 introduced Row Level Sequential Detection and

progressive prefetch quantity

• When the number of rows per page is high (e.g. >40), RLSD
preserves sequential I/O of clustered pages

• Prefetch may be triggered after 5 rows, instead of 5 pages

• First prefetch I/O reads 8 pages, then 16, then 32 pages thereafter

• Strengths of dynamic prefetch (compared to RID list scan)

• Avoids some result set sorts when a query specifies ORDER/GROUP
BY based on the index key

• Avoids the storage requirements of a RID pool

• Deficiencies of dynamic prefetch

• Sometimes many synchronous I/Os

• Sometimes wastes buffers

Piecemeal List Prefetch (PLP)

• Possible future strategy

• Performance objectives

• Range scans

• Elapsed time savings and CPU savings when the cluster ratio is
slightly degraded or catalog statistics are out-of-date

• Skip sequential access

• Elapsed time, CPU savings

• DB2 buffer savings, could improve the OLTP buffer hit ratio

• Hybrid of dynamic and list prefetch

• Dynamic prefetch for clustered pages

• List prefetch for unclustered pages and skip sequential, avoids synch
I/Os and avoids wasting buffers

• Avoid using a RID pool

• Preserve index ordering of the rows

• Will not be supported for CURRENT DATA YES or ISOLATION RR

• 100 byte rows, MAXROWS 40

• Range scan reads 10% of the clustered rows and 10% of the unclustered rows

• z196, DS8800, SSD, List Prefetch Optimizer

Range ScanClustered pages Unclustered pages

Skipped pages

HDD Elapsed Time

0

20

40

60

80

100

9092949698100

Cluster Ratio

S
e

c
o

n
d

s

DB2 10 PLP

SSD Elapsed Time

0

10

20

30

40

50

9092949698100

Cluster Ratio

S
e

c
o

n
d

s

DB2 10 PLP

CPU Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

708090100

Cluster Ratio

S
e

c
o

n
d

s

DB2 10 PLP

• 100 byte rows, MAXROWS 40

• Cluster ratio 90%, 1 unclustered page for every 20 clustered pages

• Range scan reads 10% of the clustered rows and 10% of the unclustered rows

• z196, DS8800, SSD, List Prefetch Optimizer

Elapsed Time

0
10
20
30
40
50
60
70

DB2 10 DP PLP Sorted RID

list

S
e
c
o
n
d
s

1000 Buffers 200000 Buffers

Conclusions:

� PLP closes the gap between

vanilla Dynamic Prefetch and a

sorted RID list, without the need

of a RID pool

� The deficiencies of PLP relative

to a sorted RID list are mitigated

by a large buffer pool

This query required 791 RID blocks, about 26 MB. In contrast, PLP uses only 32 KB.

Range ScanClustered pages Unclustered pages

Skipped pages

… Range Scans

• Running RUNSTATS will encourage DB2 optimizer to choose a Sorted RID

list. That is still the best strategy to avoid Reorgs.

• However, PLP can mitigate the performance problems until RUNSTATS can

be run, or until REORG can be run.

• Since the sorted RID list in this case is largely sequential, SSD is not critical

for a sorted RID list, but it is critical for Piecemeal List Prefetch

SSD Elapsed Time

200000 buffers

0

2

4

6

8

PLP Sort RID list After Reorg

S
e
c
o

n
d

s

PLP Elapsed Time

1000 buffers

0

10

20

30

40

SSD 10K HDD

S
e

c
o

n
d

s

Skip Sequential Test Cases

• Organized index and data

• Index key is 8 bytes

• All queries do 445,432 index Getpages

• Cluster ratio is 100%

• Data

• 108 byte rows, 37 rows per page

• Getpages are uniformly distributed and spread across 2 million data pages

in 6 test cases:

1. 2.7M Getpages (process all 37 rows per page, i.e. range scan)

2. 2M Getpages (process 1 row per page)

3. 1M Getpages

4. 250,000 Getpages

5. 164,286 Getpages

6. 31,250 Getpages

• SELECT SUM(non-indexed column) WHERE KEY1<=x AND KEY2>=y

Elapsed time

10K HDD

0

20

40

60

80

100

120

140

2.7M 2.0M 1M 0.25M 164K 31K

Data Getpages

S
e
c
o
n
d
s

DB2 10 PLP

SSD

0

20

40

60

80

100

120

140

2.7M 2.0M 1M 0.25M 164K 31K

Data Getpages

S
e
c
o
n
d
s

DB2 10 PLP

Cache

0

20

40

60

80

100

2.7M 2.0M 1M 0.25M 164K 31K

Data Getpages

S
e
c
o
n
d
s

DB2 10 PLP

Skip sequential with 100% Cluster Ratio

Conclusions:

� PLP improves the performance and, in

some cases, saves buffer storage

� SSD far out-performs HDD

� REORG doesn’t help this case, although

a sorted RID list would

� With case 4 and 5, DB2 10 allocates 2.7MB

buffers, whereas PLP only allocates one

buffer per Getpage

REORG

Why is it painful and why do we do it

The Pain of REORG

• Consume large amounts of I/O and CPU resources

• Can impact transaction response times when trying to break in to
switch to the “shadow” objects

• Completing the REORG switch phase is sometimes impossible
without quiescing workloads

• REORG makes it harder to take advantage of storage tiering solutions
like IBM’s Easy Tier

• Must be scheduled and monitored

• Can flood wide area networks (WAN) with changed traffic when
disaster recovery replication is used

REORG

• What problems does REORG actually solve?

• Reclaim space

• Re-establish (reserve) distributed free space for insert

• Clean up “indirect references”

• Restore data row clustering which has deteriorated

• Re-establish optimal performance and logging after alter schema change

• Materialize ‘deferred alters’ which are pending (V10)

• What problems does REORG INDEX solve?

• Reclaim space

• Re-establish (reserve) distributed free space for insert

• Organize the leaf pages so that an index scan will be sequential

• Clean up “pseudo deleted” RIDs to improve query processing

• Materialize ‘deferred alters’ which are pending (V10)

…..REORG

• DB2 10 with LPO and SSD largely eliminate the problems
of a disorganized index

• LPO and SSD, combined with PLP or traditional RID list
scans, largely mitigate the problems of a “sub-optimal”
cluster ratio

• Sequoia will mitigate the problems of psuedo-deleted index
entries

• Indirect references will persist as a problem

• Indirect references occur when a variable length row (or compressed
row) is updated, the row length increases, and the row no longer fits
on its original page

• Indirect references cause synchronous I/Os

…..REORG

• Non-performance reasons will always remain

• Reclaiming space

• Deferred alters

• Restore clustering in order to optimize the buffer hit ratio

OLTP buffer hit ratios

• Sometimes the buffer hit ratio is affected by the cluster key.

• For example, if the cluster key is based on time, and the most
recent inserts are most likely to fetched

• A big decrease in the buffer hit ratio can have a big effect on

CPU time, no matter how fast the I/Os is.

• Adding memory may help compensate for a loss of clustering

• Prefetch cannot help singleton SELECTs

Other option if we abandon clustering

• MEMBER CLUSTER (MC) organization

• Very useful for improving the performance of highly concurrent

inserts in data sharing

• DB2 9 supported MC for classic Partitioned Table Space only

• DB2 10 provides for all Universal Table Spaces (PBR and PBG)

Throughput

0

5000

10000

15000

20000

25000

SEG PBG PBG/MC

R
o
w

s
/S

e
c

PLL RLL

CPU Time

0

0.2

0.4

0.6

0.8

1

1.2

SEG PBG PBG/MC

M
s
e
c
 /
 C

o
m

m
it

PLL RLL

Throughput

0

20000

40000

60000

80000

100000

120000

SEG PBG PBG/MC

R
o

w
s
/S

e
c

PLL RLL

CPU Time

0

5

10

15

20

25

SEG PBG PBG/MC

M
s
e
c
 /
 C

o
m

m
it

PLL RLL

------------------------------Random Inserts------------------------------

------------------------------Sequential Inserts------------------------------

DB2 10 Non-range Defined Table Spaces

Conclusions

• New IBM storage hardware advancements are key to improving DB2
query performance

• DB2 10 improves query performance when index are disorganized and
when doing sorted RID list scans

• Piecemeal list prefetch will further improve the performance of dynamic
prefetch access paths. Also will save CPU and could improve the
OLTP buffer hit ratio.

• All of this technology mitigates the performance cost of not reorganizing
the data frequently, and SSD is a critical component needed to achieve
that goal

• Be aware that a loss of clustering can affect your OLTP buffer hit ratios

• Be careful with indirect references

References

• IBM Redpaper: DB2 for z/OS and List Prefetch Optimizer

http://www.redbooks.ibm.com/redpieces/abstracts/redp4862.html

3

8

3

8

Questions?

Email: bergerja@us.ibm.com

