LKED and the Binder:

Exploring Object Modules, Linking,
Load Modules, and Program Objects

SHARE 119 in Anaheim

Presented by Barry Lichtenstein, barryl@us.ibm.com
Prepared by John R. Ehrman, ehrman@us.ibm.com
IBM Silicon Valley Laboratory
555 Bailey Avenue
San Jose, CA 95141

© IBM Corp. 1995, 2012. All rights reserved

August, 2012

Topic Overview

e Why is this stuff important?

— Every program begins as an (un-executable) object module, and
must be transformed to a loadable/executable format

— Functional restrictions can limit how we think about creating programs

What assemblers and compilers produce: object modules

— What object modules contain

Linking object modules into load modules
— Problems with load modules

How program objects are like and unlike load modules
— Sections, Classes, Elements, and Parts

How the new “GOFF” object module is like and unlike the old
How load modules and program objects are loaded into storage
Dynamic Link Library support

References

Note: This is not a usage tutorial!

There's a lot of material here —don't try to digest it all at once...

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Terminology and Abbreviations

e Some frequently-used abbreviations:

PM Program Management: the set of linking and loading
programs discussed here

LM Load Module: the traditional loadable, executable module

PO Program Object: the new loadable, executable module

OoM,0BJ Object Module: traditional card-image format

GOFF Generalized Object File Format: new format

PDS Partitioned Data Set

PDSE Partitioned Data Set Extended

TEXT Machine language instructions and data

LKED The old Linkage Editor; its functions now done by the Binder

e QOther terms are introduced as needed

— Some terminology is from Assembler Language

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Them

Object Modules and What's in

A quick review

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Traditional Terminology (Object and Load Modules) 4

Control Section (CSECT) (was often called just a “Section”)
— The basic indivisible unit of linking and text manipulation

— Ordinary (CSECT) and Read-Only (RSECT) have machine language text;
Common (COM: static) and Dummy (DSECT, DXD: dynamic) Sections are
“templates” without text

External symbol (“public”; internal symbols are “private”)

— A name known at program linking time, whose value is intentionally not
resolved at translation time; a reference or a definition

Address constant (“Adcon”)

— A field within a control Section into which a value (typically, an address) will
be placed during program binding, relocation, and/or loading

External Dummy Section (PseudoRegister or PR)

— A special type of external symbol whose value is resolved at link time to an
offset into an area (the “PR Vector”) to be instantiated during initiation

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Translator Output: The Traditional (OBJ) Object Module 5

e 80-byte (card-image) records, with X'02"' in column 1,
3-character “tag” in columns 2-4

SYM Internal (“private”) symbols (SYM records rarely used now)

ESD External Symbol Dictionary (symbols and their types); each
symbol (except LD) identified by an ID number: its ESD ID

TXT Machine language instructions and data (“Text”):
how many bytes (Len), where it goes (Pos.ID, Addr)

RLD Relocation Dictionary: data about each address constant:
where it is (Pos.ID, Addr) and what to put in it (Rel.ID)

END End of object module, with IDR (ldentification Record) data and
(optional) entry-point nomination (and optional Section length)

e Always at least one control Section per object module
¢ One object module per compilation unit

e “Batch” translations may produce multiple object modules

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

OBJ External Symbol Dictionary (ESD) 6

e Describes four basic types of external symbols:
SD, CM

LD

ER, WX

XD

Section Definition: the name of a control Section;
CM for COMmon Sections (they have no “text”).

PC = Blank-named control Section called “Private Code”;
zero-length PC Sections often discarded by binder

Label Definition: the name of a position at a fixed offset within
an “owning” Control Section; typically, an Entry point.
(The only type having no ESDID of its own)

External Reference: the name of a symbol defined
“elsewhere” to which this module wants to refer

WX = “Weak EXternal”’; not a problem if unresolved

EXternal Dummy Section (PL/I called it a PseudoRegister)

PR names are in a separate “name space” from all other
external symbols, and may match non-PR names without
conflict.

e Two external symbol scopes: library (SD, LD, ER), or module (PR, WX)

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Relocation Dictionary Records

e One RLD item per record, 4 or 8 bytes long

Data: type, length, text position (P-ID and Address), R-ID

Type | Length | Description
A 3,4,8 | Direct resolution
\Y 3,4,8 | Direct or indirect resolution
Q 1-8 | Offset in PseudoRegister Vector (PRV)
(More about the PRV at slides 20-23)
CXD 4 Cumulative External Dummy (PRV) length
R-I 24 Relative-Immediate (external) resolution

e GOFF RLD items are more complex

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

OBJ/LM External Symbol Types and Ownership Hierarchy 8

e External symbol types: OBJ/LM External
. o Name Ownership
SD,CM,PC Section Definition: owns LDs Hierarchy
LD Label Definition: entry point —
within an SD; no ESDID SD/CM/PC |ER| PR|
ER,WX External Reference I —
PR, XD PseudoRegister, External F_L
Dummy: this Section's view of |LD|
(and contribution to) the PRV L
e Section Definition types SQ, CQ, PQ for
quadword alignment
e Lack of ownership of ER and PR items can
sometimes cause problems when relinking
— We'll contrast this later with the new
II_inking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reservedI
Example of Object Module Elements: ESD, RLD 9
e Sample Assembler Language program:
AA CSect Control Section 1
Extrn X External reference j——— External Symbols
Entry E Entry—Point symbol
E DC A(X+44) 1 Address constant
Internal p |Conl DC F'1' [— 12 bytes of Text
Symbols > [QCon DC Q(D) 4 Address constant
External — |D DXD A External Dummy (PseudoRegister)
Symbo1 End

e Assembler ESD and RLD listings:

External Symbol Dictionary

Symbol Type ID Addr Length Owning ID Flags

> AA SD 000001 000000 00000C 00 (Control Section)
X ER 000002 (EXTRN)
E LD | 000000 000001 (ENTRY in Section AA: LD ID=1)
D 00003 000003 000004 (External Dummy, addr=alignment)

XD | O
|
L Relocation Dictionary
||

Pos.Id Rel.Id || Address Type Action
— 000001 000002J| 000000 A4 + ...A(X): X has R-ID=2, address 0 in Section AA (P-ID=1)
L 000001 000003— 000008 Q 4 ST ...Q(D): D has R-ID=3, address 8 in Section AA (P-ID=1)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

10

Combining Object Modules

e A simple example of initiation-time linking and loading

¢ |llustrates the basic principles involved in linking and loading

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Combining Object Modules: a Simple Example 11

e Suppose a program consists of two source modules:

Module 1 Module 2

Loc Loc

000 |MAIN - == 000 |SUB - ==
COMMON /WORK/ ... COMMON /WORK/ ...
- - = EXTERNAL XDATA
CALL SUB - ==
- == 700 Addr (WORK)

200 Addr (SUB) 704 Addr (XDATA)

204 Addr (WORK) - ==

208 Addr (XDATA)

ENTRY XDATA
260 | XDATA

— Program MAIN contains an entry point XDATA, and refers to the COMMON area
named WORK, requesting length X'600'

— Subprogram SUB refers to the external name XDATA and to the COMMON
area named WORK, requesting length X'400'

e Translation produces two object modules

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Combining Object Modules: First Object Module

12

e The object module for MAIN would look somewhat like this:

ESD
ESD
ESD
ESD
XT
XT
XT
XT
XT
XT
RLD
RLD
RLD
END

ID=1 MAIN Addr=000 Len=300

ID=2 WORK Addr=000 Len=600

ID=1 XDATA Addr=260

ID=3 SUB

ID=1 Addr=000 'abcdefghijk..."
ID=1 ... etc.

ID=1 Addr=100 'mnopqrstuvw...'
ID=1 Addr=208 000260

ID=1 Addr=260 '01234567890..."
ID=1 ... etc.

PID=1 RID=3 Addr=200 Len=4 Type=V Dir=+
PID=1 RID=2 Addr=204 Len=4 Type=A Dir=+
PID=1 RID=1 Addr=208 Len=4 Type=A Dir=+
Entry=MAIN

SD for
CM for
LD for
ER for
Text in
Text in
Text in
Text in
Text in MAIN,
Text in MAIN
RLD item for Addr(SUB) (V—con)
RLD item for Addr(WORK) (A—con)
RLD item for Addr(XDATA) (A—con)
Module end; request entry at MAIN

CSECT MAIN, ESDID=1, Len=300
COMMON WORK, ESDID=2, Len=600
Entry XDATA, ESDID=1, Addr=260
reference to SUB, ESDID=3
MAIN, address 000

MAIN
MAIN,
MAIN,

address 100
internal adcon offset
address 260

e ESD records define two control Sections (MAIN and WORK), one entry
(XDATA), and one external reference (SUB)

e RLD records contain information about three address constants

TXT for Addr(XDATA) contains offset (000260) from MAIN

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Combining Object Modules: Second Object Module

13

e The object module for SUB would look roughly like this:

XT
XT
XT
XT
RLD
RLD
END

ESD SD ID=1 SUB
ESD CM ID=2 WORK Addr=000
ESD ER ID=3 XDATA

Addr=000 Len=800

Len=400

ID=1 Addr=040 'qweruiopasd...’
ID=1 ... etc.

ID=1 Addr=180 'jklzxcvbnm..."'
ID=1 ... etc.

PID=1 RID=2 Addr=700 Len=4 Type=A Dir=+
PID=1 RID=3 Addr=704 Len=4 Type=A Dir=+

SD for CSECT SUB, ESDID=1, Len=800
CM for COMMON WORK, ESDID=2, Len=400
ER for reference to XDATA, ESDID=3
Text in SUB, address 040

Text in SUB

Text in SUB, address 180

Text in SUB

RLD item for Addr(WORK)

RLD item for Addr(XDATA)

Module end; IDR data

e ESD records define two control Sections (SUB and WORK) and one
external reference (XDATA)

e RLD records contain information about two address constants

¢ Note that both object modules start numbering ESDs at 1

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Combining Object Modules: Batch Loader Actions 14
¢ The Batch Loader
1. Builds a single (“Composite”) ESD to map
entire program .
prog e Composite ESD (CESD)
— Merges ESD information from the object
modules; library is searched for
unresolved ERs (but not WXs) Name | Type ESDID|Addr |Length
— Renumbers ESDIDs, assigns adjusted MAIN SD | 01 |123500| 300
address values to all symbols (let initial XDATA | LD | 01 |[123760
program load address be X'123500') SUB SD | 02 |123800| 800
) WORK CM | 03 |124000| 600
2. Places text from SDs into storage at
designated addresses (end) 124600
3. Determines length of COMMON (retalps entry 01 |123500
longest length), allocates storage for it
4. Relocates address constants by adding or
subtracting relocation value to/from A-con
P-field contents; by storing in V-cons
5. Sets entry point address and enters loaded

program

e The linked program is not saved

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Combining Object Modules: Resulting Program

15

e The resulting program, loaded into storage for execution:

e Storage was allocated for three control Sections (two SD, one CM)

123500 (MAIN) 123800 (SUB) 124000 (WORK) 124600
(end)
abcdefghi jk... —>|...text... —>| length=600
...more text... qweruiopasd...
...more text... ...text...
mnopqrstuvw.text...
jklzxcvbnm...
...text. ..

A(SUB) | 00123800

A(WORK) |00124000
A(XDATA) | 00123760

Adcons v 00124000 —
<+— 00123760
l(anTA)
01234567890... Adcons

A (WORK)
A(XDATA)

e Address constants were resolved to designated addresses

e Loader enters program at entry point MAIN (123500)

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

16

Saving Linked Programs:

Load Modules

e Same linking process as in previous example, except:
— Assumed “origin address” for load modules is zero
— Program written to DASD
— Unresolved ERs OK if NCAL option is specified

— Final relocation will be done by the Program Loader

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

What Is In a Load Module? 17

e Load module's structure very similar to object module's

— Simplifies processing of each
e Basic contents analogous to object module records:
SYM Object-module SYM records copied directly into load modules

IDR Identification records (from object module END records;
Linkage Editor or Binder; User; SuperZAP)

CESD Composite External Symbol Dictionary

TEXT Machine language instructions and data
RLD Relocation Dictionary (in control records)
EOM End of module (a flag field in a control record)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

What Is In a Load Module? ... 18

e Additional items having no object-module analogs:
CTL Control records, for reading and relocating text records
And, for modules in overlay format:

SEGTAB Segment table, keeps track of all segments

ENTAB Entry table has relocated addresses of loaded segments

EOS End of Segment (a flag field on a Control record)
II_inking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reservedI
Schematic of a Block Format (“Normal”) Load Module 19

e Basic format called “record format,” “block format” or “block loaded”

SYM Only if TEST option, and SYM info is present in inputs
(May also contain some ESD data)

CESD CESD omitted if NE (“Not Editable”) option specified

IDR

CTL Contains position in PDS (points to *) & length of 1lst Text record
*
- Text First text record, to be placed at module load address

CTL/RLD Relocation data for 1lst Text record, control info loads second

text record at specified offset from module load address

Text Last text record

EOM/RLD Relocation data for last text record, signals end of module

1 * PDS directory points to first text record for faster loading

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

20

PseudoRegister Processing

e PseudoRegisters not used frequently today

e But: very useful in reenterable applications!

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

PseudoRegisters 21

e Allow sharing by name of dynamically managed external objects defined
in separately translated reenterable programs

— Originally required by OS PL/I for files, areas, controlled variables, etc.
e PRs have their own “name space”

— PR names may be identical to other types of ESD name without collision
e PR items refer to offsets in a “link-time Dummy Control Section”

— A template; a data-structure mapping created at link time

— Hence the Assembler's name, “External Dummy” (XD)

— PL/I called the dummy Section a “PseudoRegister Vector” (PRV);
PL/I's PRV allowed up to 1024 more 32-bit “registers”

— All PR names are known and bound at link time (Example on slide 23)

e A more generalized form (a “Part”) is used in program objects

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

PseudoRegisters ... 22

e PR's are resolved somewhat like commons,
but no storage is allocated at link time

— For multiple definitions, longest length and strictest alignments win

— Accumulated length/alignment of PRV items then determine offset associated
with each PR name

— Offset values placed in Q-type address constants referencing PR name

— Total size of the “link-time DSECT” (up to 2GB) is placed in “Cumulative
External Dummy” (CXD) adcon

e PR and CXD resolution is completed at link time
e Runtime initialization acquires storage of the CXD-specified size

¢ Runtime references access fields at desired offsets into the acquired area

— Q-con contents provide displacements

¢ The following example illustrates this process

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Example of PseudoRegister Use 23

e Declare XD/PR for “FILE1CB” in each referencing program:
FILEICB DXD A Will hold address of File 1's Control Block

e Link with other modules; Binder creates a “virtual” PRV

.
Other PRs : |
——————— {1 | v «— FILELCB PR offset is placed in each Q(FILE1CB) adcon
FILEICB's PR | |
——————— n
||
Other PRs HEN
| |
b - 4§ <« PRV Length is placed in CXD

e Each invocation of the main program acquires storage for its real PRV:

L 0,PRVLen Get length of PRV

GetMain R,LV=(0) Get storage

LR 11,1 Carry PRV address in R11

- == ...initialize contents appropriately...
PRVLen CXD , Binder inserts total length of PRV

e Modules reference PRV's FILE1CB field using offsets in Q-type adcons:

L 2,=Q(FILE1CB) Get PRV offset of FILE1CB pointer
AR 2,11 Storage address of FILE1CB pointer
L 1,0(,2) Pointer to FILE1CB now in Rl

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Differences in CM and PR Processing

24

¢ COMMONSs and PseudoRegisters have similarities and differences

COMMONSs PseudoRegisters
Bind-time Space allocated in the | No space allocated; a mapping of all
behavior load module PR items into a virtual PRV
Storage Static: part of the load | Dynamic: at run time
Allocation module
Initialization | None Run-time code's responsibility
Copies One per load module; One per reentrant load module;

not reentrant instantiated during each execution
External One per common, one | One per PR; no conflict with non-PR
names per load module names
Internal As many as you want None (unless you map the PR's inner
names structure with a DSECT)
References | Direct, with adcons One level of indirection via Q-con

offsets and the base register
anchoring the allocated storage

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

25

Overlay Modules

¢ Not much used today, but worth knowing about

— They provide some potentially useful capabilities,
especially for AMODE(24)-constrained applications

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

26

Overlay Structures

e Overlay segments can share the same storage (at different times!)

e Suppose MAIN calls SUBA and

SUBB
— Neither SUB calls the other

e In block format, they would
appear in storage as

MAIN

COMMON SUBSHR
CALL SUBA
CALL SUBB

SUBA
Do SUBA stuff
Return

SUBB
Do SUBB stuff
Return

e SUBA and SUBB might be

overlaid, like this:

MAIN
COMMON SUBSHR
CALL SUBA
CALL SUBB
SUBA SUBB
Do SUBA stuff Do SUBB stuff
Return Return

e SUBA and SUBB share the
same storage

e The overlay supervisor must
(help) make this work!

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Arranging an Overlay Structure 27
e Determine how modules can
share storage SEGTAB
° “ ” Root
Draw an “overlay tree” of the Entry—s| MAIN Seq-
Structure Po-int ment

— Root (low address) at top

— Control statements describe
desired structure

— In this example, three overlay
nodes: A, B, C; six loadable
overlay segments

¢ Root segment is always
present

— Contains entry point,
autocalled Sections, Segment
Table (SEGTAB tells what
segments are in storage)

Autocall—>| AUTO1

Sections

AUTO2

<— Overlay A ——

SUBA

SUBJ

SUBB

<— Overlay B —

| <— Overlay C —

SUBR

SUBV SUBW

SUBS

SUBT

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

An Overlay Structure In More Detail 28

[Root SEGTAB e Each segment with subsidiary segments is
Segnent WAIN suffixed with an Entry Table to assist

—1 v(suea) | (1) loading of the “lower” segments

—— v(suBB)

— SVCs call Overlay Supervisor
ENTAB1 Entry Table (ENTAB)

L
222322% 3) e \/-type adcons may resolve to an ENTAB,
- sve not to the named symbol!

i

SUBA SUBB .
——{V(suBs) | (1) — V-cons for SUBs in lower segments
1 v(susr) resolve to ENTAB (1)
| —v(suBd)| (2) —|v(suBv) | (1) . .
|| v (suBH) — V-con for call in same or higher segment
| | susa | i
L, l‘ L [entaBs | Entry resolves directly (2)
ENTAB2 | Ent A(SUBV) | Tabl .
ASUET) | Table l—Agsusw; {(J e A-cons always resolve directly
A(SUBR) SvC
A(SUBS) — In ENTAB, resolve directly to SUBs (3)
ysvc SUBY SUBH — To Sections in same segment (4)
A(WORK) — Block format may work, but not overlay!
SUBS SUBR J
Ve HORK |« @) e Segment reload resets local data!
| [v(suBd) H (2) .
| — Which may be good or bad!
'>| suBT |« (2)
Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved
Overlay Regions 29
Region 1
e OQOverlays can be arranged in SEGTAB foot
. 00
independent groups: REGIONs Entry—>| MAIN Seq-
Point ment
— Allows great freedom in ~*BH
structuring programs ﬁﬂ;oz
e Each region can be a separate Overlay A
overlay structure! SUBA SUBB
— Up to four regions SUBJ .
! ‘|<— Overlay C —»
e A form of dynamic loading T vl 8 T T o
. . SUBR | SUBS e
— Specific routines loaded as ! |
needed SUBT
— No displacing of segments in Region 2

other regions

<«—— Overlay W(REGION) ——>

Example with two regions:
SUB1 SUB3

SuB2

| <«— QOverlay Y —
<«— Overlay X —»| T

[
|
I
‘,—[—‘ SUB6 SUB7
SUB4 | SUB5 / !—
L

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Overlay Considerations 30

e Pro:

— Can help applications grow if constrained by 24-bit addressing

— Faster initiation: only part of the program need be loaded to start

— Economical storage use: only load what's needed, when it's needed
— Modules can handle more than 16M of text

— Can always re-link to block format if there's enough storage

— But: Behavior may be different, due to loss of re-initializations!

e Con:
— AMODE, RMODE must be 24
— Programs are not reenterable, cannot be shared

— More complex to specify; greater care needed in coding certain items:
1. Local data may or may not “persist” across calls
2. External data sharing protocols may be more complicated
3. V-type adcon references may be indirect! (A-type is always “direct”)

— Additional overhead in calls to segments needing to be loaded

— Calls among certain modules may be forbidden (or wrong)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

31

Problems with Load Modules

(...despite their incredible durability...)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Assumptions Underlying OBJ/LM Designs

32

e Early-binding philosophy: systems are expensive, people are cheap
— Programs run for long periods between needed changes
— Therefore: recompile “deltas” and re-link them into the application module
¢ Re-linking is much cheaper than re-building modules “from scratch”
— Therefore: keep enough info with the module to simplify re-editing
e DASD is slow, and central storage is precious and very expensive
— Therefore: short records are a good thing
— Therefore: tightly packing module components is a good thing
— Therefore: overlay structures are a very good thing
e 24-bit addresses and lengths will be adequate for a very long time

— Therefore: Everything must be smaller than 16MB
— Therefore: AMODE and RMODE were “patched in” later

— Therefore: no “scatter loading” by RMODE; entry points don't have own AMODE

e 8-character upper-case EBCDIC names (vs. BCD's 6) are adequate
e Central storage is real (not virtual)

— No page-outs of relocated pages (a problem today with block-loaded LMs)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Load Module Structure

33

e | oad modules have a one-dimensional structure:

<+—— Loaded Text — <+—— Unavailable Data —
CSECT | CSECT | CSECT SYM IDR RLD ESD

AA BB cc Data Data | Data | Data
What you see in storage Hard to access

¢ A single-component module: all loaded text has a single set of attributes

— One RMODE, one AMODE; entire module is R/W or R/O (“RENT”)

— All text is loaded relative to a single relocation base address

e Other “unavailable” module data not accessible via normal services
(prior to implementation of Binder APIs)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Gaps, Gas, and Initial Values 34

e Gap: any area of load module text not specified by inputs
— Explicit request (such as assembler's DS statement)
— Areas skipped for alignment (within Sections, ends of Sections)
— Uninitialized COMMON areas

e Gas: LMs may contain short text-record blocks; PDS has dead modules
— Large gaps: write out the just-completed text record
— Also depends on space left on track (impenetrable algorithm decides)
— Only one partial CSECT allowed per block
— Too many dead/replaced modules? PDS compression required!

e |[nitial values: what eventually appears in the gaps?
— Small gaps: depended on what was in the Binder/Link Editor text buffers
— In early days, could be anything (now cleared by default to zeros)

— Large gaps: may depend on what's in storage during module loading

e Binder's FILL option lets you specify a value (helps you find uninitialized
variables)

e POs and PDSEs solve many of these problems

e Advice: never depend on anything you didn't initialize
— FILL option and storage allocation may or may not initialize to zero!

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Peculiarities of Load Modules 35

e Format was externalized! (And is therefore unchangeable...)

e Small record lengths

— SYM < 244; CESD < 248; IDR, CTL, RLD < 256; Text < track length
(Text records can be much shorter than a track)

e SYM and IDR put at front of module, to simplify Link Editor logic
e CESD is at front of module, to simplify re-processing
e PDS directory info allows Program Fetch to skip SYM, IDR, CESD
— First text record's length and disk location; storage needed; attributes; etc.
e |f first “real” text is not at relative zero, write a 1-byte record at zero!
— Program Fetch, Program Loader always put first text block at load address

e “Directory name space” (PDS directory names) independent of external
(CESD) names (which can be independent of internal names, too!)
— Can assign member and alias names unrelated to CESD names

— Member MM creates an object module containing symbol AA, which is renamed
during linking to BB, stored in PDS member CC

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

36

Program Objects

Format is not externalized
— Has already taken different formats as requirements evolve
Each new format extends PQO's capabilities

All information available via Binder APIs

— Full-function “FAST DATA” API for read-only access

e Similar linking process as for load modules, except:

Program written to a PDSE or UNIX file (not to a PDS)

e Some new terminology; some old terms are used differently

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Program Objects 37

e Most easily visualized as a two-dimensional structure:

<«— (Classes —

Sections Class X Class Y Class Z
v

Section A Element Element Element

Section B Element Element Element

e One dimension is determined by a Section name
— Analogous to OM Control Section name (but not the same!)
e Second dimension is determined by a Class name

Analogous to a loadable module's name (but not the same!)

e The unit defined by a Section name and a Class name is an Element

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Sections 38

A PO Section is a “handle” or a “cross-Section”
— Neither a CSECT name nor an external name

— Traditional CSECTs are mapped to Elements in specific Classes

— There are no “Control Sections” in a PO!

Each Section supplies Element contributions to one or more Classes

— According to their desired binding and loading characteristics

Section names must be unique within a Program Object
— As for Load Modules

— Section names are not external names or implied labels;
they are not used to resolve external references

A Section is the program unit manipulated (replaced, deleted, ordered,
or aligned) during binding

— Operations on a Section apply to all Elements within the Section

— Including rejection; only the first occurrence of a Section is kept

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Classes and Elements 39

e Class

— Each PO Class has uniform loading/binding attributes and behavior

— Attributes are assigned when the Class is defined in your program
— Most important: RMODE, Loadability, Text type

— Several Classes may have identical attributes
— Elements in each Class are bound together in a Segment
— Program Loader loads segments (more later)

— Class names (max. 16 characters) rarely externalized or referenced
— Names of the form letter_symbol are reserved to IBM

e Element

— The indivisible unit of text (analogous to OM/LM CSECT)
— Contains machine language instructions and data
— Not named; identified by owning Section and Class
— Possible confusion: Binder listings describe an Element as a “CSECT”

— Label Definitions (LDs) within Elements identify positions in text
— Just as for OM/LM Label Definitions

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Segments 40

e Segment: a set of Elements having the same binding/loading attributes

— Binder may combine Classes with identical attributes into one segment

e (Class loading attributes determine the load-time placement of segments
in virtual storage

— Most important attributes are RMode and Loadability

— Not all segments are loadable; depends on attributes

e Loadable segments are loaded as separately relocated discontiguous
entities

— Each is loaded as a single “block”; similar to a load module

— Inter-segment references are correctly resolved, even across different
RMODEs

— You don't have to split your program into a “main” program that then loads the
other modules

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Class Attributes 4

e Multiple attributes may be assigned to each Class, such as:

¢ RMODE: indicates placement of a loaded segment in virtual storage
— Supported: 24, 31 for code and data; 64 for data
e Boundary alignment
e Text type: byte-stream (machine language) or record-like (IDR, ADATA)
e |oadability
— LOAD: The Class is brought into memory when the program is initially loaded

— Same as load module's usual behavior

— DEFERRED LOAD: The Class is prepared for loading, and is instantiated when
requested

— For data such as pre-initialized private writable static data areas in shared
(re-entrant) programs (in Assembler, “PSECTSs,” resolved with R-type adcons)

— RENT applications typically contain non-RENT deferred-load Classes
— NOLOAD: The Class is not loaded with the program; may not contain adcons

— May contain any useful data you want to keep with the program

e Source, listings, debug tables, documentation, etc.

— Non-text Classes are always NOLOAD; application access via Binder APIs

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Parts 42

e Part: a component of Class

— Multiple Parts allowed in an Element

Part T
An Element in a Load Class
or a Deferred-Load Class
Part W
Part V

e Often used as a template for the static read/write component of RENT
applications

— Typically: external-data definitions, local variables, code fragments, adcons
referencing other Parts, linkage descriptors, constructors/destructors

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Binding Attributes 43

Classes have one of two binding attributes: Catenate, Merge (implicitly)
1. Catenate (CAT)

e Section contributions (Elements) are aligned and catenated end-to-end
— The familiar manner of text binding

— Zero-length Elements are retained, but take no space

e Ordering determined in the normal manner
2. Merge (MRG) (This original name is now misleading)
e A generalization of Linkage Editor and Binder handling of CM, PR items

e Section contributions to MRG Classes: Commons, PseudoRegisters, Parts

— Parts may contain text (unlike Commons and PseudoRegisters)

First appearance of a Part determines length, alignment; others are rejected

Parts within a Section and Class are catenated to form an Element
— Different from CAT binding: the Element is built by the Binder

Typically used for Classes that must group small, related items together

— Each Section supplies any number of data items

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

New External Symbol Types and Ownership Hierarchy 44

e Five external symbol types:

SD
ED

LD

PR

ER

Section Definition: owns all other types

Element Definition: (new) defines the Class
name to which an Element (and its text,
Parts, and/or labels) belongs; owned by an
SD

Label Definition: entry point within an
Element; owned by an ED; has own ESDID
and AMODE (unlike for OBJ)

Part Reference or PseudoRegister. this
Section's view of a contribution to an item
within a Class; owned by an ED; only in a
MRG Class

External Reference: owned by an SD

e Strict ownership rules prevent orphaned symbols
(OBJ has orphans, as noted on slide 8)

New External Name
Ownership Hierarchy

]
SD

T

|-re

Lﬂﬂ D

F
F

|LD| |PR|
I I |
CAT MRG

Classes Classes

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Translator Output: The New (GOFF) Object Module 45

e Six record types (similar to the five OBJ types)

HDR
ESD

TXT

RLD
LEN

END

Module Header (new): CCSID, translator identification, etc.

External Symbol Dictionary: long names; symbol types and
attributes; 64-bit address/offset fields; multiple Classes

Text: machine language object code, IDR, ADATA

— OBJ: IDR only on END; ADATA only in text

Relocation Dictionary: relocation information

Deferred Element Length (new)

— In case anyone still uses this old OBJ END-record function

— No known current uses; provided for compatibility

With optional entry-point nomination

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Translator Output: The New (GOFF) Object Module ... 46

Open-ended, flexible architecture; has been extended regularly

— Variable-length or FB80 records
e No SYM record; internal symbol data usually in an ADATA Class
e AMODE assignable to entry points
e Four assignable symbol scopes:
Section New; symbols resolved only within the Section
Module Same as Weak External (WX): no library search if unresolved
Library Same as Strong External (ER): library search if unresolved

Import-Export
New; symbols resolved during execution (see slides 68-70)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

How is Old Code Mapped to a PO Structure? 47

e OM ESD (HLASM 0BJECT,NOGOFF options)

e Sample program, Symbol ~ Type Id Address Length Owning ID
) SECT_.A SD 00000001 00000000 0000002C
assembled two ways: MYCOM CM 00000002 00000000 00000060

SECT_B SD 00000003 00000000 00000038
MY_XD XD 00000004 00000007 00000018

Sect_A Start 0 (sp) B_DATA LD 00000000 00000003
DC 5D'0.1"
DC Q(My_XD) e GOFF ESD (HLASM 0BJECT,GOFF options)
Symbol Type Id Address Length Owning ID
MyCom S(S)M iZD (cM) SECT_A SD 00000001
B_IDRL ED 00000002 00000001 (new)
B_PRV ED 00000003 00000001 (new)
Sect_B CSect , (sD) B_TEXT ED 00000004 00000000 0000002C 00000001 (new)
— SECT_A LD 00000005 00000000 00000004 (new)
My XD DXD 3D (XD) MYCOM SD 00000006
- B_IDRL ED 00000007 00000006 (new)
B_PRV ED 00000008 00000006 (new)
Entry B_Data (LD) B_TEXT ED 00000009 00000000 00000060 00000006 (new)
B_Data DC 7D'1.0 MYCOM CM 0000000A 00000000 00000009
SECT_B SD 00000008
End Sect_A B_IDRL ED 0000000C 00000008 (new)
B_PRV ED 0000000D 00000008 (new)
B_TEXT ED 0000000E 00000000 00000038 00000008 (new)
e GOFF: CSect mapped — SECT_B LD 0000000F 00000000 0000000 (new)
MY XD XD 00000010 00000007 00000018
to SD+ED, CSect B_DATA LD 00000011 00000000 0000000E

name now an LD —
— HLASM generates B_IDRL, B_PRV and B_TEXT

Class definitions and LD for each SD item

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Example: Assembler Source Program for a PO 48

e Define two Sections and two Classes, one with Parts

Sect_A CSect , Define Section 'Sect_A', (default) Class 'B_TEXT'
*
Sect_A RMode Any RMode is inherited by Class 'B_TEXT'
DC A(Sect_B) Address of Label 'Sect B'
*
Class_X CAttr RMode(24) Class 'Class_X' declared in 'Sect_A'
BR 14 Do something?
*
Sect_B CSect , Define Section 'Sect_B', (default) Class 'B_TEXT'
DC A(Sect_A) Address of Label 'Sect_A'
*
Class_X CAttr , Contribution by 'Sect_B' to 'Class_X'
NOPR 0 Do nothing?
*
Class_Y CAttr RMode(31),Part(T) Define Part T in 'Class_Y'
*kkkkkkkkkkkkkkk*x Note: Part(T) means 'Class_Y' is a MRG Class
DS D Working storage
*
Class_Y CAttr Part(W) Define Part W in 'Class_Y'
DC A(T) Address of Part T
*
Sect_B CSect , Resume default Element in 'Sect_B'
BR 14 Now do something?
End
Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved
Its External Symbol Dictionary 49

External Symbol Dictionary

Symbol Type Id Address Length Owner Id Flags Alias—of

SECT_A SD 00000001 <«— SD

B_IDRL ED 00000002 00000001 <— Generated ED
B_PRV ED 00000003 00000001 <«— Generated ED
B_TEXT ED 00000004 00000000 00000004 00000001 06 <«— Generated ED
SECT_A LD 00000005 00000000 00000004 06 <«— Generated LD
CLASS_X ED 00000006 00000008 00000004 00000001 <— Declared ED

SECT_B SD 00000007 <« SD

B_IDRL ED 00000008 00000007

B_PRV ED 00000009 00000007

B_TEXT ED 0000000A 00000010 00000006 00000007 00

SECT_B LD 0000000B 00000010 0000000A 00 <«— Generated LD
CLASS_Y ED 0000000C 00000000 00000000 00000007 <— Declared ED

T PD 0000000D 00000000 00000008 0000000C 06 «— Part T

W PD 0000000E 00000000 00000004 0000000C 06 <«— Part W

Relocation Dictionary
Pos.Id Rel.Id Address Type Action
00000004 0000000A 00000000 A 4 +
0000000A 00000004 00000010 A 4 +
0000000E 00000000 00000000 A 4 +

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Its Assembly-Time Structure 50

B_TEXT CLASS_X CLASS_Y B_IDR B_PRV
Sect_A |[Sect_A|<« LD BR 14
NOPR 0

DC A(Sect_B)

Sect_B |Sect_B|<« LD T| DS D

DC A(Sect_A)
BR 14 W DC A(T)

e The adcons in class B_TEXT point to the LD items generated from the
Section names

e The two Parts in CLASS_Y are contributions from Section Sect_B

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Binder-Created Sections and Classes 51

¢ Binder-created Sections contain module-level data
— ESD data, Class maps, SYM data, module-level ADATA, Part Definitions

— Avoid Section and external names starting with IEWB (see slide 64)

e Binder-created Classes and Sections contain data needed for correct
re-binding

— Sections:

X'00000001' Shown as $MODULE in AMBLIST output
X'00000003' Shown as $SUMMARY in AMBLIST output

— Classes: names like C_xxx reserved to LE and compilers, B_xxx to Binder

B_ESD Class contains external names
B_IMPEXP contains imported/exported external names (for DLL support)

e Remember: Tetter_symbol Class names are reserved!

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Sketch of a Multi-Class Program Object 52

Default-Loaded ——— <« Deferred-Load > <«———— NOLOAD —>
<«—— (Classes ——» <«—— (Classes —> <«——— (lasses ———»
Classes—> | TEXT24R | TEXT24W | TEXT31R | TEXT31W|etc. Writable| etc. SYM |IDR |ADATA |etc.
(R/0) | (R/W) |(R/0) |(R/W) |etc. Static etc. Data |Data |Records|etc.
4
| AA Element Element
|
Sections| BB |Element|Element|Element
| CC |Element Element Element
|

v

e Each loaded Class segment has its own relocation origin
— Effectively, a multi-component (multi-LM?) module! (compare slide 33)

e All Elements in a Class have identical behavioral attributes (e.g.,
RMODE)

e All Classes (including NOLOAD) accessible via Binder APIs

e Deferred-load Classes require special Program Loader interface
— Currently, only a single DEFLOAD Class is supported (and only by LE)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

53

Compatibility of Old and New

e All functionality of old OM/LM behavior is retained

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Program-Object Mapping of Old Object/Load Modules 54

e Old object code is mapped by the Binder:

OM/LM Binder's Program-Object Mapping

SD SD; create ED for Class B_TEXT, and LD at Element's origin for Section name

LD LD

ER, WX ER, WX

CM SD with “common” flag; create ED for Class B_TEXT and LD at Element's origin for

Section name

PC Binder assigns unique numeric SD name to each (displayed as $PRIVnnnnnn)
PR, XD PR; create ED for Class B_PRV (special PseudoRegister Class)
TXT Text records

RLD RLD records
END END; deferred length (if any) placed on a new record type
SYM Create ED for Class B_SYM

e Assembler supports similar mappings when GOFF option is specified
e Using IEBCOPY to convert LM (PDS) to PO (PDSE) invokes the Binder

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Program-Object Mapping of Old Object/Load Modules ... 55

e Old load modules are mapped into POs (if SYSLMOD is a PDSE):

Classes
— B_TEXT B_PRV B_ESD B_RLD B_IDRL B_IDRU B_IDRZ B_IDRB
4 AA(24)

Sections BB(31)

cc(24)

DD(31)

|
|
|
|
v

Loaded <«————————— Non-Loaded Classes ————>
Class Segment

e B _TEXT “Loaded Class” behaves like traditional LM's text

e B ESD is like LM CESD; B_RLD is like LM Control/RLD records

— B_IDRx Classes hold IDR data from Language translators (L), User (U),
SuperZap (Z), and Binder (B)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Mixed-Mode Modules and RMODE(SPLIT) 56

e Linking modules with mixed RMODEs forces the program's RMODE to
the most restrictive value

— Old ways to create programs with RMODE(24) and RMODE(31) pieces:
— Link them separately; execute one module, which loads the other
— Or, move chunks of code above or below the line

— Either way: No external-symbol references are resolved between the two
modules! (LOAD/LINK only know entry point name and address of each loaded
module)

e Binder: RMODE(SPLIT) option creates a PO with two text Classes
— Affects only Class B_TEXT:

— RMODE(24) CSECTSs (from Class B_TEXT) moved to B_TEXT24 Class,
RMODE(31) CSECTs (from Class B_TEXT) moved to B_TEXT31 Class

— B_TEXT24 Class loaded below 16M, B_TEXT31 Class loaded above 16M
— Supports full capabilities of inter-module external symbol references
— Simple solution to LM's AMODE/RMODE complexities

— User code handles addressing-mode switching if needed

e Recommendation: let the Binder determine AMODEs and RMODEs

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

RMODE(SPLIT) Program Object 57

e Binder “splits” B_TEXT Class into RMode(24) and RMode(31) Classes

— Compare to slide 55

Classes
— B_TEXT24 B_TEXT31 B_PRV B_ESD B_RLD B_IDRL B_IDRU B_IDRZ B_IDRB
1
T !AA(24)!
Sections BB(31)
| I 1
I !CC(24)!
| DD(31)
|
|
v i i i i i i
Il Il Il Il Il Il
<«— Text Segments —» <+——————— Non-Loaded Classes ———>
Loaded Loaded
Below 16MB Above 16MB

¢ Inter-Segment references resolved automatically

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

58

Loading Modules into Storage

e Program Fetch

— Traditional LM loader
e Program Loader

— New PO/LM loader

— Includes all functions of Program Fetch

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Program Loader: Load Modules 59

e Two stages of relocation are involved:
1. LKED, Binder: relocate addresses relative to zero module origin

2. Program Loader: relocate addresses relative to module's load address

e A,V-cons relocated using only address information in RLD,
and only by adding the module's load address

— Only a single relocation base
— Q-cons and CXDs were completed at linkage-edit time

e Sequential I/O for loading all load modules (LOAD, LINK, XCTL, ...)
e Skip over everything preceding the first control record
— SYM, IDR, CESD (PDS directory info simplifies skipping; see slide 19)
e Control records tell length, relative address of next record's text
— May also contain RLD information for preceding text block
e Overlay Supervisor

— SEGTAB and ENTABs manage segment traffic; Program Fetch loads segments
as requested

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Program Loader: Program Objects 60

e Two stages of relocation are involved:
1. Binder: relocate addresses relative to zero segment origin
2. Program Loader: relocate addresses relative to each segment's load address

e “Linear” format uses efficient “DIV” mapping to virtual storage

e Page-fault loading (“page mode”) or pre-loaded (“move mode”)
— Page mode (default):
— POs mapped into virtual storage using Data In Virtual (DIV), except:

e Under z/OS Unix Services, POs in UNIX files are written/read as “flat files”

— Entire module virtualized if shorter than 96K bytes,
or if bind option FETCHOPT=PRIME was specified

— Otherwise, segments (up to 64K each) virtualized as referenced

e Faster initiation, less central storage allocated “immediately”

— Move mode:

— Preloads entire module in intermediate storage, then moves to destination

e Supports RMODE(64) loading “above the bar”
— Use this only for data!
— Currently supported only for LE's C_WSA64 deferred-load Class

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Benefits of API-Accessible (NOLOAD) Classes 61

¢ |Integrated, optional support for any type of program-related data
— |IDR data, translator's “Associated Data” (ADATA), user data

e PO can keep module-related and user data together in one place
— Optionally, of course! As much or as little as desired
— Source statements (possibly encoded), source-file information, etc.
— Internal symbols, debugging breakpoint tables, NLS messages, etc.
— User information, history data, documentation, instructions, etc.

¢ Reduces need for complex configuration management tools

— Module-specific items (source, object, listings, executables) need not be
tracked separately

e Application can request data via Binder's “FASTDATA” API

— Delivers what was “Unavailable Data” in Load Modules

e Allows problem determination and debugging “in place”

— Helps tools locate bugs when and where they happen

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

62

Binder Inputs and Outputs

e Some pictorial views of binding and loading

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Module Data: Binder Input (Logical View) 63
Key:
member name Module PO structure as seen by the translator
and Binder user:
e Section roughly equivalent to a
—— “compilation unit”
Key:] | . . .
Section name ,—ul—' — Consists of Elements in various
Secti
| Section Classes
—_— * MRG Cle_ls_s_es are constructed fr9m
oy #—H Part Definitions and PseudoRegisters
Class name Element |- . . .
Binder Output view is more complex!
T 1
Key: —t— |
Part name |-
(MRG Classes only) | Parts |-

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

Module Data: Binder Output (Logical View) 64

Text Classes are bound into Segments

BinderOuned User-Defined e A Segment may contain multiple

Classes Classes
Classes if they have identical attributes
Binder—
e - Binder retains extra “module-level”
data for re-bindability
gsif— d - e PR items (and any initializing text)
Sactions _ (Class B_PARTINIT)
— r—— | — — r— - ¢ control information (e.g. B_ESD)
l ! ! ! ! ! ! ! ! !_ e |DR data, module map, etc.
- .. +.:. inreserved Section names such as
1T 11T 1T 1] e X'00000001" for B_ Classes, orphaned
e B i ER or PseudoRegister items
< User's View of P0 » ©® X'00000003' for Part definitions, linkage
- descriptors, initializing data
< Binder's View of P0 ———> o TEWBLIT for LE support (Class B_LIT)
e IEWBCIE for DLL support
(Class B_IMPEXP)
Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved
Module Data: PMLoader Input (Physical View) 65
PO structure seen by PMLoader:
Key:) — ¢ PO consists of one or more Segments,
member/alias name | Module | .
L some of which are loadable by default or
on request
T 1
Key: | I e PMLoader loads and relocates Segments
1 dable and
(lass nane ;:?e:res_t:ad H — Each Segment is like a LM:
Segments | relocated with its own origin address

— “Distributed” or “scatter” loading

e PDSE member names (entry points and
aliases) must be in same “primary” Class
segment as the module entry point

— Don't assign ALIASes to entries in
Segments different from the one with the
member-name entry point

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Program Management Data and Control Flow 66

Translator |—>| 01d (0BJ) > »| Batch Loader
Object File J|,
A
i |
' | Linkage
Prelinker —>| Editor (LKED) |<—>| Load Module |[—> v
| Library
T | (PDS) Program
01d PL/I, [<« Loader Loaded
01d C/C++, X0BJ Program —>| Module
00 COBOL —>| Object File ——>| Management
Binder Program
<«—>| Object Libr.}— 4
New (GOFF) |——> (PDSE, UNIX)
HLASM, C++ |—»| Object File I
<«—— Translation Time —> <+— Bind time —» <— Execution Time —>

Note: Arrowheads indicate direction of data flow.
<«—> means a component can be produced as output or read as input.

e | Ms reside only in PDSs; POs reside only in PDSEs or UNIX files
e Can mix OBJ and GOFF to produce PO or LM (LM restricts features)

“Source—-OM—Binder—LM” equivalent to “Source—-OM—LKED—LM”
“Source—>GOFF—Binder—LM” equivalent to “Source—-OM—LKED—LM”

e Can bind PO and LM to produce either (LM restricts features)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

67

Dynamic Link Libraries (DLLs)

e Execution-time linking

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Dynamic Linking and Dynamic Link Libraries 68

¢ Dynamic linking: resolution of external references at execution time
— DLLs provide one form of dynamic linking; LE is required

e DLL creator identifies names of functions and variables to be exported
— Binder puts them in a “side file” for binding with other applications

e DLL-using application identifies functions and variables to be imported

— User must specify compiler DLL option and Binder control statements

— Binder also provides the IMPORT control statement
IMPORT {CODE|DATA},d]l_name,identifier
— Compilers (and HLASM XATTR statement) declare IMPORT/EXPORT status

— CODE|DATA choice lets Binder create correct linkage descriptors

e Binder creates side file, import-export tables, linkage descriptors
— DYNAM(DLL) option required for DLL creator and user

e LE runtime support routines load and link specified names

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Dynamic Linking: Preparation and Use 69

e Example using C/C++: first create a DLL, then the application

DYNAM(DLL) option

DLL DLL | C/C++ —>| XO0BJ, —> Binder —>| Program
Build Source Compiler GOFF Object
T
Defines Specify ESD recs | Creates DLL
exported DLL (and describe | DLL and
functions, EXPORTALL) exported | sidefile
variables options fns/vars i
Binder—created
IMPORT side file of
Statements | IMPORT statements
i (Exported names)
: Later...
¥
Appli— | Applic.—>| C/C++ —>| XO0BJ, —» Binder —>| Program
cation | Source Compiler GOFF Object
Build
References Specify ESD recs Combines Contains
imported DLL option describe sidefiles import—export
functions, imported of IMPORT tables,
variables fns/vars statements linkage
descriptors

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Dynamic Linking: Execution Time 70

e Example: Application A imports names from DLL D:

(4)

Linkage >
Descrip— |+ - - - - - =

tors — :(3a)
Application A v(1)

Import— ' 4
Export —>| LE Runtime DLL ——
Tables (3) | Support routines (3b)

DLL D

Data
<«inserted—»> v (2)
by Binder T]

| PM Loader ————
i

_— >

(1) First reference to an imported name passes control to LE

(2) LE DLL-support routines invoke PMLoader to load the DLL

(3) LE uses import-export table to reference the DLL's exported names
(a) updates descriptors for code/data items to complete linkages

(4) Subsequent application references go directly to the requested
(imported) name in the DLL

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

71

Summary

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

Old and New Modules

72

e Binder and PMLoader support both load modules and program objects

Old (Load Modules)

New (Program Objects)

Components Link Editor, Program Fetch, Binder, Program Loader
Batch Loader
Library PDS PDSE, HFS

Executables

One-dimensional; single
AMODE, RMODE

Two-dimensional; multiple
Segments and A/RMODEs

Size limit

< 16MB

1GB

Symbols

8 characters

32K characters

Symbol types

SD, LD, ER, WX, PR

Same, plus ED

Module info

IDR only; no system support

Any data; Binder APIs

DLL support

Prelinker required

Integrated into Binder

Extensibility

Not possible

Open-ended architecture

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

PDSE and PO Benefits and Advantages

73

e PDSE

— Can hold any record type

— No compression required; space reclaimed automatically

— No gas (dead modules), no gaps (short blocks)

— Improved directory structure

— Automatic expansion; not a fixed size

— Indexed search (vs. sequential for PDS)

— No single-user ENQ for updates

— Multiple simultaneous member updates

e |f same member, last STOW wins

— No possibility of sequential directory overwrite

— Long ALIAS names

— No mixing: holds only executable POs, or only other record types

— Utilizes new hardware capabilities

Linking & Loading, Object & Executable Modules

© IBM Corp. 1995, 2012. All rights reserved

PDSE and PO Benefits and Advantages ... 74

e Program Objects
— Functional superset of load module capabilities
— Two-dimensional Class structure, determined by Class attributes
— Three Class loading attributes

— AMode specifiable on individual entry points
— Larger executables (1GB vs. 16MB)

— Split RMode: separate segments below/above 16MB “line” with inter-segment
address resolution

— Faster loading via DIV mapping (except from z/OS UNIX files)
— Several load-optimization options

— No need to relocate the entire executable before starting execution
— Long and mixed-case names (32K, vs. 8 upper-case)
— Auxiliary data can be preserved with the executable
— APIs for retrieving all data
— MODMAP option puts module map in Section IEWBMMP, Class B_MODMAP

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

What We've Discussed 75

e What is in object modules, and where they come from

e How references are resolved to form executable programs

e Structure of load modules and program objects, and how they are built
e How modules are loaded into storage and relocated

e How Dynamic Link Libraries are supported

e Why using PDSEs and Program Objects is a good practice

e For you: more flexibility in creating program structures

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved

References 76

1. z/0S MVS Program Management: User's Guide and Reference
(SA22-7643)

2. zZ/OS MVS Program Management: Advanced Facilities (SA22-7644)

3. “Linkers and Loaders,” by Leon Presser and John R. White, ACM
Computing Surveys, Vol. 4 No. 3, Sept. 1972, pp. 149-167.

4. Linkage Editor and Loader User's Guide, Program Logic manuals

These publications describe Assembler Language elements that create inputs
to the Linkage Editor and Binder:

5. High Level Assembler for z/OS, z/VM, and z/VSE Language Reference
(SC26-4940)

6. High Level Assembler for z/OS, z/VM, and z/VSE Programmer's Guide
(SC26-4941)

Linking & Loading, Object & Executable Modules © IBM Corp. 1995, 2012. All rights reserved
LKEDGUN2 Rev. 2012 Jun 27 Fmt. 27 Jun 12, 1533

