

Using IMS to Build a Smarter Cloud

Ken Blackman and Suzie Wendler IBM

August 9, 2012 Share Session 11226

Memory lane 1.Centralized Computing: 1960 –

- Optimized for sharing, industrial strength, systems management, ...
- Managed by central IT organization
- Back office applications involving transactions, shared data bases, ...
- Mainframes, supercomputers, minicomputers, ...

2.Client/Server: 1985 -

- Optimized for low costs, simplicity, flexibility, ...
- Distributed management across multiple departments and organizations
- Large numbers of PC-based applications
- PC-based clients and servers, Unix, Linux, ...

3.Cloud Computing: 2010 –

- New consumption and delivery model
- Optimized for massive scalability, delivery of services, ...
- Centralized model, hybrid service acquisition models
- Supports huge numbers of mobile devices and sensors
- Internet technology-based architecture

And the Evolution of Cloud Computing

Grid Computing – leveraged several computers in parallel (clustered servers) to address a single problem or application

Cloud Computing – leverages several resources to deliver a service to the end-user

- > Can support grids
- > Can support non-grid environments, e.g., 3-tiered web architecture with traditional or Web 2.0 applications

Cloud definitions

 National Institute of Standards and Technology (NIST) defines a "cloud" as

"a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources...that can be rapidly provisioned and released with minimal management effort or service provider interaction"

Cloud computing

 The practice of using a network of remote servers hosted on the Internet to store, manage, and process data, rather than a local server

SHARE Tethnology - Cancellians - Results

Cloud Computing is a Broad Term

Line of Business

IT Operations

Common Cloud Attributes

Elastic scaling

Rapid provisioning

Advanced virtualization

Flexible pricing

Service Oriented

Public Clouds

Cloud Computing is more than a computing model; it is a Service Delivery model

Service Management - at the Heart of the Cloud

- A Process Platform to manage the virtual infrastructure
- Service Processes that deliver the user experience

The effectiveness and efficiency of a cloud implementation is predicated on the interaction of these components

Additionally, Cloud Services

- Provide an environment that differs from traditional hosting due to three distinct characteristics
 - Services can be sold on demand
 - By the minute, hour, etc.,
 - Services are elastic
 - A user can take advantage of as much or little access to services as needed at any given time
 - Services are fully managed by the provider
 - Consumers typically only need a personal computer and Internet access

When Building a Cloud

- Organizations choose a cloud model based on their business model requirements
 - Infrastructure as a service (laas)
 - Dynamically shared set of virtual computing resources
 - zEnterprise
 - Platform as a service (PaaS)
 - Builds on laaS to provide application middleware
 - IMS
 - Software as a service (SaaS)
 - Provides higher levels of service delivery
 - IMS SOA Integration and Enterprise Suites
 - Business process as a service (BPaaS)
 - Customer-written applications or business processes

Cloud Deployment Models

SHARE Technology - Cancellions - Results

Public

- Sells services to anyone on the Internet
 - e.g., Amazon Web Services
 - Consumer and Provider exist in separate enterprises
- owned by an organization selling cloud services

Private

- Provides a proprietary network or a data center that supplies hosted services to a limited number of people.
 - Consumer and Provider exist within the same enterprise
- operated solely for an organization
- restructures IT around a services delivery model
- Hybrid or Heterogeneous
 - Combines Private and Public
 - Bound together by standardized technology that allows for portability

Cloud Deployment Models...

ices

In 2006. Amazon Web Services

lets you provision a private, isolated section of the Cloud where you can launch resources in a virtual network that you define. You can define a virtual network topology that closely resembles a traditional network that you might operate in your own datacenter.

Allows business to run their Websites, blogs, etc

run all types of enterprise applications, from small departmental solutions to mission-critical applications that automate company-wide business processes.

Cloud Deployment Models...

Public cloud example – IBM Smart Cloud

IBM System zCloud

Value of cloud computing is the availability of infrastructure

.... Enterprises are beginning to recognized that the maximum value of cloud-based solutions includes interconnection to their existing business

infrastructure

- System z is a natural Cloud Platform
 - zEnterprise 196 and 114
 - central processing complex
 - zEnterprise BladeCenter Extension (zBX)
 - high-performance specialty processors for specific workloads
 - zEnterprise Unified Resource Manager
 - end-to-end platform integration and resource optimization

IBM SmartCloud Enterprise+ (SCE+) for System z

- The service provides shared, secure and scalable IBM z/OS mainframe capacity
 - Offered as secured logical partitions (LPARs) within a continually refreshed, managed environment—in the cloud.

Higher Availability

IMS Private Cloud

- IMS leverages System z's support for cloud computing
- Extending the cloud to IMS
 - Users tap IMS-based data and business logic as services
 - IMS SOA Integration and Enterprise Suites enable service interface (SaaS)
 - IMS TM controls the transaction workload within the PaaS
 - IMS DB provides database as a service (DBaaS)

IMS Cloud Parts

Specifically

- IMS provides interfaces that can be deployed in the cloud to access IMS
 - IMS SOA Integration and Enterprise Suites SaaS (Software as a Service)
 - IMS Enterprise Suite Connect API
 - IMS Enterprise Suite SOAP Gateway
 - IMS Enterprise Suite DLIModel utility
 - IMS Enterprise Suite Explorer for Development
 - IMS TM Resource Adapter
 - IMS MFS Web solutions
 - IMS Web 2.0 solutions for TM and DB
 - IMS solutions for Java development
 - IMS XML DB

•

WWW.IBM.COM/IMS

IMS Connect and IMS TM

SHARE
Technology · Connections · Results

(Supports SaaS)

IMS TM Resource Adapter

(supports SaaS)

 Provides a way to extend the cloud to IMS

IMS DB

(includes XML data)

IMS Enterprise Suite Soap Gateway

(supports SaaS)

WebSphere sMash and IMS Connect API for Java ---

- WebSphere sMash on the cloud
 - Enables developers to quickly build and execute agile, Web 2.0-based applications that help businesses be more responsive, flexible and cost-effective
- sMash application is responsible for
 - Preparing input data for IMS application
 - Interpreting output data from IMS application
 - Configuring connection and interaction configuration property files read in by API during execution

IMS MFS SOA Support

- Providing PaaS (Platform as a Service) access to MFS transactions
 - IBM Integration Designer
 - IBM Process Server
- Benefit

21

 Provides MFS transaction support for Business Process Choreography (B2B) and BPaaS (Business Process as a Service)

DataPower Cloud Interface for IMS

Asynchronous callout

Synchronous callout

IMS Connect and IMS DB (Supports DBaaS)

COGNOS – Operational Bl and Reporting

IMS DBbaaS

System z

IMS Enterprise Suite V2.1 Explorer for Development

Supports cross-product integration to simplify IMS application development tasks

- IBM® Rational® Developer for System z®
- IBM Optim[™] Development Studio
- IBM Problem Determination Tools Plug-ins for Eclipse
- Visualization and editing of IMS Database and Program Definitions
- Ability to easily access IMS data using SQL statements
 - Leveraging IMS Universal JDBC driver
- Ability to access the IMS Catalog
- Connectivity to the z/OS system
 - Browse a Data Set and submit JCL
 - Import and export DBD and PSB source files from a Data compleSet to the IMS Explorer, and wice-versa

*Requires RDz 8

Cloud Break

IMS – the Cloud (IMS as a Service - IMSaaS)

IMS Cloud SOA / SOA / IMS **Transaction Database** Catalog **Access** WebSphere Metadata **Access** IMS TM WebSphere **IMS Connect** TCP/IP Resource Java/J2EE TCP/IP **DRDA** Adapter Java /J2EE Client IMS **Applications** IMS Service Universal MFS SOA **Business** DB Resource **CICS** Intelligence Database Adapter **Applications** Transaction SQL manage ODBM MFS Web Web manager XQuerv .NET ODBA /DRA DL/I DB2 SP DB2 SP/ Client **IMS** OTMA JDBC SOAP CICS **APP** DL/I IMS IMS SOAP SAP JDBC Gateway **COGNOS** Driver IMS Application developer Database JDR Resource Service IMS <u>Adapter</u> rvice Catalog Metadata IMS IMS Catalog Universal WebSphere WebSphere JDBC Web 2.0 Web 2.0 InfoSphere **InfoSphere** Driver Mashup Mashup Mashup Mashup EST **HTTP** HTTP Transaction **Database** REST IMS **Access Access** Service Web 2.0 IMS Explorer Adapter DL/I Model ARE.org/Ana ur sessio 2012

IMS - The Cloud

- IMS itself is a "cloud"
 - Provides the Infrastructure (laaS)
 - Dynamically shared set of virtual computing resources
 - zEnterprise platform
 - Ability through Parallel sysplex capabilities to add new instances of IMS control regions with ease and transparency
 - Shared queues and data sharing
 - DRD allows IMS resources to be added dynamically
 - Builds on laaS to provide the IMS platform as a service (PaaS)
 - IMS provides the application middleware environment for highperforming applications
 - DL/I and JDBC interfaces to get to resources

IMS – The Cloud

- IMS itself is a "cloud" ...
 - Provides service delivery to access software as services (SaaS)
 - IMS Integration and Enterprise Suites
 - Inbound expose IMS transactions and data as services
 - Outbound Callout to web services
 - Supports business processes as a service (BPaaS)
 - Customer-written applications or business processes

Dynamically define IMS Resources

IMS TM - laaS and PaaS

IMS

VGR

- IMS is a dynamic and configurable platform
- Provides standard interfaces to access resources

- Does not require application program recompiles even if the IMS release is changed
- Does not require application program changes even when the network or db structure 34changes

Complete your sessions evaluation online at SHARE.org/AnaheimEval

IMS Cloud Layer
From the IMS application perspective, the programs view resources
(communication devices and databases) through PCBs that can be easily modified without changing the application

IMS as a Service – PCB structure

Device A Lterm A

I/O PCB

RECEIVE

Device A Lterm B

ALTERNATE Response PCB LTERM=Lterm B

Lterm B

Device C

ALTERNATE Express PCB

Device C

Modifiable ALTERNATE PCB

PROGRAM D

PROGRAM D

IMS as a Service

SHARE
Technology · Connections · Results

- Message Queuing

IMS as a Service

5 H A B B

- Supports multiple runtime environment
- Allows dependent regions to be added as needed for workload

Application Programs

		SUPPORTED BY IMS TM/DB CTL		- STAND ALONE
IMS TM CONTROL REGION (CTL)		MESSAGE REGION	BATCH MESSAGE Driven PROCESSING (BMP) BATCH	DB BATCH REGION (DLI) TM BATCH
(OTL)		(MPP,IFP,JMP)	Non-MESSAGE Driven PROCESSING (BMP,JBP)	REGION (<i>DB2</i>)
FUNCTIONS			\	/
•QUEUING	•SCHEDULED BY	IMS	USER	USER
•SCHEDULING	•ONLINE DB'S	YES	YES / SOM) NO
•LOGGING	•OS/VS FILES	NO	TEO }	GRAMS (YES
•I/O	•MSG Q	YES	150	INTER- NO
- DATA BASE	•I/O PCB	YES	YES \ CHA	NGEABLE / OPTIONAL
- TERMINAL			<i> </i>	
3				••••
				SHAR

IMS Java Development

- (Saas and DBaaS)

IMS

Java Dependent Region Resource Adapter Universal JDBC and DL/I

Type 2 and Type 4

IMS Java: SaaS for BPaaS Applications

The Java Native Interface is used to access IMS procedural code

Dynamic Metadata management

Database and Application Program resources are managed by IMS

- -IMS Catalog
 -database definitions
 -Segments, Mappings, Fields and data types
 program specifications
- IMS Metadata

 ACBLIB

 ACBGEN

 DBDGEN/PSBGEN

 Extended

 DBD source
 data

 Extended

 DBD source
 data

Summary

- Cloud computing is a model of consuming and delivering
 - IT services
 - Business services
- IMS provides:
 - The Quality of Service, dynamic nature, transparency... that are the goals of evolving cloud technology
 - Are already inherent in the IMS environment

