

Managing Your Environment with
Dynamic Resource Definition and the IMS 12

Repository Function: Hands-On Lab

Anaheim SHARE Conference
Session 11220: Monday, August 6

th
, 2012

Angelique Greenhaw

Senior IT Specialist, System z™ Software
IMS Americas Advanced Technical Skills

greenhaw@us.ibm.com

 2

Introduction

The goals of this workshop are to become familiar with the requirements for setting up
the IMS Common Service Layer (CSL) and IMS Dynamic Resource Definition (DRD)
with the IMS 12 repository and explore how to use this new flavor of DRD as well as its
associated utilities. The IMS TSO SPOC application will also be introduced and we will
cover how to issue DRD commands from it, targeting one or more systems in an
IMSplex.

In this workshop, you will be working with two IMS systems named IMSB and IMSC,
each at the version 12 release level. These two IMS systems exist together in an
IMSplex named DEMOC.

Before beginning the hands-on portion of this workshop, you will have the opportunity to
review the PROCLIB members that must be defined in order to set up the CSL as well
as DRD with repository. This will familiarize you with the types of definitions required in
order to implement these capabilities in your shop. For simplicity, you will not be
initializing your own CSL, performing setup for DRD, or enabling the repository
environment. Rather, you will be leveraging an existing CSL and using an existing
DRD/repository implementation that has already been set up and initialized for you. This
will allow you to focus on how to use the DRD capability with the repository, its utilities,
and the IMS TSO SPOC application.

This workshop is comprehensive and will take more than the allotted hour for this
session. Please finish as many of the exercises as you can, and try out the remainder at
home in your test/sandbox environment.

We begin by signing on to the system.

 3

Signing Onto the System

Enter “TSO” from the home screen and press Enter. Note that some systems have the
“Ctrl” key set to “Enter”.

Sign on using your designated user ID (IMPOTXX) and password. Throughout this
workshop, some screenshots may include the IMPOT19 or IMPOT20 user ID but
IMPOTXX will be referenced in your instructions. Whenever you are instructed to enter
any data that contains an “XX”, please substitute the # associated with your user ID.
This will hold true whether the “XX” exists in a data set name or when you are
dynamically creating/changing any resources with a command. For example, if you are
instructed to create a resource named RSCXX and your user ID is IMPOT15, you
should create a resource name RSC15. If you are instructed to create a data set named
IMPOTXX.DATA, you should create a data set named IMPOT15.DATA. But again, any
screenshot examples will show RSCXX or IMPOTXX.DATA.

 4

Press Enter and fill in the password on the following screen.

 5

Press Enter until you see the ISPF Primary Options Menu.

Before getting started with the hands-on portion of this workshop, you have the
opportunity to examine how the system was set up, and is covered in the following
sections. This review is optional; to get started right away, please skip to the Setting
User Preferences for the IMS TSO SPOC Application section on the next page.

Setting Up the IMS Common Service Layer

The Common Service Layer (CSL) components required to use DRD have already been
set up for you. If you would like to review the PROCLIB members that were defined for
the CSL for this workshop, please see the section entitled Setting Up the IMS Common
Service Layer on page 101 in the Appendix.

Setting Up IMS Dynamic Resource Definition for Use with Repository

Dynamic Resource Definition has also already been set up for usage with the new IMS
12 repository function. If you would like to review the IMS PROCLIB member that was
defined to enable DRD for this workshop, please see the section entitled Setting Up IMS
Dynamic Resource Definition with Repository on page 110 in the Appendix. Migration to
DRD with repository involves defining the Repository Server configuration settings and
allocating the repository data sets that are to be used with DRD.

Repository Server configuration
The Repository Server (RS) address space provides access to the IMSRSC repository,
which contains stored resource definitions for one or more IMS systems in an IMSplex.
RM communicates with the RS to access these resources. The RS has already been

 6

set up for you, and if you would like to review the PROCLIB member that was defined
for it for this workshop, please see the section entitled Setting Up the Repository Server
on page 115 in the Appendix.

Allocating Repository Data Sets (Catalog and IMSRSC)
The RS catalog data sets as well as the IMSRSC repository data sets that contain IMS
stored resource definitions have already been allocated for you for use in this workshop.
To review the JCL that was run in order to create these repository data sets, refer to the
section entitled Allocating Repository Data Sets (Catalog and IMSRSC) on page 112 in
the Appendix.

Setting User Preferences for the IMS TSO SPOC Application

We’ll begin by invoking the IMS TSO SPOC application via the IMS Application Menu
and then setting preferences.

Invoke the IMS TSO SPOC application using the instructions found in the Appendix
section entitled Invoking the IMS TSO SPOC Application on page 91. Note that these
instructions should be followed whenever you are instructed to invoke the TSO SPOC
application during this workshop.

From the TSO SPOC home screen, go to the Options menu by positioning your cursor
under the word “Options” and pressing Enter. Then enter a “1” for Preferences.

The name of our IMSplex is “DEMOC”. Enter this in the Default IMSplex field, then tab
down to the Waiting preference field and enter a “1” here to ensure that we see
responses for commands that we enter.

 7

After pressing Enter you will be taken back to the TSO SPOC home screen, shown
here.

Dynamically Creating Resources Using DRD Commands

Let’s now try dynamically creating a program resource. From the TSO SPOC home
screen, issue a type-2 CREATE command to create a program resource named
PGMXX. Remember, whenever you see an “XX” in this workshop, you are to substitute

 8

your user ID # for it. For example, if your user ID is IMPOT11, the program resource you
will create in this exercise is PGM11.

Enter a CREATE TRAN NAME(PGMXX) command, leaving the ROUTE field blank to
take default routing to both IMSB and IMSC and setting the following attribute values:

• DOPT(Y) – the PSB for this program will be located dynamically

• SCHDTYPE(SERIAL) – the program is serial

Now create a transaction resource named TRANXXA (again, leave the ROUTE field
blank to take default routing to both IMSB and IMSC systems) and set the following
attribute values:

• PGM(PGMXX) – the program associated with the transaction

• RESP(Y) – the transaction is response mode

• CLASS(1) – the transaction is assigned to class 1

Refer to the following screenshot for the command syntax (substitute your user ID # for
the parts of the command containing “XX”):

 9

Dynamically Creating Resources Using a Model Descriptor

We will now show how to create a transaction descriptor, setting attribute values that
can later be automatically assigned to a new resource when it is dynamically created.

Create a transaction descriptor named TRNDSCXX, routing only to IMSC. Do this by
typing “IMSC” in the ROUTE field. Set the following attribute values:

• PGM(PGMXX)

• CLASS(3)

• EXPRTIME(20)

• RESP(Y)

• TRANSTAT(Y)

Refer to the following screenshot for the command syntax, noting that if a command is
lengthy it will wrap to the next line:

 10

Next create a new transaction resource using the descriptor you just created in the
previous step. Name the transaction TRANXXB, and route it only to IMSC by typing
“IMSC” in the ROUTE field. Designate the descriptor whose attribute values should be
used for this new resource by including the descriptor name on the LIKE(DESC())
parameter. Refer to the following screenshot for the command syntax:

 11

Query this newly created TRANXXB transaction and show all of its attribute values
(refer to the following example for syntax). But this time, leave the ROUTE field blank
so that the command is routed to both IMSB and IMSC (delete “IMSC” from the Route
field). Note that the command response reflects that this TRANXXB transaction
resource does not exist on IMSB as a runtime definition – it only exists on IMSC. This is
of course due to the fact that when we created the transaction resource, we only routed
it to the IMSC system.

At this point, we have created a runtime resource definition on IMSC named TRANXXB
and it has not yet been exported to the repository. To see this: enter the QUERY
command for the TRANXXB resource as shown in the following example, ensuring that
your user ID # is reflected in the NAME(TRANXXB) parameter. Since we have only
created this resource on the IMSC system, route the command to IMSC only by typing
“IMSC” in the ROUTE field.

 12

Note that there are two lines of output for this command: one showing the stored
resource definition in the repository (which is currently non-existent) and one showing
the runtime resource definition. As you can see in the command response, the 1D3
completion code reflects that the resource does not exist in the repository, while it does
exist in the active IMSC system. Once we have exported this resource to the repository,
we will revisit this command and you will see different command output for the stored
resource definition.

In this example, we used the SHOW(DEFN) parameter with the QUERY command to
display a resource’s runtime and stored resource definition. You can issue the QUERY
command with different flavors of the SHOW(DEFN) command such as
SHOW(DEFN,LOCAL) or SHOW(DEFN,GLOBAL) or SHOW(DEFN,IMSID), which we
will review in more detail later on in the section entitled Displaying runtime and stored
resource definitions on page 32.

Exporting/Importing Resources to/from the IMSRSC repository

Let’s now create the TRANXXB resource that currently only exists on IMSC on the
IMSB system. But this time instead of using a CREATE command, we will use the type-
2 EXPORT and IMPORT commands with the shared repository. Creating this resource
on IMSB could be accomplished by simply entering a CREATE command via the TSO
SPOC, but using EXPORT/IMPORT demonstrates the benefit of multiple IMS systems
sharing the same repository and is therefore included in this exercise. In this section, we
will first review a series of steps in which no errors occur, then review some scenarios
that include common pitfalls and learn how to navigate around them.

You will start by exporting the TRANXXB runtime transaction definition created on IMSC
to the shared repository. Since we are planning on activating this resource for IMSB
later on, in this exercise we will export TRANXXB to both IMSC’s and IMSB’s stored

 13

resource definitions. Since the stored definitions for both of these IMS systems can
coexist together in the shared repository, only one EXPORT command is needed.

Note: When an EXPORT command is issued to write a transaction resource to the
repository, Resource Manager (RM) validates that the associated program
resource either already exists in the repository as a stored definition, or is
included in the same EXPORT command as the transaction resource. If the
program is not present, the command will fail. In this exercise, we will export the
associated program resource at the same time that we export the transaction
resource to the repository.

Enter the EXPORT command for the PGMXX and TRANXXB resources as shown in the
following example, ensuring that your user ID # is reflected in the NAME(PGMXX
TRANXXB) parameter. Route the IMPORT command to IMSC since this IMS system
has the TRANXXB resource defined in its runtime environment. If the route field was left
blank and OM selected IMSB as the command master, the command would fail since
IMSB does not yet have the TRANXXB resource defined in its runtime environment.
Note that both IMSB and IMSC are specified on the SET(IMSID()) parameter to target
both of these systems’ stored resource definitions.

You can now verify that the TRANXXB resource now exists in the repository as a stored
definition for both IMSB and IMSC with the QUERY command. Enter the QUERY
command for the TRANXXB resource as shown in the following example, ensuring that
your user ID # is reflected in the NAME(TRANXXB) parameter.

 14

Including SHOW(IMSID) parameter on the QUERY command displays the IMSIDs
within the repository that have the stored TRANXXB resource definition defined. Since
we just exported this resource to the repository for IMSB and IMSC, this is reflected in
the command response and is highlighted with a circle above.

Now import the TRANXXB resource to IMSB by entering the IMPORT command for the
TRANXXB resource as shown in the following example. Route the IMPORT command
to both IMSB and IMSC (Route field should be blank) and ensure that your user ID # is
reflected in the NAME(TRANXXB) parameter.

 15

The output shows that the TRANXXB transaction resource is successfully created on
IMSB, and the “ImpType” column indicates that it was created in the runtime
environment. But the transaction already exists on IMSC, which is reflected by a
completion code of 11 with informative information in the CCText column.

We can now verify that the TRANXXB resource exists as a runtime definition for both
IMSB and IMSC with the QUERY command. Enter the QUERY command for the
TRANXXB resource as shown in the following example. Route the QUERY command
to both IMSB and IMSC (Route field should be blank) and ensure that your user ID # is
reflected in the NAME(TRANXXB) parameter.

The output shows that the TRANXXB transaction resource now exists as a runtime
definition for both IMSB and IMSC, and includes all of the associated attribute values.

When type-2 commands are issued from automation (such as the Batch SPOC Utility or
a REXX program that uses the REXX SPOC API), a non-zero completion code is
commonly deemed as unacceptable and causes the automation sequence to abort. The
above IMPORT command’s response that we received earlier could potentially cause
this problem.

In IMS 12, the IMPORT command was enhanced to allow for the update of runtime
resource definitions with corresponding stored resource definitions. Prior to IMS 12, this
was not possible: if a resource already existed as a runtime definition, a stored resource
definition with the same name could not be imported and would yield the result as
shown above with a completion code of 11. Now, we are able to issue the IMPORT
command with the OPTION(UDPATE) parameter to indicate that a runtime resource is
to be refreshed with a stored resource definition.

In this exercise, we learned how to port resource definitions from one IMS system to
another using the shared repository. With one EXPORT command, we can write to the

 16

repository for both IMS systems. We also learned how to query the repository to
determine whether a particular resource exists within it, without having to run a utility to
examine the contents of the data set (as is the case with the original type of DRD that
used the Resource Definition Data Set, or RDDS).

Let’s now consider a scenario in which the TRANXXB transaction resource is updated
on one IMS system, and the same update needs to be applied another IMS system. For
example, perhaps one IMS system is a test system and another is a production system.
Testing needs to be completed on the test system with the updated TRANXXB resource
before it can be made active on the production system. To make the resource active on
the production system, you could simply issue the same UPDATE command on it…but
since we now know that IMS 12 allows the dynamic update of a runtime resource
definition with a stored definition, let’s use this technique to update it in the following
scenario.

To begin, enter the same IMPORT command that we just entered in the previous
exercise, but this time include the OPTION(UPDATE) parameter. Enter the command
as shown below, routing the command to both IMSB and IMSC by leaving the
Route field blank and ensuring that your user ID # is reflected in the
NAME(TRANXXB) parameter.

Since we have included the OPTION(UPDATE) parameter, the command response now
yields a completion code of zero for both IMS systems. We did not update any of the
transaction’s attributes since the last import, so the “ImpType” column is left blank since
the import did not result in any creation or update of the transaction’s runtime definition.
As we saw in the previous example that included the completion code of 11, the
“ImpType” column shows CREATE when a resource is created in the runtime
environment. When a runtime definition is updated in the runtime environment as a
result of issuing the IMPORT command with OPTION(UPDATE), then UPDATE will
appear in the column. Let’s now see an example of this by updating one of the
transaction’s attribute values in one IMS system, exporting the updated transaction to

 17

the stored definitions in the repository for both IMS systems, then issuing the IMPORT
command with OPTION(UPDATE) to refresh the runtime definition for the other IMS
that did not yet receive the update.

Let’s begin by displaying a few attributes for the TRANXXB transaction by entering a
QUERY command as shown below, routing the command to both IMSB and IMSC
by leaving the Route field blank and ensuring that your user ID # is reflected in the
NAME(TRANXXB) parameter.

The command response shows that the TRANXXB transaction has the same attribute
values on both IMS systems. Let’s now update the transaction class value for the IMSB
system from 3 to 1, and then capture the update in the repository.

Enter an UPDATE command as shown in the example below, routing the command to
IMSB only and ensuring that your user ID # is reflected in the NAME(TRANXXB)
parameter.

 18

The command response shows that the transaction was updated successfully. Next let’s
display the transaction again for both IMS systems, but this time we’ll use a shortcut to
issue the command.

Enter the ISPF command RETP on the command line, the same place we’ve been
entering our type-2 commands.

Once you press Enter, the following pop-up will be displayed.

 19

The pop-up shows an abbreviated list of the commands we’ve been entering in the
previous examples. Select the second command shown in the list by entering a 2 (or
whatever number corresponds to the last QUERY command entered), then press Enter.

The command is selected and populated on the command line as shown below.

Delete the IMSB from the Route field to route the command to both IMSB and
IMSC, then press Enter. The command response confirms that the TRANXXB
transaction’s class has been updated from 3 to 1 for the IMSB system, as shown below.
The TRANXXB transaction class remains set to 3 for the IMSC system since it was not
targeted in the previous UPDATE command.

 20

Now let’s export this update to both IMSB’s and IMSC’s stored resource definitions in
the repository by entering an EXPORT command as shown in the example below with
SET(IMSID(IMSB IMSC)) included. Specify IMSB in the Route field since IMSB is the
system that contains the updated resource and ensure that your user ID # is reflected in
the NAME(TRANXXB) parameter.

The command response shows that the export completed successfully: the stored
definitions for both IMSB and IMSC were updated in the repository and the new
transaction class attribute is changed from 3 to 1 (note that the class value for IMSC’s
runtime definition remains as 3 until an IMPORT has been completed for this

 21

transaction). To confirm the updates, let’s issue a QUERY command to display the
stored definitions’ attributes for the transaction. Enter the QUERY command as shown
below. Leave the Route field blank to let OM choose the command master IMS and
ensure that your user ID # is reflected in the NAME(TRANXXB) parameter.

Including the SHOW(DEFN,IMSID) parameter with the QUERY command results in a
display of both the stored and runtime definitions for a resource. The generic section
contains resource attribute values that apply to all IMS systems in the repository. If an
IMS’s stored resource definitions are later updated to have different attribute values
compared to those in the generic section, they are then stored in an IMS-specific
section within the repository and will show their own line of output when a QUERY
command with SHOW(DEFN,IMSID) is issued.

Now that we have an understanding of generic versus IMS-specific sections within the
repository, let’s examine the above command response. The first line of output shows
the TRANXXB resource as it exists in the repository’s generic section. When we first
exported TRANXXB to the repository for the IMSB and IMSC systems, the attributes
were set to the values shown in this line of output. Later, when we updated the
transaction class value for IMSB and then exported it to the repository for not only
IMSB’s stored definitions, but IMSC’s as well – an IMS-specific section was created in
the repository to contain the now differing transaction class value. As such, a line of
output is displayed for IMSB and IMSC in the example above that shows the different
class value of 1 that is maintained in the IMS-specific section in the repository.

The last two lines of output show the TRANXXB runtime resource definitions as they
exist for IMSB and IMSC. Notice that the transaction class value for IMSC remains as 3,
the original value, since we’ve not updated it yet in the runtime environment. This is
about to change however, since the next step involves updating the runtime resource

 22

definition for IMSC. Let’s now issue the IMPORT command on both IMSB and IMSC,
with the OPTION(UPDATE) parameter specified as shown in the example below. Leave
the Route field blank and ensure that your user ID # is reflected in the
NAME(TRANXXB) parameter.

The command response shows in the second line of output that TRANXXB’s runtime
resource definition for IMSC was updated, by displaying UPDATE in the “ImpType”
column. The first line of output shows that the import was processed for IMSB, but since
the “ImpType” column is blank, we know that it did not alter the runtime resource
definition since its attribute values already matched those associated with the stored
resource definition we imported.

Let’s now display the TRANXXB one last time, to confirm that its runtime resource
definitions reflect the import that just occurred. We need to issue a QUERY command to
do this, but this time let’s issue the command via a shortcut. Recall that we just entered
a QUERY command for TRANXXB a few steps back, which means that it exists in the
TSO SPOC Command Status panel. From this panel we can re-issue commands as
well as display previous command responses.

Place your cursor under the SPOC menu at the top of the panel and press Enter. When
you see a menu displayed like the one shown in the example, enter a 3 to invoke the
Command Status panel.

 23

You will now see a list of the commands that you’ve been entering in the previous
exercises -- notice that the second command in the list is a QUERY command. Since
we’d like to display TRANXXB’s definitions to confirm that the import command updated
the runtime resource definition, re-issue the QUERY command from this panel by
entering an “I” in the action column to the left of the command, as shown in the example
below.

After pressing Enter, the QUERY command is re-issued to the IMSplex and we receive
a fresh set of output as shown in the example below:

 24

Notice that in the last two lines of output, the TRANXXB’s runtime definition now has a
transaction class value of 1 for both IMS systems.

In this exercise, we learned how to dynamically update runtime resource definitions
using the IMPORT command with OPTION(UPDATE). When the OPTION(UPDATE)
parameter is omitted from the IMPORT command syntax, import processing cannot
update a runtime resource definition with a different stored resource definition: the
command will fail with a non-zero completion code. Again, this can cause problems in
command automation if a completion code of zero is required to proceed in the
automation sequence. Using the OPTION(UPDATE) enhancement with the IMPORT
command circumvents this issue. We also learned that a stored definition can be
updated for an IMS system before it is made active in its runtime environment, which
could be the case if testing is still underway for a resource before it can be made active
on a production system.

Common pitfalls and how to resolve them
Earlier, we mentioned that a successful export of a transaction to the repository requires
the presence of its associated program also in the repository or its inclusion in the
EXPORT command syntax. What happens if this requirement is not met? In this
section, we will review this scenario by creating a program and transaction resource,
then attempting to export only the transaction to the repository.

Create a program named PGMXXZ on IMSB by issuing a CREATE command as in the
example below. Route the command to IMSB and ensure that your user ID # is
reflected in the NAME(PGMXXZ) parameter.

 25

As a sidenote, notice that we did not specify any attribute values for this program
resource. This means that the attribute values were assigned from the current program
default descriptor, which could be either the IMS-provided descriptor or a user-defined
descriptor.

Now create a transaction named TRANXXZ on IMSB by issuing a CREATE command
as in the example below, setting the associated program to PGMXXZ, created in the
previous step. Route the command to IMSB and ensure that your user ID # is
reflected in the NAME(TRANXXZ) and SET(PGM(PGMXXZ)) parameters.

 26

Now try to export the TRANXXZ transaction to the repository without including the
PGMXXZ program by entering an EXPORT command as shown in the example below.
Route the command to IMSB and ensure that your user ID # is reflected in the
NAME(TRANXXZ) parameter.

The command fails with a 67 completion code, and the CCText column indicates that
there is no program defined for this transaction. If we issue the command again, this
time including the program resource, the command succeeds. If the associated program
name is unknown, a QUERY command with SHOW(PGM) can be entered for the
transaction to display the program name. Enter an EXPORT command as shown in the
example below. Route the command to IMSB and ensure that your user ID # is
reflected in the NAME(PGMXXZ TRANXXZ) parameter.

 27

As a sidenote, notice that we omitted the SET(IMSID()) parameter from the EXPORT
command. Since we routed the command to IMSB, the IMSID that was exported to
defaulted to IMSB. We will see how targeting specific IMS systems using command
routing rather than the SET(IMSID()) parameter is useful in the next section where we
will discuss exporting resources that have unique attribute values that are specific to a
particular IMS system.

Exporting IMS resources with generic vs. unique attribute values
You may have some resources defined to different IMS systems that have the same
name, but different attribute values. These unique resources can be maintained in the
repository, but it is important to export them in such a way that the attribute values will
be preserved. In this section, we will review exporting scenarios in which IMS resources
are generically defined the same way across different IMS systems, as well as
scenarios in which they are unique.

Let’s begin with a basic scenario involving a new program that has the same attribute
values for both IMS systems in our IMSplex. We can export this program to the
repository with one command that targets the stored definitions of both IMS systems.

Create a program resource as shown in the example below, leaving the Route field
blank and ensuring that your user ID # is reflected in the NAME(PGMXXBG)
parameter.

 28

Now enter an EXPORT command as in the following example, leaving the Route field
blank and ensuring that your user ID # is reflected in the NAME(PGMXXBG)
parameter. Target both IMS systems in the IMSplex with the SET(IMSID(*)) parm.

The use of the SET(IMSID(*)) parameter targets both IMS systems that have stored
definitions in the repository. In our test system, we have a 2-way IMSplex consisting of
IMSB and IMSC, so these systems are targeted by this EXPORT command. The
command response shown above gives information in two parts: the specific resource
that was exported, and which IMS systems’ stored definitions were altered (created or
updated). In our case, the IMSC system was the master of the command (selected by

 29

OM with internal logic), and it wrote the PGMXXBG program resource to its own stored
definitions, as well as IMSB’s. The “LIST” type shown in the first two lines of the
command response indicates that the stored definitions of IMSB and IMSC were
altered. The last line of the command simply indicates the name of the resource that
was involved.

In this scenario, the exported program had the same generic attribute values for both
IMS systems. Now, what if the program resource would have had attribute values that
were unique to each IMS system? For example, being parallel schedulable on one IMS,
but serial on the other? Let’s now review this scenario.

Create a program resource named PGMXXAG as in the following example that is
parallel schedulable on IMSB only (routing the command to IMSB and ensuring that
your user ID # is reflected in the NAME(PGMXXAG) parameter).

Now create a program resource with the same name on IMSC, but this time define it as
serial (routing the command to IMSC and ensuring that your user ID # is reflected in the
NAME(PGMXXAG) parameter).

 30

Confirm that these two programs have different scheduling types by entering the
following QUERY command (the Route field should be blank so that both IMS systems
receive the command; ensure that your user ID # is reflected in the NAME(PGMXXAG)
parameter).

When exporting resources with attribute values that are specific to particular IMS
systems, you must issue a separate EXPORT command for each IMS. This will ensure
that the unique attribute values are preserved within the repository in the IMS system’s
stored resource definitions. We’ll now issue two export commands for the program, then
display the program’s stored definition within the repository to display the results of the
export.

 31

Enter the EXPORT command, as in the following example (routing the command to
IMSB and ensuring that your user ID # is reflected in the NAME(PGMXXAG)
parameter).

Note that the SET(IMSID()) parameter was omitted. Since we routed the command to
the IMSB system, the export targeted this IMS’s stored resource definitions. Note: if we
would have included the SET(IMSID()) parameter and specified command routing,
the routing would have taken precedence.

Now enter the EXPORT command targeting IMSC as in the following example (routing
the command to IMSC and ensuring that your user ID # is reflected in the
NAME(PGMXXAG) parameter). Notice that we did not have to modify the command
syntax to export to the IMSC system – we simply changed the command routing.
Therefore, when exporting resources that have unique attribute values that are specific
to different IMS systems, it is recommended to omit the SET(IMSID()) parameter for
ease of use when issuing this command separately to different IMS systems. This will
ensure that each system’s unique resource definitions are preserved.

 32

Now that we’ve exported the PGMXXAG program resource to the repository for both
IMS systems, we can now display them by querying its stored definition as it exists in
the repository. In the next section, we’ll display the PGMXXAG resource with the
QUERY command and various flavors of the SHOW(DEFN) parameter.

Displaying runtime and stored resource definitions
As a reminder, when a resource exists in an active/running IMS system, it is referred to
as a “runtime” resource definition. If a resource exists is the offline repository, it is
referred to as a “stored” resource definition. In IMS 12, the QUERY command has been
enhanced to display both of these definition types with the SHOW(DEFN) parameter.
There are various flavors of the SHOW(DEFN) parameter which can display a
resource’s runtime and stored definition, just the runtime definition, or just the stored
definition. You can also view specific IMSIDs that have a particular resource defined
with another flavor of the SHOW(DEFN) parameter.

When a resource has stored definitions for multiple IMS systems in the repository, the
output of a QUERY command will differ, depending on whether the resource has the
same generic attribute values for all of the IMS systems versus when it has unique
attribute values across the systems. To illustrate this point, in this section we will include
the SCHDTYPE attribute value when we query the PGMXXAG program, since this
attribute value differs across IMSB and IMSC. Let’s now examine the QUERY command
and its different flavors of the SHOW(DEFN) parameter, using our PGMXXAG resource.

To display PGMXXAG’s runtime and stored definitions, enter the QUERY command
with the SHOW(DEFN,SCHDTYPE) parameter as in the example below. Leave the
Route field blank and ensure that your user ID # is reflected in the NAME(PGMXXAG)
parameter.

 33

As you can see, when the QUERY command is issued with SHOW(DEFN) specified,
the stored definitions within the repository are retrieved by one command master IMS
(IMSB in our example), and the runtime definitions are returned from each IMS that has
the resource defined.

Recall the generic and IMS-specific sections within the repository that we previously
discussed. In the first line of our command response above, the command master IMS
displays the PGMXXAG resource as it exists in the repository with its generic attribute
values. Generic attribute values are designated when the resource is exported to the
repository for the first time. Recall that IMSB was the first system to export the
PGMXXAG resource; therefore IMSB’s PGMXXAG resource’s attributes were used to
create the generic section. Any other IMS that has this same resource defined (like
IMSC), but with different attribute values, will appear in a separate line of output when a
QUERY…SHOW(DEFN) command is issued. IMSC’s PGMXXAG resource had a
different scheduling type, so when it was exported to the repository, it was put in IMSC’s
IMS-specific section and appears in a separate line of output. IMSs with resources that
match those in the generic section of the repository will not have their own dedicated
line of output.

The “Repo” column indicates a “Y” to indicate that it is a stored definition in the
repository versus a runtime definition in an active IMS system. The “IMSid” column
shows the specific IMS that has the stored definition defined in the repository.
PGMXXAG’s runtime definition information in shown in the last two lines, and both the
“MbrName” and “IMSid” columns indicate the IMSID that has the runtime resource
definition defined.

To display only PGMXXAG’s runtime definitions, enter the QUERY command with the
SHOW(DEFN,LOCAL,SCHDTYPE) parameter as in the example below. Leave the
Route field blank and ensure that your user ID # is reflected in the NAME(PGMXXAG)
parameter.

 34

To display only PGMXXAG’s stored definitions, enter the QUERY command with the
SHOW(DEFN,GLOBAL,SCHDTYPE) parameter as in the example below. Leave the
Route field blank and ensure that your user ID # is reflected in the NAME(PGMXXAG)
parameter.

PGMXXAG’s stored definitions are displayed in the command output. Once again, note
that the command master (IMSB) displays the generic resource in the repository, and if
an IMS system has a resource with differing attribute values compared to this generic
resource (IMSC), a line of output is shown.

 35

In this section, we learned how to display resources that exist in the runtime
environment as well as the resources that exist offline in the repository. Let’s now
examine the ways that we can capture changes made to runtime definitions and write
them to the repository, so that they are available across IMS coldstarts.

Capturing runtime resource definition changes in the IMS repository

Prior to IMS 12, DRD definitional changes could be captured at every system
checkpoint via automatic export, thereby preserving the changes across IMS coldstart.
If there were definitional changes made since the previous system checkpoint,
autoexport would write all of the IMS runtime resource definitions to the system RDDS
at checkpoint time. This would capture the resources that were added, changed, and
deleted since the last checkpoint. In IMS 12, when DRD is used with the repository, the
DRD definitional changes are captured using a different technique. Let’s now explore
this new method, which is more efficient compared to autoexport since it involves a
significantly smaller amount of overhead in capturing the resource changes. We’ll start
with handling newly added and updated resources.

Capturing newly added and updated resources
When the repository is used in a DRD environment and runtime resource definitions are
added or changed, an EXPORT command is required in order to write these
new/changed resources to the repository. Special parameters were added to the
EXPORT command in IMS 12 to make the actual export processing more efficient,
enabling it to target only the resources that are new or have been modified in the
runtime environment. You can target the resources that have been added/changed
since the last EXPORT command was issued with the new OPTION(CHANGESONLY)
parameter. You can be even more granular by specifying a window of time in which
resources could have been added/changed with the new STARTTIME() and
ENDTIME() parameters and target those specific resources for the export.

EXPORT exercise with OPTION(CHANGESONLY)
Let’s now go through a scenario in which we add new resources as well as modify
existing resources, then target them with an EXPORT command using these special
parameters that allow for maximum I/O efficiency. We’ll start with an exercise that
allows you to export resources that were added/changed since the last EXPORT
command was issued.

First create two new program resources named PROGXX1 and PROGXX2 by entering
the CREATE command as in the example below. Route the command to both IMSB and
IMSC by leaving the Route field blank, and substitute your user ID # in the
NAME(PROGXX1 PROGXX2) parameter.

 36

In an earlier exercise, we introduced the concept of a default descriptor that is used to
assign attributes for newly created resources when the attributes themselves are not
explicitly specified in the command syntax. Notice that in this command, we did not
specify any parameters for the PROGXX1 and PROGXX2 program resources so we
know that the attribute values were assigned from the current program default
descriptor, which could be either the IMS-provided descriptor or a user-defined
descriptor.

Now, to show that these new programs only exist in the runtime environment and are
not stored in the repository yet, we will issue a QUERY command. But let’s use a
shortcut this time. First place the cursor under the “CREATE” in the response to the
previously issued command as shown in the example.

 37

Now press Enter and you will see the CREATE command appear on the command line.
Simply type “QUERY” over the “CREATE” command and add the SHOW(DEFN,IMSID)
parameter to the end of the command as shown in the example below. Route the
command to both IMSB and IMSC by leaving the Route field blank and press Enter.

The command response shows that the PROGXX1 and PROGXX2 program resources
exist as runtime resource definitions, but do not yet exist in the repository. A blank

 38

appearing in the “Repo” column indicates that the line of output is associated with a
runtime resource definition that exists in the active IMS system.

To export these new resources to the repository, we could simply issue an EXPORT
command explicitly naming these two resources on the NAME() parameter. However,
what if you did not want to keep track of all of the individual resources names that have
been added or updated since the last EXPORT command was issued? The answer is
using the OPTION(CHANGESONLY) parameter, which captures only these particular
resources that are new or changed, and writes them to the repository upon export. To
illustrate this, enter an EXPORT command with OPTION(CHANGESONLY) as shown in
the example below. Leave the Route field blank so as to prevent the IMS systems
specified in the SET(IMSID()) parameter from being overridden.

Notice that all we needed to specify in the command was the resource type, but not any
names. The output indicates that the IMS resource lists for IMSB and IMSC were both
updated, and the PROGXX1 and PROGXX2 resources were involved in the export
processing. As a sidenote, also notice that in our example, IMSB was selected as the
command master who wrote the new/changed resource definitions to the repository for
itself, and also on behalf of IMSC. In your case, OM may have selected IMSC as the
command master via internal logic.

To show that these two program resources now exist in the repository, enter a QUERY
command as shown in the example below. Route the command to both IMSB and IMSC
by leaving the Route field blank, and substitute your user ID # in the NAME(PROGXX1
PROGXX2) parameter.

 39

Including the SHOW(IMSID) parameter on the QUERY command will display each
IMSID that has the specified resource(s) defined in the repository. As you can see in the
command response, the PROGXX1 and PROGXX2 resources now exist in the
repository for both IMSB and IMSC.

In the last sequence of steps, we issued the EXPORT command with
OPTION(CHANGESONLY) to capture newly added resources in the repository without
having to specify the resource names in the command. Now let’s see how this
parameter value can be used to capture resource updates as well.

To begin, let’s display a few updatable attribute values for these programs including the
scheduling type, dynamic option value, and language interface. Enter a QUERY
command as shown in the example below. Route the command to both IMSB and IMSC
by leaving the Route field blank, and substitute your user ID # in the NAME(PROGXX1
PROGXX2) parameter.

 40

The requested attribute values for the two programs are displayed. Now let’s change
each of these values for both of the programs and then export them to the repository to
once again showcase the OPTION(CHANGESONLY) parameter capability.

Enter an UPDATE command to change these attributes as shown in the example
below. Route the command to both IMSB and IMSC by leaving the Route field blank,
and substitute your user ID # in the NAME(PROGXX1 PROGXX2) parameter.

 41

To confirm that these attribute changes have taken effect in the runtime environment for
our two programs, enter a QUERY command as shown in the example below,
specifying that the attributes we just updated are shown. Route the command to both
IMSB and IMSC by leaving the Route field blank, and substitute your user ID # in the
NAME(PROGXX1 PROGXX2) parameter.

The command response confirms that the runtime resource definitions have
successfully been updated. Let’s now capture these changes and write them to the
repository.

Enter an EXPORT command using the OPTION(CHANGESONLY) parameter as shown
in the example below. Leave the route field blank so as to prevent the IMS systems
specified in the SET(IMSID()) parameter from being overridden.

 42

Once again, notice that all we needed to specify in the command was the resource type,
but not any names. The inclusion of OPTION(CHANGESONLY) picked up the changes
we made to the two program resources earlier, and wrote these updated resources to
the repository for IMSB and IMSC.

To confirm that these resource updates now exist in the stored definitions within the
repository, let’s display these definitions and examine the attribute values that we
previously updated. Enter a QUERY command as shown in the example below. Route
the command to both IMSB and IMSC by leaving the Route field blank, and substitute
your user ID # in the NAME(PROGXX1 PROGXX2) parameter.

 43

Notice that including SHOW(DEFN,IMSID) in the QUERY command syntax results in a
display of the stored resource definitions within the repository as well as the runtime
resource definitions. A “Y” in the “Repo” column signifies that the line of output contains
a stored resource definition, whereas a blank signifies a runtime resource definition. The
lines of output that do not have an IMSID listed show the generic resource definition
within the repository for that particular resource. In our scenario, we changed some our
programs’ attributes so that they differ from this generic definition. However, the generic
definition is still displayed for the resource when SHOW(DEFN,IMSID) is used.

Let’s now confirm that the attribute values in the stored definitions match what we just
exported. Recall that we previously updated the dynamic option (DOPT) to Y, the
scheduling type to SERIAL, and the language interface to JAVA. If you look at the
PROGXX1 and PROGXX2’s stored definitions (the lines that have a “Y” in the “Repo”
column), you will notice the DOPT value is in fact “Y”, reflecting our change that was
exported. If you page to the right twice (by pressing PF11 twice), you will see what is
shown in the example below.

 44

Notice that the scheduling type has been updated to SERIAL and the language
interface has been updated to JAVA for the stored resource definitions in the repository.
Once again, these differ from PROGXX1 and PROGXX2’s generic definition in the
repository, which remains with the original values.

In this last exercise, we learned how to export new and updated resources to the
repository without having to explicitly name the resources in the EXPORT command
syntax. Another way to pinpoint resources that you’d like targeted for export is by
specifying a timeframe in which resources could have been added/updated, which we’ll
now explore.

EXPORT exercise with STARTTIME() and ENDTIME()
IMS 12 introduces the ability to include a start time and end time with the EXPORT
command, to indicate that any resource additions/changes that occurred within the
specified window of time should be written to the repository. You can also specify only a
start time without an end time. To demonstrate this capability, in this exercise we will
create two new program resources, update our existing program resources that we
used in the last exercise, and then target these new/changed resources with an
EXPORT command that specifies a timestamp.

Let’s begin by creating two new program resources named PROGXX3 and PROGXX4.
Enter a CREATE command as in the example below. Route the command to both IMSB
and IMSC by leaving the Route field blank, and substitute your user ID # in the
NAME(PROGXX3 PROGXX4) parameter.

 45

Now we’ve got two new programs defined as runtime resource definitions. Let’s update
the PROGXX1 and PROGXX2 programs that we created in the previous exercise by
changing their transaction level statistics attribute to “Y”.

Enter an UPDATE command as shown in the example below. Route the command to
both IMSB and IMSC by leaving the Route field blank, and substitute your user ID # in
the NAME(PROGXX1 PROGXX2) parameter.

 46

Next, let’s display the programs we’ve been adding/updating in this exercise by entering
QUERY commands to confirm that they have not yet been exported to the repository.

Enter a QUERY command for the PROGXX3 and PROGXX4 program resources as
shown in the example below. Route the command to both IMSB and IMSC by leaving
the Route field blank, and substitute your user ID # in the NAME(PROGXX3 PROGXX4)
parameter.

 47

The command response shows that these programs exist as runtime resource
definitions, but do not yet have stored resource definitions in the repository.

Next, enter another QUERY command for the PROGXX1 and PROGXX2 resources as
shown below to examine their transaction level statistics attribute and confirm that the
updated runtime definitions have not yet been exported to the repository. Route the
command to both IMSB and IMSC by leaving the Route field blank, and substitute your
user ID # in the NAME(PROGXX1 PROGXX2) parameter.

The command response shows that the PROGXX1 and PROGXX2 runtime resource
definitions have a transaction level statistics value of “Y” whereas their corresponding
stored resource definitions in the repository have not yet been updated, showing an “N”.

Let’s now export the new PROGXX3 and PROGXX4 resources along with the updated
PROGXX1 and PROGXX2 resources by issuing an EXPORT command with a start
time specified. This will cause the export to target only the resources that are new or
updated since the start time specified and we will not need to explicitly specify the
resource names in the command syntax. Enter an EXPORT command as shown below,
leaving the Route field blank, substituting your user ID # in the NAME() parameter
values, and specifying a start time in the format of yyyy.ddd hh:mm (year, Julian day,
hour in military time and minute). A start time of 30 minutes prior to this point in the
exercise is recommended. To determine the Julian day, please see the Julian Day
Table Reference in the Appendix section on page 125.

Runtime
Definitions

Stored
Definitions

 48

The command response shows that our four programs were exported to IMSB and
IMSC. Depending on how quickly you’re going through these exercises, you may see
additional resources that are exported with this command. In our example scenario,
there were only four program resources as shown above that were created since the
start time that we specified in the command syntax.

If you now display these programs, you will find that they have been added to and
updated in the repository. Enter a QUERY command for the PROGXX3 and PROGXX4
program resources as shown in the example below. Route the command to both IMSB
and IMSC by leaving the Route field blank, and substitute your user ID # in the
NAME(PROGXX3 PROGXX4) parameter.

 49

The command response shows that stored resource definitions for PROGXX3 and
PROGXX4 now exist in the repository.

Next, enter a final QUERY command for the PROGXX1 and PROGXX2 resources as
shown below to examine their transaction level statistics attribute and confirm that the
updated runtime definitions have now been exported to the repository. Route the
command to both IMSB and IMSC by leaving the Route field blank, and substitute your
user ID # in the NAME(PROGXX1 PROGXX2) parameter.

 50

The transaction level statistics attribute value now reflects the updated value of “Y” for
the PROGXX1 and PROGXX2 stored resource definitions.

In this section we learned how to capture newly added/updated resources in the
repository in an efficient way using special EXPORT parameters. But what happens in
the case that runtime resource definitions are deleted? How do we reflect these
deletions in the repository?

Handling deleted resources
Prior to IMS 12, DRD deletions made to runtime resource definitions were captured in
the RDDS via autoexport at system checkpoint time. In this process, IMS would replace
the entire RDDS contents with a total capture of its current runtime resource definitions.
When runtime resource definitions are deleted in IMS 12 using DRD with the repository,
a separate command needs to be issued in order to delete the corresponding stored
resource definitions in the repository. This gives greater control to the user, and is much
more efficient than autoexport since it allows targeting of the specific resources that
should be deleted in the repository. This is in contrast to the original type of DRD, which
used up more CPU I/O time to write all of the runtime definitions to the RDDS, thereby
reflecting the deletion by excluding the deleted resources from the export. In this
exercise, we will demonstrate the new process that is more efficient.

Let’s start by deleting two of the programs created in the previous exercise. Delete the
PROGXX3 and PROGXX4 runtime resource definitions by entering the DELETE
command as shown in the example below. Route the command to both IMSB and IMSC
by leaving the Route field blank, and substitute your user ID # in the NAME(PROGXX3
PROGXX4) parameter.

The command response shows that the runtime resource definitions were successfully
deleted. Let’s now query these resources to show that they no longer exist in the

 51

runtime environment, but currently remain in the repository as stored definitions. To
enter the QUERY command, let’s use a shortcut. Enter the ISPF command RETP on
the command line as shown in the example below as press Enter.

A box similar to what is shown above will be displayed. Select the numerical value
associated with one of the last QUERY commands that was entered from the list. It is
option 2 in our example, but it may vary depending on the specific commands you have

 52

entered prior to this point. Once you select the command from the list, press Enter and
the command will be populated on the command line as shown in the example below. If
the QUERY command that you select does not include the PROGXX3 and PROGXX4
resources, you can simply type over the names specified. Route the command to both
IMSB and IMSC by leaving the Route field blank.

 53

The command response shows that the PROGXX3 and PROGXX4 runtime resources
have been deleted. As a reminder, runtime resources are shown in the command
response with a blank in the “Repo” column. On the other hand, the stored resources
are shown with a “Y” in the “Repo” column and we can see that they still exist in the
repository.

To delete the stored definitions in the repository for PROGXX3 and PROGXX4, enter
the DELETE DEFN command as shown in the example below. Leave the Route field
blank to prevent overriding the FOR(IMSID()) parameter in the command syntax, which
specifies the particular IMS systems the stored definitions should be deleted for.
Remember to substitute your user ID # in the NAME(PROGXX3 PROGXX4) parameter.

The command response indicates that the PROGXX3 and PROGXX4 resources have
been deleted for both IMS systems and removed from their respective IMS resource
lists in the repository.

Now let’s issue a final query to confirm that the two programs no longer exist as runtime
or stored resource definitions. Enter a QUERY command as shown in the example.
Route the command to both IMSB and IMSC by leaving the Route field blank, and
substitute your user ID # in the NAME(PROGXX3 PROGXX4) parameter.

 54

The command response confirms that the program resources no longer exist in either
place for both IMS systems.

Now that we’ve examined different ways of capturing runtime resource definitions in the
repository, let’s switch gears a bit and introduce some new utilities that can aid in
migration to/fallback from DRD with repository. Press PF3 until you reach the ISPF
Primary Options Menu screen.

Using utilities to aid in migration/fallback
A key step in implementing DRD with repository is populating the repository with IMS
stored resource definitions that match the runtime resource definitions of its respective
active IMS. In IMS 12, you can generate a repository that contains equivalent contents
of an RDDS. This can be accomplished by using the new RM utilities. You can also
generate a repository from IMS log records using utilities, and for fallback purposes, you
can use the utilities to generate an RDDS or help recreate a MODBLKS data set. Let’s
now explore how to use these utilities to help migrate to repository DRD, and fall back
from it.

Migration aid: generating a repository from an RDDS
Perhaps you’ve already implemented DRD in your shop and you have a system RDDS
that contains all of your IMS stored resource definitions. You can use this system RDDS
as input into the RDDS to Repository utility (CSLURP10) to generate a repository with
equivalent contents. Alternatively, you could also create a non-system RDDS, capture
all of your IMS’s resource definitions in it with an EXPORT command, and then use this
non-system RDDS as input to the utility. In this exercise, we chose a very simple
scenario for demonstration purposes in which we:

• Delete all of the stored transaction definitions in our repository

• Query the repository to confirm that it contains no stored transaction definitions

 55

• Populate a non-system RDDS with one runtime transaction definition (in a real-
world scenario, several other resources would be involved)

• Use this non-system RDDS as input into the CSLURP10 utility to populate our
repository with this stored transaction definition

• Query the repository to confirm that it now contains the same stored transaction
definition that was copied from the non-system RDDS with the utility

A non-system RDDS named IMPOTXX.NSRDDS1 (the XX should be your user ID #)
has already been created for you for use in this exercise. Let’s begin by deleting all of
the stored transaction definitions in the repository with a DELETE DEFN command.
Enter the command shown in the example, routing to IMSC.

The DFS3406I message confirms that the delete was successful. Let’s now query the
repository to verify that no stored transaction definitions exist in it any longer. Enter a
QUERY command shown in the example, leaving the Route field blank so that OM
selects the command master.

 56

The command response reflects that IMSC was the master of the command, who
determined that there are currently no stored transaction resources in the repository.
Recall that issuing the QUERY command with SHOW(DEFN,GLOBAL) displays only
the stored definitions in the repository.

Let’s now prepare our non-system RDDS by exporting a runtime transaction to it, so
that when we use this RDDS as input into the RDDS to Repository utility (CSLURP10),
it will include this transaction that we can later track in the repository.

Earlier in this workshop, we created a runtime transaction resource on both IMSB and
IMSC named TRANXXA. Let’s confirm that it exists in our runtime environment, and
then export it to our non-system RDDS. Enter a QUERY command as shown in the
example, leaving the Route field blank so both IMSB and IMSC receive the command.

 57

Including SHOW(DEFN,LOCAL) displays the TRANXXA runtime resource definition and
confirms that it does in fact exist as a runtime for IMSB and IMSC.

To write this transaction to the non-system RDDS, enter an EXPORT command as
shown in the example, leaving the Route field blank and substituting your user ID # for
the XX in the RDDSDSN(IMPOTXX.NSRDDS1) data set and NAME(TRANXXA)
parameters.

 58

The non-system RDDS named IMPOTXX.RDDS1 now contains only the TRANXXA
stored resource definition, since we included OPTION(OVERWRITE) in the command
syntax. We can now run the RDDS to Repository utility (CSLURP10) to write this
resource to the repository from our non-system RDDS.

Press PF3 until you reach the ISPF Primary Option Menu as shown below. Enter 3.4 as
shown below.

Press Enter and browse the IMPOTXX.TESTXYZ PDS to find the JCL that invokes the
RDDS to Repository (CSLURP10) utility.

 59

Edit the CSLURP10 member.

 60

Specify your user ID # for the XX in the job name as well as in the IMPOTXX.NSRDDS1
shown on the RDDSDSN DD statement. Press PF8 to page down and see the rest of
the JCL.

Note that the name of our DEMOC IMSplex is specified, and IMSB and IMSC have both
been specified in the IMSID list – this means that the resource within in our
IMPOTXX.NSRDDS1 data set will be copied to both of those IMS systems’ stored
definitions in the repository.

 61

Submit the job by entering a “SUB” command on the command line and enter a
jobname character if prompted. If you are unfamiliar with how to submit a batch job,
please see the Submitting Batch Jobs section in the Appendix on page 93 for more
detailed information. Once you’ve submitted the job, press Enter and then PF3 until you
have reached the ISPF Primary Options Menu.

Now view the job output with ISPF Primary Option Menu selection 3.8. For more detail
on viewing job output, please see Viewing Job Output Using ISPF 3.8 in the Appendix
on page 95.

 62

Enter “IMPOTXX” plus the jobname character in the jobname field. For example, if your
user ID is IMPOT11 and you entered an “O” as the job name character when you
submitted the job in the previous step, you would enter “IMPOT11O” in the jobname
field. Also enter an “L” on the command line and press Enter.

Several jobnames may then be displayed. Take note of the last job number that is
displayed, in the following example it is JOB07374.

 63

Press Enter and fill out the jobID field with a format of “JXXXXX” where “XXXXX” is the
jobID just noted on the previous panel. Press Enter.

The next series of screens show the job output. Press PF8 to page down through the
output and notice the various CSL26XXX messages that show details behind the utility
execution, such as the RDDS name, the IMSID targeted in the repository, and a
confirmation that the write to the repository was successful. Finally, there is a summary
of the resources and descriptors that were written to the repository at the end of the
output. In our case, one transaction resource was written from the non-system RDDS to
the repository.

Note: earlier in this workshop when we created the TRANXXA transaction
resource, we had set its associated program to be PGMXX. The exercises that
followed involved exporting this program resource to the repository, so it already
existed in the repository at the time we copied the TRANXXA resource to it with
the RDDS to Repository utility (CSLURP10). Had the associated program been
absent, the utility would have failed with an error such as the following:

Therefore, when running CSLURP10, always make sure the programs associated
with the transactions involved are either processed with the utility or already
present in the repository.

 64

Let’s now query the repository to confirm that the TRANXXA transaction resource was
copied for IMSB and IMSC. To exit this panel, press PF3 until you reach the ISPF
Primary Option Menu. Invoke the TSO SPOC application by entering “P.C”, then “IMS”,
then option 1. Information about invoking the TSO SPOC can be found in the Appendix
in the Invoking the IMS TSO SPOC Application section on page 91.

 65

Enter the QUERY command as shown, leaving the Route field blank.

The command response shows that the TRANXXA resource now exists in the
repository for IMSB and IMSC.

In this exercise, we learned how to use an existing RDDS as input into the CSLURP10
utility to generate stored resource definitions within the repository for specific IMSIDs.
But what if you’ve never implemented DRD in your shop and therefore don’t have an
RDDS to use to populate your repository? In this case, you can leverage the DRD
utilities with the RM utilities to populate the repository with definitions from your IMS log
records. Let’s now explore this scenario.

Migration aid: generating a repository from IMS log records
The steps involved in populating a repository with stored resource definitions using IMS
log records as input are similar to what we covered in the previous exercise, with one
extra step. In this exercise, we will use the Create RDDS from Log Records utility
(DFSURCL0) to first generate an RDDS from IMSC’s log record data sets, then use this
RDDS as input to the RDDS to Repository utility (CSLURP10) that we used in the
previous exercise. These two utilities can be invoked in one batch job, which we’ll now
illustrate.

Navigate to the IMPOTXX.TESTXYZ PDS using 3.4 from the Primary Options Menu.

 66

Browse the IMPOTXX.TESTXYZ data set (substituting your user ID # for the XX) and
edit the member named OLDS2RPO.

 67

Edit the IMPOTXX jobname to specify your user ID # in place of the XX. Then press
PF8 to page down to see the rest of the JCL. The screenshots below are of the
remaining two pages.

 68

As you can see, this JCL uses IMS log data sets that you specify as input into the
Create RDDS from Log Records utility (DFSURCL0) and generates a temporary RDDS
that is later used as input to the RDDS to Repository utility (CSLURP10). Lines 31-36
contain the IMS log data set names, line 38 specifies that the logs belong to IMSC, and
finally line 40 specifies that IMSC will have stored resources definitions created for it in
the repository. Submit the job by entering the SUB command on the command line,
enter a job name character if prompted, and note the job ID shown. In our example, it is
JOB06810. More detail on submitting batch job can be found in the Submitting Batch
Jobs section in the Appendix on page 93.

Now let’s examine the job output. Press PF3 until you have reached the ISPF Primary
Options Menu. Now view the job output using option 3.8. More detail on examining job
output can be found in the Viewing Job Output Using ISPF 3.8 section in the Appendix
on page 95.

IMS Log data sets

 69

Press Enter and fill out the JobID field with a format of “JXXXXX” where “XXXXX” is the
jobID just noted on the previous panel.

Press Enter to view the job output. To find the pertinent data, enter “F CREATION” on
the command line as shown below.

 70

You will then see a screen like the example below.

This portion of the job output shows a comprehensive summary of the IMS log data sets
that were read from IMSC, timestamp information, the quantity of resources/descriptors
created in the repository based on the log record data, and the types of log records
processed. Press PF8 to page down and browse through the summary data.

 71

In this exercise, we learned how to populate a repository with stored resource
definitions from IMS log records, using a temporary RDDS as a midway point, all in one
batch job.

Fallback aid: generating an RDDS from the repository
You are also able to use the utilities we’ve been discussing to fall back to using DRD
with the RDDS instead of the repository. To do this, you can use the Repository to RM
(CSLURP20) utility using the current repository as input. In this exercise you will:

• Create a non-system RDDS named IMPOTXX.NSRDDS2

• Display IMSB’s PROGXX1 and PROGXX2 stored program definitions in the
repository (these are the programs that we created/exported earlier in the
workshop) so that we can later cross-check them in the IMPOTXX.NSRDDS2
data set

• Populate IMPOTXX.NSRDDS2 with IMSB’s stored resource definitions in the
repository using CSLURP20

• Display the contents of IMPOTXX.NSRDDS2 by running a query report and
confirming that the PROGXX1 and PROGXX2 program resources that we
queried in the repository now exist in the non-system RDDS using DFSURDD0

Note: in this exercise the entire collection of IMSC’s stored resource definitions in the
repository will be copied to the non-system RDDS. We will examine only the new
programs that we previously created/exported for simplicity.

Allocate a non-system RDDS named IMPOTXX.NSRDD2 (substitute your user ID # for
the XX) by following the instructions in the Allocating a Non-System RDDS section in
the Appendix on page 118.

Before we populate it with definitions from the repository, let’s first display the programs
we previously created and exported to show/confirm that they exist in the repository.
Invoke the TSO SPOC application by following the instructions in the Invoking the IMS
TSO SPOC Application section of the Appendix on page 91. Enter the QUERY
command as shown in the example. Route the command to both IMSB and IMSC by
leaving the Route field blank, and substitute your user ID # in the NAME(PROGXX1
PROGXX2) parameter.

 72

The command response shows that the PROGXX1 and PROGXX2 resources both exist
in the repository for IMSB and IMSC. Note that in this exercise, we will only copy the
stored resource definitions for IMSC. To populate the IMPOTXX.NSRDDS2 data set
with these definitions, we will invoke the CSLURP20 utility, which only allows one IMSID
to be specified per invocation.

Navigate to the IMPOTXX.TESTXYZ PDS using 3.4 from the Primary Options Menu.

 73

Browse the IMPOTXX.TESTXYZ data set (substituting your user ID # for the XX) and
edit the member named CSLURP20.

Looking at the JCL, the name of the RDDSDSN DD statement should be
IMPOTXX.NSRDDS2, with your user ID # substituted for the XX. Edit the IMPOTXX

 74

jobname to specify your user ID # in place of the XX. Then press PF8 to page down to
see the rest of the JCL.

On the IMSPLEX parameter, the IMSplex name should be DEMOC and the IMSID
should be IMSC. When we run the utility, IMSC’s stored resource definitions in the
repository will be copied into the IMPOTXX.NSRDD2 data set. Submit the job by
entering the SUB command on the command line, enter a job name character if
prompted, and note the job ID shown. In our example, it is JOB06759. More detail on
submitting batch job can be found in the Submitting Batch Jobs section in the Appendix
on page 93.

Now let’s examine the job output. Press PF3 until you have reached the ISPF Primary
Options Menu. Now view the job output using option 3.8. More detail on examining job
output can be found in the Viewing Job Output Using ISPF 3.8 section in the Appendix
on page 95.

 75

Press Enter again to view the job output. Press PF8 until you each the bottom of the
output and you will see various CSL26XXx messages that show details behind the utility
execution, such as the targeted RDDS name, the IMSID of the system whose stored
resource definitions were copied from the repository, and a confirmation that the write to

 76

the RDDS was successful. Finally, there is a summary of the resources and descriptors
that were written to the RDDS at the end of the output.

Before we ran the Repository to RDDS utility, we queried the PROGXX1 and
PROGXX2 program stored resource definitions to show that they exist in the repository.
Now let’s display the contents of the IMPOTXX.NSRDDS2 RDDS to show/confirm that
they were included in the copy to the RDDS.

 77

Navigate to the IMPOTXX.TESTXYZ PDS using 3.4 from the Primary Options
Menu.

Browse the IMPOTXX.TESTXYZ data set (substituting your user ID # for the XX) and
edit the member named URDD0QRY.

 78

This JCL invokes the Extract RDDS Contents utility which will allow you to display all of
the stored resource definitions contained in your non-system RDDS. Edit the
RDDSDSN DD statement to DSN=IMPOTXX.NSRDDS2, with your user ID # substituted
for the XX. Edit the IMPOTXX jobname to specify your user ID # in place of the XX. Also
notice that OUTPUT=QUERY is specified at the end of the JCL, which requests that a
query report showing the definitional content is created. Submit the job by entering the
SUB command on the command line, enter a job name character if prompted, and note
the job ID shown. More detail on submitting batch job can be found in the Submitting
Batch Jobs section in the Appendix on page 93.

Now let’s examine the job output. Press PF3 until you have reached the ISPF Primary
Options Menu. Now view the job output using option 3.8. More detail on examining job
output can be found in the Viewing Job Output Using ISPF 3.8 section in the Appendix
on page 95.

 79

List the job names that have output available to view.

 80

Take note of the most recent job number.

Enter the noted job number in the JobID field and press Enter.

 81

The job output is displayed below. To confirm that IMSC’s stored definitions were
copied from the repository to the RDDS, enter “F IMSID” on the command line as shown
below and press Enter.

 82

Here, the query report shows information about the RDDS header record – including the
IMSID of IMSC, whose stored resource definitions we had targeted previously in this
exercise when we invoked the Repository to RDDS utility.

Next, to show that the PROGXX1 and PROGXX2 program stored definitions were
included in the copying of the repository to your non-system RDDS, search for
PROGXX1 in the output by entering “F PROGXX1” on the command line as shown
below. Press Enter.

Both PROGXX1 and PROGXX2 are shown in the query report, along with their
respective attribute values.

 83

In this exercise, we created a non-system RDDS and populated it with IMSC’s stored
resource definitions from the repository with the Repository to RDDS utility, CSLURP20.
After that, we used the Extract RDDS Contents utility, DFSURDD0, to create a query
report to display the contents on the non-system RDDS. Within it, we found two
programs that we had previously created and exported to the repository, thereby
illustrating its effectiveness.

This exercise models the steps you would follow if you needed to fall back from using
DRD with repository to using DRD with the RDDS. But what if you need a MODBLKS
since you migrated to DRD with repository from an environment that used MODBLKS
online change? Let’s now explore how to meet this need.

Fallback aid: generating a MODBLKS from the repository
Generating a MODBLKS data set from the repository involves creating a temporary
RDDS, then extracting it to create Stage-1 macro statements. These macros can then
be used to generate a MODBLKS data set.

In this exercise, we will leverage the steps completed in the previous exercise by using
the IMPOTXX.NSRDDS2 data set that we just populated with repository contents as
input to the Extract RDDS Contents (DFSURDD0) utility. This time however, rather than
have the utility generate a query report, we will have it generate Stage-1 macros. To
invoke the utility, navigate to the IMPOTXX.TESTXYZ PDS using 3.4 from the Primary
Options Menu.

 84

Browse the IMPOTXX.TESTXYZ data set (substituting your user ID # for the XX) and
edit the member named URDD0MAC.

 85

This JCL invokes the Extract RDDS Contents utility which will allow you to generate
Stage 1 macro statements that are equivalent to the stored resource definitions
contained in your non-system RDDS. Edit the RDDSDSN DD statement to
DSN=IMPOTXX.NSRDDS2, substituting your user ID # for the XX. Edit the IMPOTXX
jobname to specify your user ID # in place of the XX. Also notice that OUTPUT=MAC is
specified at the end of the JCL, which requests that Stage 1 macros are generated.
Submit the job by entering the SUB command on the command line, enter a job name
character if prompted, and note the job ID shown. More detail on submitting batch job
can be found in the Submitting Batch Jobs section in the Appendix on page 93.

Now let’s examine the job output. Press PF3 until you have reached the ISPF Primary
Options Menu. Now view the job output using option 3.8. More detail on examining job
output can be found in the Viewing Job Output Using ISPF 3.8 section in the Appendix
on page 95.

 86

List the job names that have output available to view.

 87

Take note of the most recent job number.

Enter the noted job number in the JobID field and press Enter.

The job output is displayed below. To see the Stage 1 macro statements that were
generated, press PF8 until you reach them. To find our two programs that we originally

 88

created in one of the previous exercises, search for the PROGXX1 resource by entering
“F PROGXX1” on the command line as shown below.

Once you press Enter, you will see the PROGXX1 and PROGXX2 program resource
definitions located within the collection of Stage 1 macros generated by the Extract
RDDS Contents utility.

 89

Appendix

 90

Setting Key Values in the IMS TSO SPOC
Enter KEYS on the command line, as shown in the following screenshot.

Then press Enter and PF8 down to the bottom of the panel. Ensure that the settings
look like what is shown in the next screenshot. If changes need to be made, make sure
that you press Enter and PF3 out once you’ve edited the panel. This will save the
changes.

 91

Invoking the IMS TSO SPOC Application
From the ISPF Primary Options Menu, enter “P.C” from the ISPF Primary Options Menu
command line to get to the Data Management Tools for IMS menu.

On the next panel, enter “IMS” to invoke the IMS Application Menu.

 92

On the next panel you will see the IMS Application Menu. Enter a “1” to invoke the IMS
TSO SPOC application.

 93

Submitting Batch Jobs
You can submit a batch job while editing a member in ISPF by simply entering SUB on
the command line, as shown in the following example.

After you submit the job, you may be prompted to enter a job name character. Enter a
character of your choice, such as “O” for output as shown in the following example. If
you do not receive this prompt, simply press Enter.

 94

Once you press Enter, you will receive a confirmation screen that the job was in fact
submitted. You can either note the job ID shown (which you will need later in order to
view the job output), but this is optional since you can later display a list of job IDs
before viewing the output.

 95

Viewing Job Output Using ISPF 3.8
From the ISPF Primary Options Menu, enter option 3.8.

 96

All of the jobs in this workshop have the same name as your user ID. Therefore, in the
jobname field shown on the next panel, enter your user ID with the job name character
that you entered after you submitted the job. For example, if you had previously entered
a job name character of “O”, the job name to enter in the Jobname field is IMPOTXXO.
Important note: if you were not prompted to enter a job name character when you
submitted the job, simply enter IMPOTXX as the Jobname here. Next, you must
determine the JobID. If you did not note the job ID shown after you previously submitted
the job, enter an “L” on the command line to display a list of job IDs associated with
previously submitted jobs.

 97

One or more job IDs are shown in the following example. Typically the last one shown in
the list is the specific job ID to take note of.

 98

Once you have the job ID, enter it in an abbreviated format of JXXXXX in the JobID field
and press Enter. The job output will then be displayed.

 99

Browsing a PDS Member Using ISPF 3.4
Begin by entering the 3.4 option on the ISPF Primary Options Menu.

Enter the name of the PDS the member shown on the Dsname Level field (substituting
your user ID # for the XX) and press Enter.

 100

Then display a list of the members contained within the PDS by typing a “B” next to it
and pressing Enter.

Its list of members is displayed. To view the contents of the member, enter a “B” next to
the member name. To edit the member, enter an E”.

 101

Setting Up the IMS Common Service Layer
The three CSL components required to use DRD with the IMS repository are Operations
Manager (OM), Structured Call Interface (SCI) and Resource Manager (RM). OM allows
you to enter commands to one or more systems in an IMSplex from a single point of
control (SPOC). DRD uses type-2 commands, which must be entered via an OM
interface such as a SPOC. SCI enables communication among members existing
together in an IMSplex. When you enter a command to an IMSplex, SCI passes the
command to OM, who in turn routes it to one or more IMS systems the IMSplex. OM
collects the command responses from the various IMS systems and returns a
consolidated command response back to the command originator. In a DRD with
repository environment, RM communicates with the Repository Server address space
(which is not a CSL component, but a required element to use the repository) via XCF
services when it requires access to the IMS resources in the repository. This whole
process occurs behind the scenes when you use the IMS TSO SPOC application (a
type of single point of control) to enter DRD commands to the IMS systems in the
IMSplex.

To set up the CSL, you must define the CSL parameters in the DFSDFxxx PROCLIB
member. You will later see that this same PROCLIB member is used to define the DRD
enablement parameters. Lastly, each CSL component requires an initialization
PROCLIB member that is read when its address space is initializing. For simplicity,
each of these members has already been defined for you and in this section you will
simply browse them to give you an idea of their required parameters along with their
appropriate values.

System Definition PROCLIB Member (DFSDFxxx) for CSL
The processing options for the CSL are defined in the CSL section of the System
Definition PROCLIB member DFSDFxxx. The xxx suffix will be specified in the
IMS startup procedure JCL to indicate the specific member to be read upon
startup. In this workshop, each of our IMS systems has been enabled to use the
repository and each has its own respective DFSDFxxx member: DFSDF00B
belongs to the IMSB system and DFSDF00C belongs to IMSC. To see an
example, you can review the DFSDF00B member, which is contained in the
IMS.IMSB.PROCLIB partitioned data set (PDS). To browse this member, use
ISPF Primary Options Menu 3.4 (if you are unfamiliar with this browsing process,
please see the section entitled Browsing a PDS Member Using ISPF 3.4 on page
99 in this Appendix).

 102

Browse the member and you will see the following.

Notice that the following parameters are specified in the Common Service Layer
section of this member:

• CMDSEC=N means that IMS will not perform any security checking on
commands that that are routed to it from OM. Note that IMS security
checking differs from OM security checking (specified in CSLOIxxx, to be
covered later).

 103

• IMSPLEX=DEMOC is the IMSplex group name. All CSL components such
as SCI, OM and RM that we will review shortly must specify DEMOC for
the IMSplex.

• LEPOPT=Y means that IMS will allow Language Environment (LE)
dynamic runtime parameter overrides.

• OLC=LOCAL means that local online change (versus global/coordinated
online change) is enabled for the IMSplex.

• MODBLKS=DYN means that Dynamic Resource Definition is enabled for
the IMSplex for the dynamic management of MODBLKS resources.

• RMENV=Y means that IMS requires an RM environment in order to use
RM services. The use of the IMS repository with DRD requires RM, so the
parameter must be defined this way, which is the default.

If you look at the Dynamic Resources section of this member, you will see values
defined for AUTOIMPORT, AUTOEXPORT and RDDSDSN. When using DRD
with the repository, the only relevant parameter is AUTOIMPORT because
automatic export is not supported in this environment and RDDSs are not used
after migrating to the repository flavor of DRD. When AUTOIMPORT=AUTO, IMS
will attempt to first read the stored resource definitions form the repository during
coldstart. If there are no resources there, IMS will attempt to read the RDDS and
if no resources are there, it will resort to reading MODBLKS.

Press PF3 once to return to the list of members contained in the
IMS.IMSB.PROCLIB data set.

SCI Initialization PROCLIB Member (CSLSIxxx)
The parameters that define SCI within an IMSplex are contained in the CSLSIxxx
PROCLIB member. The xxx suffix will be specified in the SCI address space
startup procedure JCL to indicate the specific member to be read upon startup. In
this workshop, the SCI initialization member that is part of our DEMOC IMSplex

 104

is named CSLSI00B and is contained in the IMS.IMSB.PROCLIB data set. To
browse this member, find it in the list of members currently displayed in the
IMS.IMSD.PROCLIB data set. Otherwise, use ISPF Primary Options Menu 3.4 (if
you are unfamiliar with this browsing process, please see the section entitled
Browsing a PDS Member Using ISPF 3.4 on page 99 in this Appendix).

Browse the member and you will see the following.

Note the parameter values that are shown in this member:

 105

• ARMRST=Y means that the SCI address space will automatically be
restarted by the Automatic Restart Manager in the event that it fails.

• SCINAME=IMSB means that the SCIID used as the job name associated
with the SCI address space will actually be “IMSBSCI”.

• IMSPLEX(NAME=DEMOC) means that this SCI is part of the IMSplex
named DEMOC. The two IMS systems (IMSB and IMSC) that you will be
working with in this workshop, along with the OM address space, are all
part of this same IMSplex.

Press PF3 once to return to the list of members contained in the
IMS.IMSB.PROCLIB data set.

SCI Address Space Startup Procedure
In this workshop, the SCI address space has already been initialized for you and
is running as a started task. As mentioned above, the name of the SCI is
IMSBSCI. For your reference, the JCL used to start the SCI address space is
shown in the following example. Note that SCIINIT=00B was specified, so that
the CSLSI00B initialization member that you just saw above is read upon
initialization of the SCI address space. Also note that ARMRST=N was specified,
so that the ARMRST=Y defined in the CSLSI00B member is overridden at SCI
initialization.

OM Initialization PROCLIB Member (CSLOIxxx)
The parameters that define OM within an IMSplex are contained in the CSLOIxxx
PROCLIB member. The xxx suffix will be specified in the OM startup procedure
JCL to indicate the specific member to be read upon startup. In this workshop,
the OM initialization member that is part of our DEMOC IMSplex is named
CSLOI00B and is contained in the IMS.IMSC.PROCLIB data set. To browse this
member, find it in the list of members currently displayed in the

 106

IMS.IMSB.PROCLIB data set. Otherwise, use ISPF Primary Options Menu 3.4 (if
you are unfamiliar with this browsing process, please see the section entitled
Browsing a PDS Member Using ISPF 3.4 on page 99 in this Appendix.

Browse the member and you will see the following.

Note the parameter values that are shown in this member:

• ARMRST=N means that if the OM address space fails, Automatic Restart
Manager will not restart it.

 107

• CMDLANG=ENU means that English will be used for IMS command text
that is distributed to OM automation clients upon request.

• CMDSEC=N means that there is no command security in place for any
command coming through the OM interface (type-1/type-2).

• OMNAME=IMSB means that this OM’s OMID known to the system is
“IMSBOM”.

• IMSPLEX(NAME=DEMOB,AUDITLOG=SYSLOG.MVSQ01.LOG) means
that the OM is part of the DEMOC IMSplex and that the system logger log
stream named SYSLOG.MVSQ01.LOG will be used for the OM Audit
Trail.

• CMDTEXTDSN=IMS.V12R1.SDFSDATA specifies the name of the PDS
that contains the command syntax translatable text. This keyword is
required and is the 1-44 character data set name. The data set must be a
PDS with fixed-length record members.

OM Address Space Startup Procedure
In this workshop, the OM address space has already been initialized for you and
is running as a started task. As mentioned above, the name of the OM is
IMSBOM. For your reference, the JCL used to start the OM address space is
shown in the following example. Note that OMINIT=00B was specified, so that
the CSLOI00B initialization member that you just saw above is read upon
initialization of the OM address space.

Press PF3 once to return to the list of members contained in the
IMS.IMSB.PROCLIB data set.

RM Initialization PROCLIB Member (CSLRIxxx)
The parameters that define RM within an IMSplex are contained in the CSLRIxxx
PROCLIB member. The xxx suffix will be specified in the RM startup procedure
JCL to indicate the specific member to be read upon startup. In this workshop,

 108

the RM initialization member that is part of our DEMOC IMSplex is named
CSLRI00B and is contained in the IMS.IMSB.PROCLIB data set. To browse this
member, find it in the list of members currently displayed in the
IMS.IMSB.PROCLIB data set. Otherwise, use ISPF Primary Options Menu 3.4 (if
you are unfamiliar with this browsing process, please see the section entitled
Browsing a PDS Member Using ISPF 3.4 on page 99 in this Appendix.

Browse the member and you will see the following.

Note the parameter values that are shown in this member:

 109

• ARMRST=N means that if the RM address space fails, Automatic Restart
Manager will not restart it.

• IMSPLEX(NAME=DEMOC) means that this RM is part of the IMSplex
named DEMOC. The two IMS systems (IMSB and IMSC) that you will be
working with in this workshop, along with the RM address space, are all
part of this same IMSplex.

• RMNAME=IMSB means that this RM’s RMID known to the system is
“IMSBRM”.

The <SECTION=REPOSITORY> is new in IMS 12 and must specify settings
specific to the repository environment. Note the parameter values that are shown
here:

• NAME=IMSREPNM means that the name of the repository being
managed by RM is “IMSREPNM”; this same name is used by the Batch
Admin utility when defining the repository to the Repository Server
address space using the ADD function.

• TYPE=IMSRSC means that the type of repository being defined here is of
type IMSRSC (currently the only type available).

• GROUP=REPXCFGN means that RM is in the XCF group named
REPXCFGN; this same group must be defined in the FRPCFG PROCLIB
member.

RM Address Space Startup Procedure
In this workshop, the RM address space has already been initialized for you and
is running as a started task. As mentioned above, the name of the RM is
IMSBRM. For your reference, the JCL used to start the RM address space is
shown in the following example. Note that RMINIT=00B was specified, so that
the CSLRI00B initialization member that you just saw above is read upon
initialization of the RM address space.

 110

Setting Up IMS Dynamic Resource Definition with Repository
In addition to defining MODBLKS=DYN in the Common Service Layer section of
DFSDFxxx (mentioned earlier), there is another section specific to Dynamic Resource
Definition (DRD) that must also be defined in this same member. If you reviewed the
previous section entitled Setting Up the IMS Common Service Layer on page 101, you
began by studying the CSL section in the DFSDF00B member contained in the
IMS.IMSB.PROCLIB data set. We will now review this member again, this time focusing
on the DRD section. To browse this member, use ISPF Primary Options Menu 3.4 (if
you are unfamiliar with this browsing process, please see the section entitled Browsing
a PDS Member Using ISPF 3.4 on page 99 in this Appendix.

 111

Browse the member and you will see the following. Press PF8 to page down and see all
of the parameters defined here.

Note that the following parameters have been defined in
<SECTION=DYNAMIC_RESOURCES>:

• AUTOEXPORT=AUTO means that at every IMS system checkpoint, if there
have been MOBDLKS definitional changes made since the previous system
checkpoint, IMS will automatically export all of its MODBLKS runtime resource
definitions to its system RDDS containing the oldest data. Note: when DRD with
repository has been enabled, the RDDS is no longer used. But as long as

 112

automatic export is still enabled (as shown in our example above), IMS will
continue writing resources to the RDDS at system checkpoint time if there have
been runtime definitional changes made. Once migration to DRD with repository
has been completed, you should disable autoexport with the UPDATE IMS

SET(LCLPARM(AUTOEXPORT(N)) command to eliminate the unnecessary I/O

to the RDDS.

• AUTOIMPORT=AUTO means that IMS will import all MODBLKS stored
resource definitions from the repository at coldstart, or if the repository is empty
or not defined, from the most current system RDDS; if its system RDDSs are
empty or not defined, IMS attempts to read from the MODBLKS data set.

• RDDSDSN=(IMS.IMSB.RDDS1, IMS.IMSB.RDDS2, IMS.IMSB.RDDS3)
specifies the names of the system RDDSs for this particular IMS system. Again,
the system RDDS is not used in a DRD with repository environment but if
autoexport remains enabled, IMS will continue to export to these system RDDSs
at system checkpoint time until it is explicitly disabled.

•
Note that the following parameter has been defined in <SECTION=REPOSITORY>:

• TYPE=IMSRSC indicates that the type of repository being used in this IMSplex is
of type IMSRSC (the only valid type at this time); members of an IMSplex share
this same repository to store MODBLKS resource definitions: databases,
programs, routing codes and transactions.

Allocating Repository Data Sets (Catalog and IMSRSC)
The following JCL was used to allocate the RS catalog data sets (primary/secondary) as
well as the IMSRSC repository data sets (primary/secondary/spare) that contain IMS
stored resource definitions.

//*

//* ALLOCATE DATA SETS

//*

//ALLOCATE EXEC PGM=IDCAMS,DYNAMNBR=200

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.CATPRI.RID)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(128,0)

 FREESPACE(10 10)

 RECORDSIZE(282 282)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.CATPRI.RID.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.CATPRI.RID.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.CATPRI.RMD)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(12,0)

 FREESPACE(20 20)

 113

 RECORDSIZE(8185 8185)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.CATPRI.RMD.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.CATPRI.RMD.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.CATSEC.RID)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(128,0)

 FREESPACE(10 10)

 RECORDSIZE(282 282)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.CATSEC.RID.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.CATSEC.RID.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.CATSEC.RMD)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(12,0)

 FREESPACE(20 20)

 RECORDSIZE(8185 8185)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.CATSEC.RMD.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.CATSEC.RMD.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.IMSPRI.RID)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(128,0)

 FREESPACE(10 10)

 RECORDSIZE(282 282)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.IMSPRI.RID.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.IMSPRI.RID.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.IMSPRI.RMD)

 REUSE

 INDEXED

 114

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(12,0)

 FREESPACE(20 20)

 RECORDSIZE(8185 8185)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.IMSPRI.RMD.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.IMSPRI.RMD.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.IMSSEC.RID)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(128,0)

 FREESPACE(10 10)

 RECORDSIZE(282 282)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.IMSSEC.RID.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.IMSSEC.RID.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.IMSSEC.RMD)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(12,0)

 FREESPACE(20 20)

 RECORDSIZE(8185 8185)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.IMSSEC.RMD.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.IMSSEC.RMD.I)

)

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.IMSSPR.RID)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(128,0)

 FREESPACE(10 10)

 RECORDSIZE(282 282)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.IMSSPR.RID.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.IMSSPR.RID.I)

)

 115

 DEFINE CLUSTER(

 NAME(IMS.IMSB.REPO.IMSSPR.RMD)

 REUSE

 INDEXED

 STORCLAS(BASE)

 MGMTCLAS(STANDARD)

 KEYS(12,0)

 FREESPACE(20 20)

 RECORDSIZE(8185 8185)

 SHAREOPTIONS(2 3)

 CONTROLINTERVALSIZE(8192)

 VOLUMES(DMEP01)

 CYLINDERS(1 1)

)

 DATA(

 NAME(IMS.IMSB.REPO.IMSSPR.RMD.D)

)

 INDEX(

 NAME(IMS.IMSB.REPO.IMSSPR.RMD.I)

)

Setting Up the Repository Server
To use DRD with the repository, the Repository Server address space must be
configured with settings related to performance, communications and security in its
FRPCFG PROCLIB member. In this workshop’s test environment, the name of the RS
configuration member is RSCFIGNM and is contained in the IMS.IMSB.PROCLIB PDS.
To browse this member, use ISPF Primary Options Menu 3.4 (if you are unfamiliar with
this browsing process, please see the section entitled Browsing a PDS Member Using
ISPF 3.4 on page 99 in this Appendix.

Browse the member and you will see the following. Press PF8 to page down and see all
of the parameters defined here.

 116

Note the parameter values that are shown in this member:

• XCF_THREADS=8 means that there are 8 XCF listener threads available to
accept data from clients.

• MAX_COMMUNICATION_RETRY=32 is the default value and means that there
are 32 communication retries in the event that a client-side API process
experiences a failure due to insufficient z/OS XCF threads. When this limit is

 117

exceeded, the client request fails with a reason code indicating that the server is
busy.

• MBR_CORE_MAX=1024 is the default value and means that there are 1024KB
of incore storage allocated to support an XCF data package.

• IMSPLEX(NAME=DEMOC) means that the RS address space is part of the
DEMOC IMSplex.

• RSNAME=RSRVNM means that the name “RSRVNM” is used to create the
REPOID, used in RS processing. The characters “RP” are appended to this
name, so any messages output by the RS will contain its name as
“RSRVNMRP”.

• PRIMARY_CATALOG_REPOSITORY_INDEX=
(IMS.IMSB.REPO.CATPRI.RID) defines the name of the primary RID of
the RS catalog repository.

• PRIMARY_CATALOG_REPOSITORY_INDEX=
(IMS.IMSB.REPO.CATPRI.RMD) defines the name of the primary RMD of
the RS catalog repository.

• SECONDARY_CATALOG_REPOSITORY_INDEX=
(IMS.IMSB.REPO.CATSEC.RID) defines the name of the secondary RID
of the RS catalog repository.

• SECONDARY_CATALOG_REPOSITORY_INDEX=
(IMS.IMSB.REPO.CATSEC.RMD) defines the name of the secondary
RMD of the RS catalog repository.

• VSAM_BUFNO=128 is the default value and means that there are 128 VSAM
buffers in the local shared resource pool used for repository access.

• VSAM_BUFSIZE=8 is the default value and means that the VSAM LSR pool
buffers used for repository I/O are 8KB in size.

• XCF_GROUP_NAME=REPXCFGN means that the RS is part of the
REPXCFGN XCF group.

• AUDIT=NO means that auditing is disabled and access to the repository is not
being tracked.

• AUDIT_FAIL=CONTINUE is the default value and indicates that if auditing were
enabled (currently it’s not since AUDIT=NO is defined) and the RS address
space fails to connect to the log stream when it’s first initializing, to continue the
initialization process versus aborting.

• AUDIT_LEVEL=HIGH means that when auditing is enabled, that audit records
are written to the log.

• AUDIT_DEFAULT=NOAUDIT is the default value and indicates that access to
members within the repository will not be audited.

RS Address Space Startup Procedure
In this workshop, the RS address space has already been initialized for you and
is running as a started task. As mentioned above, the name of the RS is
RSRVNM. For your reference, the JCL used to start the RS address space is
shown in the following example. Note that FPQRCFG=RSCFIGNM was
specified, so that the RSCFIGNM member that you just saw above is read upon
initialization of the RM address space.

 118

Allocating a Non-System RDDS
An RDDS (either system or non-system) is a BSAM data set that can be allocated using
either IEBGENER or the ISPF ALLOCATION function. Remember, a system RDDS is
associated with a single IMS system and contains a total capture of its MODBLKS
definitions and is not shared with other IMS systems. A non-system RDDS on the other
hand, can be shared among IMS systems and can be used to port resource definitions
from one IMS to another, as you’ve seen in the previous exercises.

In this section, you will allocate a non-system RDDS using IEBGENER. The IEBGENER
job is contained in the IMPOTXX.TESTXYZ PDS member named DFSRDDAL.
Navigate to this member using the ISPF Primary Options Menu option 3.4.

 119

Browse the IMPOTXX.TESTXYZ data set (substituting your user ID # for the XX).

 120

Edit the DFSRDDAL member by entering an “E” next to it and pressing Enter.

Change the XXs in the job name IMPOTXX to specify your user ID # instead. Replace
the XXs in the same way for the DSN=IMPOTXX.NSRDDS2 name on the SYSUT2 DD
statement. This is the name of the non-system RDDS that you are creating. Keep all of
the other parameters as shown in the JCL, as these are the recommended values for
allocating an RDDS. Enter “SUB” on the command line to submit the job, ensuring that
you also enter a job name character (such as “O”) and press Enter.

 121

Note the job ID from this screen (in the example, it is JOB08088). Press Enter, then PF3
until you reach the ISPF Primary Options Menu. Now select option 3.8 and press Enter.

Enter “IMPOTXX” plus the jobname character in the jobname field. For example, if your
user ID is IMPOT11 and you entered an “O” as the job name character when you
submitted the job in the previous step, you would enter “IMPOT11O” in the jobname
field. Since you already know the job ID, there is no need to determine it by entering an
“L” on the command line, as in previous exercises. Simply enter the job ID in the
appropriate fields as shown in the following screenshot and press Enter.

 122

Press PF8 to scroll through the output and note that the COND CODE shown is 0000,
which indicates that your non-system RDDS named IMPOTXX.NSRDDS2 was
allocated successfully.

To exit, press PF3 until you reach the ISPF Primary Options menu.

 123

You can also verify that the non-system RDDS was created successfully via ISPF
Primary Options Menu 3.4.

Specify IMPOTXX.NSRDDS2 for the data set name such as in the following example
and press Enter.

 124

The data set is shown and is now ready for use.

 125

Julian Day Table Reference

 126

Viewing IMSplex Activity in the OM Audit Trail
The OM Audit Trail tracks all IMSplex activity, including command input/output as well
as unsolicited messages. This section consists of several sample screenshots
showcasing the different capabilities of the OM Audit Trail.

Note: The instructions shown here are for use with an IMS system named IMSD that is
enabled to use the original type of DRD with the RDDS. Your system contains IMSs that
are repository-enabled (RDDS is not used here), so this section is for your reference
only and not meant for a hands-on activity. In the future, this workshop will be updated
to show the OM Audit Trail tracking activities associated with IMS systems that are
enabled with repository DRD.

We begin with an assumption that a program named PGMXXAUX was previously
created on IMSD. We will also use the OM Audit Trail to determine which system RDDS
was written to during the automatic export, and we will then extract this RDDS using the
RDDS Extraction Utility to show that this resource was in fact included in the automatic
export.

In order to view the OM Audit Trail, place your cursor under the “SPOC” menu within the
TSO SPOC command entry screen and enter a “6” as shown.

The OM Audit Trail works by using the z/OS system logger log stream and therefore,
the name of this log stream must be specified in the “Datastream name” field, as shown
in the next example. Enter SYSLOG.MVSQ01.LOG for the log stream name and press
Enter. Note that this same log stream name must be specified in the OM initialization
PROCLIB member. Please refer to the Appendix section entitled Setting up the OM
Audit Trail (Additional Instructions) on page 133 for more information about this.

 127

The following screen is displayed and the first item shown is the CREATE PGM
NAME(PGMXXAUX) command input/output. Here, you can see a record of all activity
that has occurred in the IMSplex.

 128

To view any command response, simply place the cursor under the command shown on
the screen and press Enter. The response associated with that command will be
displayed. When you are finished viewing the response, press PF12 to get back to the
Audit Trail screen. For example, to view the output from the CREATE PGM command,
place your cursor under the command, as shown in the following screenshot.

Press Enter and the command response is displayed.

 129

Press PF12 to get back to the Audit Trail home screen. Next, press PF8 until you reach
the bottom of the screen. Notice the DFS3371I message that indicates an automatic
export occurred.

Page to the right to see the name of the system RDDS that was targeted for this export
using the PF11 key (or enter a command such as “RIGHT 15” on the command line to
page 15 spaces to the right). The following screen is displayed if you enter “RIGHT 15”
and you can see that the automatic export wrote all of IMSD’s resources (including the
new PGMXXAUX resource that you created) a specific system RDDS, and in our
example that follows it was IMS.IMSD.RDDS1.

 130

Sidenote: typically the PF10 key is set to page to the left and the PF11 key is set to
page to the right. If your PF10/PF11 are not functioning in this way, please see the
section entitled Setting Key Values in the IMS TSO SPOC in the Appendix on page 90
to learn how to assign key values.

Now that you know the name of the system RDDS that automatic export wrote to, you
can run the RDDS Extraction utility against it (specifying OUTPUT=QUERY in the JCL)
to confirm that your newly created PGMXXAUX resource was included in automatic
export process.

 131

To invoke the RDDS Extraction utility, navigate to the URDD0QRY member within the
IMPOTXX.TESTXYZ data set using ISPF Primary Option Menu option 3.4 (see section
Browsing a PDS Member Using ISPF 3.4 on page 99 in the Appendix for more detail).
Edit the member to change the RDDSDSN DD statement to specify IMS.IMSD.RDDS1
(or whichever system RDDS you determined in the previous exercise was targeted by
the automatic export). Ensure that your user ID # is included in the job name, then
submit the job, enter a job name character if prompted, and note the job ID shown.

 132

Note the job ID (in our example it is JOB08061) and view the output using ISPF Primary
Options Menu 3.8.

 133

Press Enter again to view the job output. Search on PGMXXAUX by entering “F
PGMXXAUX” on the command line, substituting the PGM resource name that you
created (having replaced the XXs with your user ID #) to confirm that this resource was
successfully exported to IMSD’s oldest system RDDS.

 134

Setting up the OM Audit Trail (Additional Instructions)
Setup note: this same log stream name must also be specified in the OM initialization
PROCLIB member using the AUDITLOG= parameter. The OM that currently exists in
your DEMOD IMSplex used the CSLOI00D member to apply its parameter values when
it initialized. We have included a screenshot of the CSLOI00D member contained in the
IMS.IMSD.PROCLIB data set, shown in the following example. Notice that the
AUDITLOG= parameter matches what you specified for the log stream name on the
Audit Trail input panel.

