
A+ + : Using the World's Most Powerful

Macro Facility With High Level Assembler

Parts 1 and 2

SHARE 119, Anaheim CA, Summer 2012

Presented by Tom Wasik, IBM
wasik@us.ibm.com

Contents prepared by John R. Ehrman
ehrman@us.ibm.com

International Business Machines Corporation
Silicon Valley Laboratory

555 Bailey Avenue
San Jose, California 95141 USA

 Synopsis:

This tutorial introduces the powerful concepts of conditional assembly supported by the High Level
Assembler for z/OS, z/VM, & z/VSE, and provides examples of its use in both “open code” and in macro
instructions.

The examples in this document are for purposes of illustration only, and no warranty of correctness or
applicability is implied or expressed.

Permission is granted to SHARE Incorporated to publish this material in the proceedings of the SHARE
119. IBM retains the right to publish this material elsewhere.

© Copyright IBM Corporation 1995, 2012. All rights reserved.

Copyright Notices and Trademarks

© Copyright IBM Corporation 1995, 2012. All rights reserved. Note to U.S. Government Users: Doc-
umentation subject to restricted rights. Use, duplication, or disclosure is subject to restrictions set forth in
GSA ADP Schedule Contract with IBM Corp.

The following terms, denoted by an asterisk (*) in this publication, are trademarks or registered trademarks
of the International Business Machines Corporation in the United States and/or other countries:

Publications and Web Site

The currently available product publications for High Level Assembler for z/OS, z/VM, and z/VSE are:

• High Level Assembler for z/OS, z/VM, and z/VSE Language Reference, SC26-4940
• High Level Assembler for z/OS, z/VM, and z/VSE Programmer's Guide, SC26-4941
• High Level Assembler for z/OS, z/VM, and z/VSE Licensed Program Specifications, GC26-4944
• High Level Assembler for z/OS, z/VM, and z/VSE Installation and Customization Guide, SC26-3494

The currently available product publications for High Level Assembler for z/OS, z/VM, and z/VSE Toolkit
Feature are:

• High Level Assembler for z/OS, z/VM, and z/VSE Toolkit Feature Interactive Debug Facility User's
Guide, GC26-8709

• High Level Assembler for z/OS, z/VM, and z/VSE Toolkit Feature User's Guide, GC26-8710
• High Level Assembler for z/OS, z/VM, and z/VSE Toolkit Feature Installation and Customization

Guide, GC26-8711
• High Level Assembler for z/OS, z/VM, and z/VSE Toolkit Feature Interactive Debug Facility Reference

Summary, GC26-8712

The currently available product publications for High Level Assembler for Linux on zSeries are:

• High Level Assembler for Linux on System z User's Guide, SC18-9611

HLASM publications are available online at the HLASM web site:

http://www.ibm.com/software/awdtools/hlasm/

 Acknowledgments

I am grateful to many people who have helped make this material more reliable and readable:

• Friends and colleagues at SHARE have offered advice (and corrections) during and after presentations.
• Abe Kornelis (abe@bixoft.nl) provided many helpful suggestions and caught many inaccuracies.

IBM System/370 System/390 zSeries
z/OS z/VM z/VSE OS/390
DFSMS z/Architecture ESA

ii A+ + : Using HLASM's Macro Facility

Contents

Conditional Assembly and Macros . 1
Why is the Conditional Assembly Language So Useful? . 2
Why is the Conditional Assembly Language So Interesting? 3

Part 1: The Conditional Assembly Language . 4
Evaluation, Substitution, and Selection . 6
Variable Symbols . 7

Declaring Variable (SET) Symbols . 9
Subscripted Variable Symbols . 10
Created Variable Symbols . 10

Assigning Values to Variable Symbols: SET Statements . 12
Substitution . 13
Evaluating Arithmetic Expressions: SETA . 14

SETA Statements vs. EQU Statements . 16
Evaluating and Assigning Boolean Expressions: SETB . 17
Evaluating and Assigning Character Expressions: SETC . 19

Character Expressions: String Concatenation . 21
Character Expressions: Substrings . 22
Character Expressions: String Lengths . 24

Conditional Expressions with Mixed Operand Types . 25
Internal Conditional-Assembly Functions . 26

Functions Using Logical-Expression Format . 27
Arithmetic-Valued Functions Using Logical-Expression Format 28
Character-Valued Functions Using Logical-Expression Format 29

Functions Using Function-Invocation Format . 30
Internal Type-Conversion Functions . 31
Converting from Arithmetic Data to Character Value Types 32
Converting from Character Values to Arithmetic Values 33
Converting to and from Decimal Character Data . 34
Converting Among Bit, Byte, and Hexadecimal String Data 36
Validity-Testing Functions . 37
Character-Valued String Functions . 38
Arithmetic-Valued String Functions . 39

External Conditional-Assembly Functions . 40
Statement Selection: Conditional Assembly Control Flow . 41

Sequence Symbols . 42
ANOP Statement . 43
The AGO Statement . 43

The Extended AGO Statement . 44
The AIF Statement . 45

The Extended AIF Statement . 46
Displaying Symbol Values and Messages: The MNOTE Statement 47
Examples of Conditional Assembly . 48

Example 1: Generate Bytes with Values 1-N . 48
Example 3: Generating System-Dependent I/O Statements 51

Conditional Assembly Language Eccentricities . 52
Conditional Assembly Language Special Topics . 53

Comments on Substitution, Evaluation, and Re-Scanning 53
Logical Operators in SETA, SETB, and AIF Statements . 55

Part 2: Basic Macro Concepts . 56
What is a Macro Facility? . 57

Macros and Subroutines . 57
Benefits of Macro Facilities . 58

The Macro Concept: Fundamental Mechanisms . 59
Text Insertion . 60
Text Parameterization and Argument Association . 61
Text Selection . 62

 Contents iii

Macro Call Nesting . 63
Macro Definition Nesting . 65

The Assembler Language Macro Definition . 67
Macro-Instruction Definition Example . 67
Macro-Instruction Recognition Rules . 68
Macro Expansion, Generated Statements, and the MEXIT Statement 69

Macro Comments and Readability Aids . 70
Example 1: Define Equated Symbols for Registers . 71
Macro Parameters and Arguments . 72

Macro-Definition Parameters . 73
Macro-Instruction Arguments . 74
Macro Parameter-Argument Association . 76

Example 2: Generate a Sequence of Byte Values (BYTESEQ1) 78
Macro Argument Attributes and Structures . 79

Macro-Instruction Argument Properties: Type Attribute . 81
Length, Integer, and Scale Attributes . 81
Defined Attribute . 82
Macro-Instruction Argument Properties: Count Attribute 82
Macro-Instruction Argument Properties: Lists and Number Attributes 83

Macro-Instruction Argument Lists and Sublists . 84
Macro-Instruction Argument Lists and the &SYSLIST Variable Symbol 86
Summary of Attribute References . 87

Global Variable Symbols . 88
Variable Symbol Scope Rules: Summary . 89

Macro Debugging Techniques . 91
Macro Debugging: The MNOTE Statement . 91
Macro Debugging: The MHELP Statement . 92
Macro Debugging: The ACTR Statement . 94
Macro Debugging: The LIBMAC Option . 95
Macro Debugging: The PRINT MCALL Statement . 96
IBM Macro Libraries . 97

Macro Special Topics . 97
Macro-Instruction Recognition: Details . 98

Macro-Definition Encoding . 98
Nested Macro Definitions . 100
Constructed Keyword Arguments . 101

Macro Parameter Usage in Model Statements . 102
Macro Argument Lists and Sublists: Details . 103

Inner-Macro Sublists . 104

Part 3: Macro Techniques . 106
Macro Techniques Case Studies . 109
Case Study 1: Defining Equated Symbols for Registers . 110
Case Study 2: Generating a Sequence of Byte Values . 115
Case Study 3: ‘MVC2’ Macro Uses Source Operand Length 118
Case Study 4: Generate a List of Named Integer Constants 120
Case Study 5: Using the AREAD Statement . 123

Case Study 5a: Creating Length-Prefixed Message Texts 124
Simplest Prefixed Message Text . 125
More General Prefixed Message Text . 125
Prefixed Message Text with the AREAD Statement . 128

Case Study 5b: Block Comments . 130
Case Study 6: Macro Recursion . 132

Recursion Example 1: Binary Factorial-Function Values 133
Recursion Example 2: Fibonacci Numbers . 135
Recursion Example 3: Indirect Addressing . 137

Case Study 7: Macros for Bit-Handling Operations . 140
Basic Bit Handling Techniques . 140
Case Study 7a: Bit-Handling Macros -- Simple Forms . 142

Simple Bit-Manipulation Macros . 145
Simple Bit-Manipulation Macros: Setting Bits ON . 145
Simple Bit-Manipulation Macros: Inverting and Setting Bits OFF 147

iv A+ + : Using HLASM's Macro Facility

Simple Bit-Testing Macros . 149
Case Study 7b: Bit-Handling Macros -- Advanced Forms 151

Bit-Handling “Micro Language” and “Micro-Compiler” 152
Declaring Bit Names . 155
Improved Bit-Manipulation Macros . 160
Using Declared Bit Names in a BitOn Macro . 160
Using Declared Bit Names in a BBitOn Macro . 165

Case Study 8: Utilizing The Assembler's Data Types . 173
Case Study 8a: Type Sensitivity with Simple Polymorphism 174
Shortcomings of Assembler-Assigned Types . 177
Symbol Attributes and Lookahead Mode . 178

The LOCTR Statement . 178
Case Study 8b: Instruction-Operand Type Checking . 179

Instruction-Operand Type Checking . 181
Instruction-Operand Type Checking (Generalized) . 183

The AINSERT Statement . 183
User-Defined Assembler Type Attributes . 187

Instruction-Operand-Register Type Checking . 189
Case Study 8c: Encapsulated Abstract Data Types . 191

Calculating with Date Variables . 195
Calculating with Interval Variables . 197

Comparison Operators for Dates and Intervals . 201
Case Study 9: Using Program Attributes . 203

Program Attributes . 203
Program Attributes, Variation 1: Simple Assignment . 205
Program Attributes, Variation 2: Mixed Representations 207
Program Attributes, Variation 3: Declaring Properties 210
Program Attributes, Variation 3: Evaluating Conversions 213
Program Attributes, Variation 4: Assigning Measures 215
Program Attributes, Variation 4: Evaluating Measures 217
Program Attributes, Variation 5: Declaring Units . 218
Program Attributes, Variation 5: Evaluating and Assigning 223
Assembler and Program Attribute Summary . 231

Case Study 10: “Front-Ending” a Library Macro . 231
Summary . 232

External Conditional Assembly Functions . 234
External Conditional Assembly Functions . 235
SETAF External Function Interface . 236

Arithmetic-Valued Function Example: LOG2 . 237
SETCF External Function Interface . 242

String-Valued Function Example: REVERSE . 243
Installing the LOG2 and REVERSE Functions . 248

System (&SYS) Variable Symbols . 249
System Variable Symbols: Properties . 250
Variable Symbols With Fixed Values During an Assembly 253

&SYSASM and &SYSVER . 253
&SYSTEM_ID . 253
&SYSJOB and &SYSSTEP . 254
&SYSDATC . 254
&SYSDATE . 254
&SYSTIME . 254
&SYSOPT_OPTABLE . 254
&SYSOPT_DBCS, &SYSOPT_RENT, and &SYSOPT_XOBJECT 255
&SYSPARM . 255
&SYS Symbols for Output Files . 255

Variable Symbols With Constant Values Within a Macro . 256
&SYSSEQF . 256
&SYSECT . 256
&SYSSTYP . 257

 Contents v

&SYSLOC . 257
&SYSIN_DSN, &SYSIN_MEMBER, and &SYSIN_VOLUME 257
&SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB_VOLUME 258
&SYSCLOCK . 258
&SYSNEST . 259
&SYSMAC . 259
&SYSNDX . 259
&SYSLIST . 259

Variable Symbols Whose Values May Vary Anywhere . 260
&SYSSTMT . 260
&SYSM_HSEV and &SYSM_SEV . 260

Example Using Many System Variable Symbols . 261
&SYSTIME, &SYSCLOCK, and the AREAD Statement 261

Comparing Ordinary and Conditional Assembly . 263

Figures

 1. Explicit Variable Symbol Declarations and Initial Values 9
 2. Differences between SETA and EQU Statements . 16
 3. Conditional Assembly SET Statement Operand Types 25
 3. Conditional Assembly SET Statement Operand Types 25
 4. Arithmetic-Valued Functions Using Logical-Expression Format 27
 5. Character-Valued Functions Using Logical-Expression Format 27
 6. Representation-Conversion Functions . 31
 7. General Form of the Extended AGO Statement . 44
 8. General Form of the Extended AIF Statement . 46
 9. Generating a Sequence of Bytes, Individually Defined 49
10. Generating a Sequence of Bytes, as a Single Operand String 50
11. Conditional Assembly of I/O Module for Multiple OS Environments 51
12. Basic Macro Mechanisms: Text Insertion . 60
13. Basic Macro Mechanisms: Text Parameterization . 61
14. Basic Macro Mechanisms: Text Selection . 62
15. Basic Macro Mechanisms: Call Nesting . 64
16. Basic Macro Mechanisms: Nested Macro Definitions . 65
17. Assembler Language Macro Definition: Format . 67
18. Assembler Language Macro Mechanisms: Text Insertion by a “Real” Macro 68
19. Example of Ordinary and Macro Comment Statements 70
20. Simple Macro to Generate Register Equates . 71
21. Macro to Generate Register Equates Differently . 72
22. Sample Macro Prototype Statement . 73
23. The Same Macro Prototype Statement . 74
24. Macro Parameter-Argument Association Examples . 77
25. Macro to Define a Sequence of Byte Values . 78
26. Sample Macro Argument List Structures . 83
27. Sample Macro Argument Nested List Structures . 83
28. Attribute Usage in the Base and Conditional Languages 87
29. Example of Variable Symbol Dictionaries . 90
30. Macro Definition Nesting in High Level Assembler . 100
31. Example of a Substituted (Apparent) Keyword Argument 101
32. Macro to define general purpose registers once only 112
33. Macro to define any sets of registers once only . 114
34. Macro to define a sequence of byte values as a single string 117
35. MVC2 macro definition . 119
36. Macro parameter-argument association example: create a list of constants 121
37. Macro example: List-of-constants test cases . 122
38. Macro to define a length-prefixed message . 125

vi A+ + : Using HLASM's Macro Facility

39. Macro to define a length-prefixed message with paired characters 126
40. Macro to define a length-prefixed message with “true text” 129
41. Test cases for macro with “true text” messages . 129
42. Macro for block comments . 131
43. Macro to calculate factorials recursively . 134
44. Macro to calculate factorials recursively: examples . 134
45. Macro to calculate Fibonacci numbers recursively . 136
46. Example showing evaluation of Fibonacci numbers . 137
47. Recursive macro to implement indirect addressing . 138
48. Recursive macro to implement indirect addressing: examples 139
49. Simple bit-handling macros: bit declarations . 143
50. Simple bit-handling macros: example of bit declarations 144
51. Simple bit-handling macros: bit setting . 146
52. Simple bit-handling macros: examples of bit setting . 146
53. Simple bit-handling macros: bit resetting . 147
54. Simple bit-handling macros: bit inversion . 147
55. Simple bit-handling macros: examples of bit resetting 148
56. Simple bit-handling macros: examples of bit inversion 148
57. Simple bit-testing macros: branch if bit is on . 149
58. Simple bit-handling macros: examples of “branch if bit on” 150
59. Simple bit-handling macros: branch if bit is off . 150
60. Simple bit-handling macros: examples of “branch if bit off” 150
61. Bit-handling macros: define bit names: pseudo-code 154
62. Bit-handling macros: define bit names . 156
63. Bit-handling macros: examples of defining bit names 158
64. Bit-handling macros: set bits on: pseudo-code . 161
65. Bit-handling macros: set bits on . 163
66. Bit-handling macros: examples of setting bits on . 164
67. Bit-handling macros: branch if bits are on (flow diagram) 166
68. Bit-handling macros: branch if bits are on: pseudo-code 167
69. Bit-handling macros: macro to branch if bits are on 169
70. Bit-handling macros: examples of calls to BBitOn macro 171
71. Bit-handling macros: branch if any bits are on (flow diagram) 172
72. Macro type sensitivity to base language types . 175
73. Examples: macro type sensitivity to base language types 175
74. Examples: macro type sensitivity: incr macro generated code 176
75. Using the LOCTR statement to “group” code and data 179
76. Instruction-operand type checking: typechek macro . 181
77. Instruction-operand type checking: “instruction” macro 182
78. Instruction-operand type checking: examples . 182
79. Instruction-operand type checking: generated macro definitions 185
80. Generated statements from TYPCHKRX macro . 186
81. Instruction-operand type checking: assigning register types 188
82. Instruction-operand-register type checking: “instruction” macro 190
83. Macro to declare “date” data type . 192
84. Examples of declaring variables with “date” data type 192
85. Macro to declare “interval” data type . 193
86. Examples of declaring variables with “interval” data type 194
87. Macro to calculate “date” results . 196
88. Examples of macro calls to calculate “date” results . 196
89. Macro to calculate “interval” results . 198
90. Examples of macro calls to calculate “interval” results 199
91. Macro to add an interval to an interval . 200
92. Comparison macro for “date” data types . 202
93. Simple EVAL1 macro using type attribute . 205
94. Simple EVAL1 macro code beneration . 206
95. EVAL2 macro with some type conversions . 207
96. Examples of EVAL2 code generation . 209
97. DCL3 macro to declare data items (Part 1 of 2) . 211
98. DCL3 macro to declare data items (Part 2 of 2) . 212
99. Examples of DCL3 code generation . 213
100. EVAL4 macro converts measures . 216

 Figures vii

101. DCL5 macro to declare four program pttributes (Part 1 of 3) 219
102. DCL5 macro to declare four program attributes (Part 2 of 3) 220
103. DCL5 macro to declare four program attributes (Part 3 of 3) 220
104. EVAL5 Macro: Action Matrix for Weight Items . 224
105. EVAL5 macro: Action Matrix for Distance Items . 224
106. EVAL5 macro (Part 1 of 7) . 225
107. EVAL5 macro (Part 2 of 7) . 225
108. EVAL5 macro (Part 3 of 7) . 226
109. EVAL5 macro (Part 4 of 7) . 226
110. EVAL5 macro (Part 5 of 7) . 227
111. EVAL5 macro (Part 6 of 7) . 227
112. EVAL5 macro (Part 7 of 7) . 227
113. Example of a macro “wrapper” . 232
114. Interface for Arithmetic (SETAF) External Functions 236
115. Conditional-Assembly Function LOG2: Initial Commentary 237
116. Conditional-Assembly Function LOG2: Entry . 238
117. Conditional-Assembly Function LOG2: Validation . 238
118. Conditional-Assembly Function LOG2: Computation 239
119. Conditional-Assembly Function LOG2: Error Handling 239
120. Conditional-Assembly Function LOG2: Error Message Handling 240
121. Conditional-Assembly Function LOG2: Error Message Handling 240
122. Conditional-Assembly Function LOG2: Symbol Equates 241
123. Conditional-Assembly Function LOG2: Validation Equates 241
124. Conditional-Assembly Function LOG2: Dummy Sections 241
125. Interface for Character (SETCF) External Functions 242
126. Conditional-Assembly Function REVERSE: Prologue Text 243
127. Conditional-Assembly Function REVERSE: Entry Point 243
128. Conditional-Assembly Function REVERSE: Call Validation 244
129. Conditional-Assembly Function REVERSE: Argument Validation 244
130. Conditional-Assembly Function REVERSE: String Reversal 245
131. Conditional-Assembly Function REVERSE: Error Handling 245
132. Conditional-Assembly Function REVERSE: Error Messages 246
133. Conditional-Assembly Function REVERSE: Translate Table 246
134. Conditional-Assembly Function REVERSE: Basic Equates 247
135. Conditional-Assembly Function REVERSE: Validation Equates 247
136. Conditional-Assembly Function REVERSE: Dummy Sections 247
137. Properties and Uses of System Variable Symbols . 251
138. Comparison of Ordinary and Conditional Assembly 263

viii A+ + : Using HLASM's Macro Facility

Conditional Assembly and Macros

1

Fmt. 03 Jul 2012, 1800Rev. 18 Jun 2012
© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Conditional Assembly and Macros

We describe a powerful capability of High Level Assembler for z/OS, z/VM, & z/VSE that helps
you tailor programs to your specific needs: the “Conditional Assembly and Macro Facility”.

The presentation will show why HLASM's conditional assembly and macro capabilities are supe-
rior in many ways to those of other programming languages, including “high-level” languages.

Conditional Assembly and Macros 1

Why is the Conditional Assembly Language So Useful?

2Why is the Conditional Assembly Language So Useful?

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Large “Semantic Gap” between your conceptual model and its
implementation as instructions

• Assembler Language has a reputation for difficulty, complexity

− Requires knowledge of underlying architecture

...and its instructions

− I t 's verbose

• Macros encourage high-level design and implementation:

1. Create a language specific to your application needs

2. Write programs closer to your application's conceptual model

− Reduce the “semantic gap”

3. Address problems farther from the machine, closer to the problem

− No need to go below your conceptual model to know how it really works

4. Greatly simplify many assembler-language programming problems

Assembler Language has a reputation for difficulty and complexity: it's verbose, and requires
knowledge of the underlying architecture and relevant parts of its instruction set.

The level of detail normally required for Assembler Language programming normally implies a
“Semantic Gap” between your conceptual model of the application and its implementation.

Good design expects that you should have no need to go “below” your conceptual model to
know how the application really works. Thus, you will be able to address problems farther from
the machine and closer to the problem.

Conditional assembly and macros help you reduce the “semantic gap” between your concept and
its expression, and let you write programs much closer to the application's conceptual model.

We will see many examples showing how you can do this.

2 A+ + : Using HLASM's Macro Facility

Why is the Conditional Assembly Language So Interesting?

3Why is the Conditional Assembly Language So Interesting?

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Adds great power and flexibility to the base (ordinary) language

− You write l itt le programs that write programs for you!

− Lets the language and the assembler do more of the work

• You can adapt and change the implementation language to fit the
problem

− Each application encourages design of useful language elements

Unlike HLLs, where you must make the problem fit the language

− Addresses problems closer to the application, farther from the machine

− Lets you raise the level of abstraction in your programs

• You can build programs “bottom-up”

− Repeated code patterns become reusable macros; debug only once, lower
maintenance costs

− Enhances program readabil ity, reduces program size, simplif ies coding

Understanding the conditional assembly language not only adds to your knowledge of useful pro-
gramming techniques, but also lets you think about application programming in new and different
ways. You can design a language that best fits the application, rather than adapting the design of
the application to fit the rules of a language.

In writing macros, you effectively write small code-generating programs; this lets you do less
work, in favor of the assembler doing more.

Thus, you can build an application from the “bottom up”. That is, by identifying the common,
repeated elements of the application, you can create operations (macros) that reduce your concern
with details, so your program and its language can evolve together. Those common elements can
then be used throughout the application (code re-use!).

• Part 1 describes the conditional assembly language and its rich set of facilities and features.

• Part 2 explores basic concepts of macros and their definition and use in the Assembler Lan-
guage.

• Part 3 provides “case study” examples of macro programming with High Level Assembler for
z/OS, z/VM, & z/VSE.

Sometimes the conditional assembly language is called “macro language”, but since its use is not
limited to macro instructions, we will use the more general term.

Conditional Assembly and Macros 3

Part 1: The Conditional Assembly Language

4

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Part 1: The Conditional Assembly

Language

5The Two Assembler Languages

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• The IBM High Level Assembler actually supports two (nearly)
independent languages

• “Ordinary” or “base” or “ inner” assembly language: you program the
machine

− Translated by the assembler into machine language

− Executed on a z/Architecture processor

• “Condit ional” or “outer” assembly language: you program the
assembler

− Conditional assembly statements are interpreted and executed by the
assembler at assembly t ime

− Tailors, selects, and creates sequences of statements

The Assembler Language is actually a mixture of two distinct languages:

• Ordinary assembly language is the familiar “base language” of machine and assembler instruc-
tion statements, translated by the assembler into machine language.

• Conditional assembly and macro language is the language of conditional statements, variable
symbols, and macros. It is interpreted and executed by the assembler at assembly time to
tailor, select, and create sequences of statements.

4 A+ + : Using HLASM's Macro Facility

The conditional assembly and macro language has its own rules for declaring variables, assigning
values, testing conditions, and generating values. The elements of the conditional language are
statements, character strings and signed integers: the conditional assembly language is oriented
towards those items.

Though primitive in many respects, the conditional assembly language has most of the basic ele-
ments of a general purpose programming language: data types and structures, global (shared) and
local variables, expressions and operators, assignments, conditional and unconditional branches,
built-in functions, simple forms of I/O, and internal and external subroutines.

The elements manipulated and controlled by the conditional assembly language include state-
ments in the ordinary assembly language, so we sometimes refer to the conditional language as the
“outer” language, in which the ordinary or “inner” or “base” language is enclosed.

6Conditional Assembly Language

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Conditional Assembly Language:

− Analogous to preprocessor support in some languages

— But the assembler's is much more powerful!

− General purpose (if a bit primitive): data types and structures; variables;
expressions and operators; assignments; conditional and unconditional
branches; built-in functions; I/O; subroutines; external functions

• The inner and outer languages manage different classes of symbols:

− Ordinary (inner) assembly: ordinary symbols (internal and external)

− Conditional (outer) assembly: variable and sequence symbols

— Variable symbols: for evaluation and substitution

— Sequence symbols: for selection

• Fundamental concepts of conditional assembly apply

− Outside macros (“open code”, the primary input stream)

− Inside macros (“assembly-t ime subroutines”)

The conditional assembly language is used primarily in macro instructions (or “macros”), which
may be thought of as “assembly-time subroutines” invoked during the assembly to perform useful
functions. Most of the same techniques can also be used in ordinary assemblies (“open code”, the
primary input stream) without relying on macros.

Conditional assembly techniques are similar to those employed in some preprocessors for higher
level languages such as C and PL/I, where compilers can interpret a special class of statements to
perform substitutions, inclusion or exclusion of code fragments, and string replacement. As we
will see, the assembler's support of these capabilities is more powerful: not only is the conditional
assembly language complete, but − importantly − it provides extensive interactions with both the
“ordinary” or “base” language and the external assembly environment.

A distinctive feature of the conditional assembly language is the introduction of two classes of
symbols not used in the base language:

• variable symbols are used for evaluation and substitution

• sequence symbols are used for selection among alternative actions.

Just as “normal” or “ordinary” assembly deals with ordinary symbols — assigning values to
symbols and using those values to evaluate various kinds of expressions — the conditional
assembly language uses variable and sequence symbols. Figure 138 on page 263 compares the
elements of the ordinary and conditional assembly languages.

Part 1: The Conditional Assembly Language 5

7Evaluation, Substitution, and Selection

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Three key concepts of conditional assembly:

1. Evaluation

− Assign values to variable symbols, based on the results of computing complex
expressions.

2. Substitution

− You write the name of a variable symbol where you want the assembler to substitute
the value of the variable symbol.

− Permits tai lor ing and modif icat ion of the “ordinary assembly language” text stream.

3. Selection

− Use sequence symbols to alter the normal, sequential f low of statement processing.

− Selects different sets of statements for further processing.

Evaluation, Substitution, and Selection
There are three key concepts in the conditional assembly language:

• evaluation
• substitution
• selection

Evaluation allows you to assign values to variable symbols based on the results of computing
complex expressions.

Substitution is achieved by writing the name of a special symbol, a variable symbol, in a context
that the assembler will recognize as requiring substitution of the value of the variable symbol.
This permits tailoring and modification of the “ordinary assembly language” text stream to be
processed by the assembler.

Selection is achieved by using sequence symbols to alter the normal, sequential flow of statement
processing. This permits different sets of statements to be presented to the assembler for further
processing.

First, we examine variable symbols.

6 A+ + : Using HLASM's Macro Facility

8Variable Symbols

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Written as an ordinary symbol prefixed with an ampersand (&)

• Examples:

&A &Time &DATE &My_Value

− Variable symbols starting with &SYS are reserved to the assembler

• Three variable symbol types are supported:

− Arithmetic: values represented as signed 32-bit (2's complement) integers

− Boolean: values are 0, 1 (bits)

− Character: strings of 0 to 1024 EBCDIC characters (bytes)

• Two scopes are supported:

− local: known only within a fixed, bounded context; not shared across scopes
(other macros, “open code”)

− global: shared in all contexts that declare the variable symbol as global

• Most variable symbol values are modifiable (“SET” symbols)

Variable Symbols
In addition to the familiar internal and external “ordinary” symbols managed by the assembler are
the variable symbols. Variable symbols obey scope rules supporting two types that roughly
approximate internal and external ordinary symbols, but they are not retained past the end of an
assembly, and do not appear in the object text produced by the assembly.

Variable symbols are written just like ordinary symbols, but with an ampersand (&) character pre-
fixed. Examples of variable symbols are:

&A &a (these two are treated identically)
&Time
&DATE
&My_Value

As indicated in these examples, variable symbols may be written in mixed-case characters; all
appearances will be treated as being equivalent to their upper-case versions. Variable symbols
starting with the characters &SYS are called System Variable Symbols, and are reserved to the
assembler. They are described more fully in “System (&SYS) Variable Symbols” on page 249.

There are three types of variable symbols, corresponding to the values they may take:

arithmetic
The allowed values of an arithmetic variable symbol are those of 32-bit (fullword) two's com-
plement integers between −231 and +231 −1. (Be aware that in certain contexts, their values
may be substituted as unsigned integers! This is discussed further at “Evaluating and
Assigning Character Expressions: SETC” on page 19.)

Boolean
The allowed values of a Boolean variable symbol are 0 and 1, representing False and True
respectively.

character
The value of a character variable symbol may contain from 0 to 1024 bytes, each being any
EBCDIC character. (The bytes in a character variable symbol need not be characters, but
usually are.) A character variable symbol containing no characters is sometimes called a null
string.

The conditional assembly language supports two scopes for symbols: local and global.

Part 1: The Conditional Assembly Language 7

local
Local variable symbols have a limited, bounded scope, and are not known outside that
scope. There are two types of local scope: within macros, and in “open code”. “Open code”
is the main sequence of Assembler Language statements read by the assembler, outside any
macro invocations; it may contain a mixture of ordinary (base) language and conditional
assembly statements.

global
Global variable symbols are shared by name and type by all scopes that declare them to be
global. Thus, they can be shared between macros and open code. All declarations of global
variables must have the same type, and be uniformly declared as either scalars or arrays.

It helps to distinguish two types of variable symbol:

1. Symbols whose values you can change: these are called SET symbols, because you use a
“SET” statement to assign their values. We'll see a brief overview of how SET symbols work
at “Assigning Values to Variable Symbols: SET Statements” on page 12.

2. Symbols whose values you can use, but not change: these are system variable symbols and
symbolic parameters.

Each of these will be discussed in detail.

9Declaring Variable (SET) Symbols

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• There are six explicit declaration statements (3 types × 2 scopes)

• Examples of scalar-variable declarations:

LCLA &J,&K Local arithmetic variables
GBLB &INIT Global Boolean variable
LCLC &Temp_Chars Local character variable

• May be subscripted, in a 1-dimensional array (positive subscripts)

LCLA &F(15),&G(1) No fixed upper limit; (1) suffices

• May be created, in the form &(e) (where e is a character expression
starting with an alphabetic character)

&(B&J&K) SETA &(XY&J.Z)─1

Arithmetic Type Boolean Type Character Type

Local Scope LCLA LCLB LCLC

Global Scope GBLA GBLB GBLC

Init ial Values 0 0 null

8 A+ + : Using HLASM's Macro Facility

10Declaring Variable (SET) Symbols ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• All explicitly declared variable symbols are SETtable

− Their values can be changed

• Three forms of implicit declaration:

1. By the assembler (for System Variable Symbols)

− Names always begin with characters &SYS

− You can't change them; HLASM assigns their values

− Most have local scope

2. By appearing as symbolic parameters (dummy arguments) in a macro
prototype statement

− Symbolic parameters always have local scope; you can't change them

3. As local variables, if first appearance is as the name-field symbol of a SETx
assignment statement

− This is the only implicit form whose values may be changed (SET)

Declaring Variable (SET) Symbols

Variable symbols are declared in several ways:

1. Explicitly, through the use of declaration statements (global variable symbols must always be
declared explicitly); all explicitly declared symbols are SET symbols, so their values may be
changed.

2. Implicitly by the assembler (the System Variable Symbols, which may not be declared explic-
itly).

3. Implicitly, by their appearance as dummy arguments in a macro prototype statement (these
are known as symbolic parameters; they always have character type, and are local in scope).

4. Implicitly as local variables, by being encountered for the first time in the name field of a SET
statement as the recipient of an assignment. Their values may then be modified in other SET
statements.

System variable symbols provide access to information the assembler “knows” about the state of
the assembly and its environment. The symbols and examples of their use are given in “System
(&SYS) Variable Symbols” on page 249; we will use some of them in later examples.

To explicitly declare variable symbols, two sets of statements specify their type and scope:

Figure 1. Explicit Variable Symbol Declarations and Initial Values

These declared variables are automatically initialized by the assembler to zero (arithmetic and
Boolean variables) or to null (zero-length) strings (character variables).

The two scopes of variable symbols, local and global, will be discussed in greater detail later in
“Variable Symbol Scope Rules: Summary” on page 89. For now, we will be concerned almost
entirely with local variables.

Arithmetic Type Boolean Type Character Type

Local scope LCLA LCLB LCLC

Global scope GBLA GBLB GBLC

Initial Values 0 0 null

Part 1: The Conditional Assembly Language 9

For example, to declare the three local variable symbols &A as arithmetic, &B as Boolean, and &C
as character, we would write

LCLA &A
LCLB &B
LCLC &C

More than one variable symbol may be declared on a single statement. The ampersand preceding
the variable symbols may be omitted in LCLx and GBLx statements.

Subscripted Variable Symbols

Variable symbols may also be dimensioned or subscripted: that is, you may declare a one-
dimensional array of variable symbols, all having the same name, by specifying a parenthesized
integer expression following the name of the variable. For example,

LCLA &F(15)
LCLB &G(15)
LCLC &H(15)

would declare the three subscripted local variable symbols F, G, and H each having 15 elements.
In practice, the declared size of an array is ignored, and any valid (positive) subscript value is
permitted. Thus, it is sufficient to declare

LCLA &F(1)
LCLB &G(1)
LCLC &H(1)

You can determine the maximum subscript actually used for a subscripted variable symbol with a
Number attribute reference (to be discussed later, at “Macro-Instruction Argument Properties:
Lists and Number Attributes” on page 83). Undimensioned (scalar) variable symbols have
number attribute reference value zero to indicate they are not dimensioned.

Subscripts on variable symbols need not be assigned sequentially starting at 1. For example, you
could assign values to &F(1) and &F(98765431); but be careful, because the assembler will allo-
cate space for all the intervening elements, so you will likely use up all available storage!

Subscripted variable symbols may appear anywhere a scalar (unsubscripted) variable symbol
appears.

Created Variable Symbols

You can create variable symbols “dynamically”, using characters and the values of other variable
symbols. The general form of a created variable symbol is &(e), where e must (after substitutions)
begin with an alphabetic character and result in a valid variable symbol name that is not the name
of a macro parameter or a system variable symbol. Created variable symbols may also be sub-
scripted; like other variable symbols they may be declared explicitly or implicitly.

Created variable symbols may be formed from other created or uncreated variable symbols, to
many levels. For example (using some SET statements to be discussed shortly):

&C SetC 'X' Variable &C contains the character X
&BX SetC 'PQ' Variable &BX contains the characters PQ
.* &(A&(B&C)) is the same as &APQ

&APQ SetA 42 Variable &APQ contains the integer 42

Then, the variable symbol &(A&(B&C)) is the same as the variable &APQ: first B&C is evalu-
ated to form BX; then &(BX) is evaluated to form PQ; then A&(BX) is evaluated to form APQ;
and finally &(APQ) is evaluated to form the symbol &APQ.

This form of “associative addressing” is very powerful, and we will use it in several case studies.

10 A+ + : Using HLASM's Macro Facility

In the examples that follow, we will enclose character string values in apostrophes, as in 'String',
to help make the differences clearer between strings and descriptive text. However, the enclosing
quotes are only sometimes required by the syntax rules of a particular statement or context.

11Assigning Values to Variable Symbols: SET Statements

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• One SET statement for each type of variable symbol:
SETA, SETB, SETC

• General form is (where the type “x” is A, B, or C)

&x_varsym SETx x_expression Assigns value of x_expression to &x_varsym

• SETA operand uses familiar arithmetic operators and internal (built-in)
functions

&A_varsym SETA arithmetic_expression

• SETB operand evaluates to a TRUE (1) or FALSE (0) value

&B_varsym SETB Boolean_expression

• SETC operand uses strings, specialized forms and internal functions

&C_varsym SETC character_expression

12Assigning Values to Variable Symbols: SET Statements ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• The target variable symbol may be subscripted
&A(6) SETA 9 Sets &A(6) = 9
&A(7) SETA 2 Sets &A(7) = 2

• Values can be assigned to successive elements in one statement
&Subscripted_x_VarSym SETx x_Expression_List 'x' is A, B, or C

&A(6) SETA 9,2,5+5 Sets &A(6) = 9, &A(7) = 2, &A(8) = 10

− Leave an existing value unchanged by omitting the expression

&A(3) SETA 6,,3 Sets &A(3) = 6, &A(4) is unchanged, &A(5) = 3

• External functions use SETAF, SETCF let you access the assembly
environment (more at slide 37)

− SETAF for arithmetic-valued functions

&ARITH SETAF 'AFUN',2,87 Passes arguments 2, 87 to AFUN

− SETCF for character-valued functions

&CHAR SETCF 'CFUN','AB','CDZ' Passes arguments 'AB','CDZ' to CFUN

Part 1: The Conditional Assembly Language 11

Assigning Values to Variable Symbols: SET Statements
New values are assigned to variable symbols in three ways, corresponding to the three types of
declaration.

• Explicitly and implicitly declared variable symbols of arithmetic, Boolean, and character type
are assigned values by the SETA, SETB, and SETC statements, respectively. (Since the type of
the assigned variable is generally known in advance, having three separate SET statements is
somewhat redundant; it does help, however, by allowing implicit declarations.)

Details of the three SET statements will be given shortly.

• System variable symbols are assigned values by the assembler (and only by the assembler).
They may not appear in the name field of a SETx statement.

• Symbolic parameters have their values assigned by appearing as actual arguments in a macro
call statement. They may not appear in the name field of a SETx statement.

For now, we will discuss only assignments to declared variable symbols.

External arithmetic-valued and character-valued functions are invoked by the SETAF and SETCF
instructions respectively, and are described at “External Conditional-Assembly Functions” on
page 40.

Multiple array elements may have values assigned in a single SET statement: specify a list of
operand-field expressions of the proper type, separated by commas. For example,

&A(6) SETA 9,2,5+5 Sets &A(6) = 9, &A(7) = 2, &A(8) = 10
&C(3) SETC '','A','2' Sets &C(3) = '', &C(4) = 'A', &C(5) = '2'

assigns 9 to &A(6), 2 to &A(7), and 10 to &A(8). If you wish to leave one of the array elements
unchanged, simply omit the corresponding value from the expression list:

&A(3) SETA 6,,3 Sets &A(3) = 6, &A(4) unchanged, &A(5) = 3

Occasionally, the three declarable types of variable symbol (arithmetic, Boolean, and character)
are referred to as SETA, SETB, and SETC variables, respectively, and declarable variable symbols
are referred to as SET symbols.

13Substitution

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• In appropriate contexts, a variable symbol is replaced by its value

• Example: Suppose the value of &A is 1. Then, substitute &A:

 Char&A DC C'&A' Before substitution
+Char1 DC C'1' After substitution

• Note: '+' in l isting's “column 0” indicates a generated statement

− This example i l lustrates why paired ampersands are required if you want a
single & in a character constant or self-defining term!

• To avoid ambiguities, mark the end of a variable-symbol substitution
with a period:

Write: CONST&A.B DC C'&A.B' &A followed by 'B'
Result: +CONST1B DC C'1B' Value of &A followed by 'B' !!

Not: CONST&AB DC C'&AB' &A followed by 'B' ?? No: &AB !
** ASMA003E Undeclared variable symbol ─ OPENC/AB

− OPENC/AB means “in Open Code, and &AB is an unknown symbol”

12 A+ + : Using HLASM's Macro Facility

Substitution

The value of a variable symbol is used by substituting its value, converted into a character string if
necessary, into some element of a statement. For example, if the value of &A is 1 (at this point, it
doesn't matter whether &A is an arithmetic, Boolean, or character variable), and we write the fol-
lowing DC statement:

 Char&A DC C'&A'

then the resulting statement would appear as

+Char1 DC C'1'

where the '+' character to the left of “column 1” is the assembler's indication in the listing that
the statement was generated internally, and was not part of the original source program. (Such
statements may be suppressed in the listing by specifying a PRINT NOGEN statement.)

At each appearance of the variable symbol &A, its value is substituted in place of the symbol. This
behavior explains why you must write a pair of ampersands in character constants and self-
defining terms where you want a single ampersand to appear in the character constant or self-
defining term: a single ampersand would indicate to the assembler that a variable symbol appears
in that position. The results of a substitution are almost always straightforward, but there are a
few special cases we will discuss shortly.

The positions where substitutable variable symbols appear, and at which substitutions are done,
are sometimes called points of substitution.

Suppose we need to substitute the value of &A into a character constant, such that its value is
followed by the character 'B'. If we wrote

CONST&AB DC C'&AB' &A followed by 'B' ??
** ASMA003E Undeclared variable symbol - OPENC/AB

the assembler has a problem: should &AB be treated as the variable symbol &AB or as the variable
symbol &A followed by 'B'? If the assembler made the latter choice, it could never recognize the
variable symbol &AB, nor any other symbols beginning with &A, like &ABCDEFG! As you can see, it
chose to recognize &AB, which is undefined to the assembler, as indicated in the diagnostic: the
OPENC/ indicator means “in Open Code”, and AB is the unknown symbol.

To avoid such ambiguities, indicate the end of the variable symbol with a period (.). Thus, the
constant should be written as

 CONST&A.B DC C'&A.B' &A followed by 'B'

giving

+CONST1B DC C'1B' Value of &A followed by 'B' !!

Variable symbols are not substituted in remarks fields or in comments statements. (We'll see that
the AINSERT statement can help.)

While the terminating period is not required in all contexts, it is a good practice to specify it
wherever substitution is intended. (The two situations where the period most definitely is
required are when the point of substitution is followed by a period or a left parenthesis.)

Part 1: The Conditional Assembly Language 13

14Evaluating Arithmetic Expressions: SETA

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Syntax:

&Arithmetic_Var_Sym SETA arithmetic_expression

• Same evaluation rules as ordinary-assembly expressions

− Simpler, because no relocatable terms are allowed
− Richer, because internal functions are allowed
− Arithmetic overf lows always detected! (except anything ÷ 0 = 0!)

• Valid terms include:

− arithmetic and Boolean variable symbols
− self-defining terms (binary, character, decimal, hexadecimal)
− character variable symbols whose value is a self-defining term
− predefined absolute ordinary symbols (most of the time)
− arithmetic-valued attribute references

(Count, Definition, Integer, Length, Number, Scale)
− internal function evaluations

• Example:

&A SETA &D*(2+&K)/&G+ABSSYM─C'3'+L'&PL3*(&Q SLL 5)+D2A('&D')

Evaluating Arithmetic Expressions: SETA

As in any programming language, the assembler evaluates expressions involving variable symbols
and other terms, and assigns the results to variable symbols.

The syntax of arithmetic and Boolean expressions is similar to that of common higher-level lan-
guages, but the syntax of character expressions is apparently unique to the Assembler Language.

The rules for evaluating conditional-assembly arithmetic expressions are very similar to those for
ordinary expressions, with the added simplification that none of the terms in a conditional-
assembly expression may be relocatable. The unary operators are + and − , which may precede
any term. The binary operators are * and /, which must be preceded and followed by a term
(itself possibly preceded by a unary operator). In addition to self-defining terms, predefined abso-
lute ordinary symbols may usually be used as terms, as may evaluations of “internal functions”
and variable symbols whose value can be expressed as a self-defining term (whose value in turn
can be represented as a signed 32-bit integer). As usual, parentheses may be used in expressions
to control the order and precedence of evaluation.

Overflows are detected and diagnosed in almost all cases:

• addition and subtraction overflow is diagnosed and returns 0
• multiplication overflow is diagnosed and returns 1
• division overflow (−2147483648/ −1) is diagnosed and returns 0
• division by zero (including 0÷ 0) returns 0 with no diagnostic!

&A SetA 2*750 Value of &A is 1500
&B SetA 3+7/2 Value of &B is 6
&C SetA (3+7)/2 Value of &C is 5
&D SetA 0000005 Value of &D is 5
&E SetA 5*6/3 Value of &E is 10
&F SetA 5/3*6 Value of &D is 6 Note order of evaluation!

Arithmetic-valued attribute references to ordinary symbols may also be used as terms; these are
normally attribute references to character variable symbols whose value is an ordinary symbol.
The arithmetic-valued attribute references are:

• Count (K')
• Defined (D')
• Integer (I')

14 A+ + : Using HLASM's Macro Facility

• Length (L')
• Number (N')
• Scale (S')

A simple example of an attribute reference:

&A SetA K'&SYSVER Count of characters in &SYSVER

We will illustrate applications of attribute references later, particularly when we discuss macros in
“Macro Argument Attributes and Structures” on page 79. Attribute references may, of course, be
used in “open code”.

Operands of SETA statements may contain complex expressions. For example, we might execute
the following statement:

&A SETA &D*(2+&K)/&G+ABSSYM-C'3'+L'&PL3*(&Q SLL 5)+D2A('&D')

The value assigned to &A is evaluated as follows:

1. multiply the value of &D by the value of (2+&K)
2. divide the result by the value of &G
3. to that result, add the value of the symbol ABSSYM and subtract the value of the character self-

defining term C'3'
4. evaluate the product of the length attribute of the symbol that is the value of &PL3 and the

value of &Q shifted left logically 5 bit positions; then, add this result to the result from the
previous step.

5. Add the value of the function D2A('&D').

Internal functions will almost always be evaluated more rapidly than an equivalent but more
complex expression. For example, suppose you must “extract” the value of bit 16 (having
numeric weight 215) from the arithmetic variable &A. Previously, you might have written

&Bit16 SetA (&A/16384)-(&A/32768)*2

which involves four arithmetic operations. Using shifting and masking, the same result can be
obtained by writing

&Bit16 SetA ((&A SRL 15) AND 1)

involving only two operations.

15SETA Statements vs. EQU Statements

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Differences between SETA and EQU statements:

SETA Statements EQU Statements

Active only at conditional assembly
t ime

Active at ordinary assembly time;
predefined absolute values usable
at conditional assembly time

May assign values to a given
variable symbol many t imes

A value is assigned to a given
ordinary symbol only once

Expressions yield a 32-bit binary
signed absolute value

Expressions may yield absolute,
simply relocatable, or complexly
relocatable values

No base-language attributes are
assigned to variable symbols

Attribute values (length, type,
assembler, program) may be
assigned with an EQU statement

Part 1: The Conditional Assembly Language 15

SETA Statements vs. EQU Statements

It may help to identify some of the differences between the simpler results of SETA statements
and the possibly more complicated results of EQU statements. The following table compares
some key factors:

Figure 2. Differences between SETA and EQU Statements

Some earlier assemblers used ordinary symbols for both types of functions: conditional assembly
and ordinary assembly. While this can be made to work in simple situations, the rules become
much more complex and limiting when “interesting” things are tried.

Further comparisons of ordinary and conditional assembly are shown in “Comparing Ordinary
and Conditional Assembly” on page 263.

High Level Assembler supports a very useful interaction between the “worlds” of ordinary and
variable symbols: if an ordinary symbol is assigned an absolute value in an EQU statement prior
to any reference in a conditional assembly expression, that “predefined absolute ordinary symbol”
may be used wherever an arithmetic term is allowed.

SETA Statements EQU Statements

Active only at conditional assembly time Active at ordinary assembly time; predefined
absolute values usable at conditional
assembly time

May assign values to a given variable symbol
many times

A value is assigned to a given ordinary
symbol only once

Expressions yield a 32-bit binary signed
absolute value

Expressions may yield absolute, simply relo-
catable, or complexly relocatable values

No base-language attributes are assigned to
variable symbols

Attribute values (length, type, assembler,
program) may be assigned with an EQU
statement

16Evaluating and Assigning Boolean Expressions: SETB

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Syntax:
&Boolean_Var_Sym SETB (Boolean_expression)

• Boolean constants: 0 (false), 1 (true)

• Boolean operators:
− NOT (highest priority), AND, OR, XOR (lowest)

&A SetB (&V gt 0 AND &V le 7) &A=1 if &V between 1 and 7
&B SetB ('&C' lt '0' OR '&C' gt '9') &B=1 if &C is a decimal character
&S SetB (&B XOR (&G OR &D))
&T SetB (&X ge 5 XOR (&Y*2 lt &X OR &D))

− Unary NOT also allowed in AND NOT, OR NOT, XOR NOT
&Z SetB (&A AND NOT &B)

• Relational operators (for arithmetic and character comparisons):
− EQ, NE, GT, GE, LT, LE
&A SETB (&N LE 2) Arithmetic comparison
&B SETB ('&CVAR' NE '*') Character comparison
&C SETB ((&A GT 10) AND NOT ('&X' GE 'Z') OR &R) Both

16 A+ + : Using HLASM's Macro Facility

17Evaluating and Assigning Boolean Expressions: SETB ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Cannot compare arithmetic expressions to character expressions

− Only character-to-character and arithmetic-to-arithmetic comparisons

− Comparison type is determined by the first comparand!

— But you can often substitute one type in the other and then compare

• Warning! Character comparisons in relational expressions use the
EBCDIC collating sequence, but:

− Shorter str ings always compare LT than longer! (Remember: not like CLC!)

− 'B' > 'A', but 'B' < 'AA'

&B SETB ('B' GT 'A') &B is 1 (True)
&B SETB ('B' GT 'AA') &B is 0 (False)

− Shorter strings are not blank-padded to the length of the longer
str ing

Evaluating and Assigning Boolean Expressions: SETB

Boolean expressions provide much of the selection capability of the conditional assembly lan-
guage. In practice, many Boolean expressions are not assigned to Boolean variable symbols; they
are used in AIF statements to describe a condition to control whether or not a conditional-
assembly “branch” will or will not be taken.

Boolean primaries include Boolean variable symbols, the Boolean constants 0 and 1, and (most
useful) comparisons. Boolean constants may also be assigned from self-defining terms, previously
defined absolute symbols, and SETA variables, in the forms

&Bool_Var SetB (self-defining term)
&Bool_Var SetB (previously defined absolute symbol)
&Bool_Var SetB (SETA variable)

The value assigned to the variable &Bool_Var is 0 if the value of the operand is zero, and is 1
otherwise.

The set of Boolean connectives includes the OR, AND, XOR, and NOT operators. For
example, you can write statements such as

&A SetB (&V gt 0 AND &V le 7) &A=1 if &V between 1 and 7
&B SetB ('&C' lt '0' OR '&C' gt '9') &B=1 if &C is a decimal character
&Z SetB (&A AND NOT &B)
&S SetB (&B XOR (&G OR &D))
&T SetB (&X ge 5 XOR (&Y*2 lt &X OR &D))

The Boolean operators are the usual logical operators NOT, AND, OR, and XOR. For example:

&B SETB ((&A GT 10) AND NOT ('&X' GE 'Z') OR &R)

NOT is used as a unary operator, as in the following:

&Bool_var SETB (NOT ('BB' EQ 'AA'))

which would set &Bool_var to 1, meaning TRUE.

In a compound expression involving mixed operators, the NOT operation has highest priority;
AND has next highest priority; OR the next; and XOR has lowest priority. Thus, the expression

(&A AND &B OR NOT &C XOR &D)

Part 1: The Conditional Assembly Language 17

is evaluated as

((&A AND &B) OR ((NOT &C))) XOR &D

where the nesting depth of the parentheses indicates the priority of evaluation.

Two types of comparison are allowed: between arithmetic expressions, and between character
expressions (which will be described in “Evaluating and Assigning Character Expressions: SETC”
on page 19 below). Comparisons between arithmetic and character expressions is not allowed,
but you can often substitute one type in a variable of the other type and then compare.

The comparison operators are

• EQ (equal)
• NE (not equal)
• GT (greater than)
• GE (greater than or equal)
• LT (less than)
• LE (less than or equal)

In an arithmetic relation, the usual integer comparisons are indicated. (Remember that predefined
absolute ordinary symbols are allowed as arithmetic terms!)

N EQU 10
&N SETA 5
&B1 SETB (&N GT 0) &B1 is TRUE
&B2 SETB (&N GT N) &B2 is FALSE

For character comparisons, a test is first made on the lengths of the two comparands: if they are
not the same length, the shorter operand is always taken to be “less than” the longer. Note that
this may not be what you would get if you did a “hardware” comparison! (The shorter string is not
padded, nor is the comparison done using the shorter string's length.) For example:

&B SETB ('B' GT 'A') &B is 1 (True)
&B SETB ('B' GT 'AA') &B is 0 (False), 'B' is shorter than 'AA'.

The following example illustrates the difference:

('BB' GT 'AAA') is always FALSE in conditional assembly
CLC =C'BB',=C'AAA' indicates that the first operand is high ('BB' GT 'AAA')

If the character comparands are the same length, then the usual EBCDIC collating sequence is
used for the comparison, so that

('BB' GT 'AA') is always TRUE in conditional assembly

It is important to remember that the type of comparison is determined by the first comparand.
These are invalid comparisons:

(5 LT '8') invalid arithmetic comparison
('8' GT 5) invalid character comparison

18 A+ + : Using HLASM's Macro Facility

18Evaluating and Assigning Character Expressions: SETC

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Syntax:

&Character_Var_Sym SETC character_expression

• A character constant is a 'quoted string' 0 to 1024 characters long

&CVar1 SETC 'AaBbCcDdEeFf'
&CVar2 SETC 'This is the Beginning of the End'
&Decimal SETC '0123456789'
&Hex SETC '0123456789ABCDEF'
&Empty SETC '' Null (zero─length) string

• Strings may be preceded by a parenthesized duplication factor

&X SETC (3)'ST' &X has value STSTST
&J SETA 2
&Y SETC (2*&J)'*' &Y has value ****

• Strings are quoted; type-attribute and opcode-attribute references, and
internal functions are not

&TCVar1 SETC T'&CVar1

− Type/opcode attribute references: no duplication, quoting, or combining

19Evaluating and Assigning Character Expressions: SETC ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Apostrophes and ampersands in ordinary-assembly strings must be
paired; but...

− Apostrophes are paired internally for assignments and relationals!

&QT SetC '''' Value of &QT is a single apostrophe
&Yes SetB ('&QT' eq '''') &Yes is TRUE

− Ampersands are not paired internally for assignments and relationals!

&Amp SetC '&&' &Amp has value &&
&Yes SetB ('&Amp' eq '&&') &Yes is TRUE
&D SetC (2)'A&&B' &D has value A&&BA&&B

− Use the BYTE function (slide 27) or substring notation (slide 21) to create a
single &

• Warning! SETA variable values are substituted without sign!
&A SETA ─5
 DC F'&A' Generates X'00000005'
&C SETC '&A' &C has value 5 (not ─5!)

− The SIGNED and A2D functions avoid this problem

&C SETC (SIGNED &A) or &C SETC A2D(&A) &C has value '─5'

Evaluating and Assigning Character Expressions: SETC

The major elements of character expressions are quoted strings. For example, we may assign
values to character variable symbols using quoted strings, as follows:

&CVar1 SETC 'AaBbCcDdEeFf'
&CVar2 SETC 'This is the Beginning of the End'
&Decimal SETC '0123456789'
&Hex SETC '0123456789ABCDEF'
&Empty SETC '' Null (zero-length) string

Repeated sets of characters may be written very easily using a parenthesized integer expression
preceding a string as a duplication factor:

Part 1: The Conditional Assembly Language 19

&X SETC (3)'ST' &X has value STSTST
&J SETA 2
&Y SETC (2*&J)'*' &Y has value ****

Character-string constants in SETC expressions are quoted, and internal apostrophes and amper-
sands must be written in pairs, so that the term may be recognized correctly by the assembler.
Thus, character strings in character (SETC) expressions look like character constants and char-
acter self-defining terms in other contexts. (Note that predefined absolute symbols may be used
in character expressions only in contexts where an arithmetic term is allowed.)

Type attribute and opcode attribute references may also be used as terms in character expressions,
but they must appear as the only term in the expression:

&TCVar1 SETC T'&CVar1 Type attribute
&OCVar1 SETC O'&CVar1 Opcode attribute

The opcode attribute will not be discussed further here.

When the assembler determines the value of a character-string term in a SETC expression, there is
one key difference from character terms and constants, where both ampersands and apostrophes
are paired. In character-string constants apostrophes are are paired but two ampersands are not
paired to yield a single internal ampersand! Thus, if we assign a string with a pair of ampersands,
the result will still contain that pair:

&QT SETC '''' Value of &QT is a single apostrophe
&Yes SetB ('&QT' eq BYTE(X'7D')) &Yes is 1 (TRUE)

&Amp SETC '&&' &Amp has value &&
&Yes SetB ('&Amp' eq '&&') &Yes is 1 (TRUE)

&C SETC 'A&&B' &C has value A&&B
&D SETC (2)'A&&B' &D has value A&&BA&&B

If the value of such a variable is substituted into an ordinary statement, then the ampersands will
be paired to produce a single ampersand, according to the familiar rules of the assembler Lan-
guage:

&C SETC 'A&&B' &C has value A&&B
AandB DC C'&C.' generated constant is A&B

If a single ampersand is required in a character expression, then use the BYTE or A2C functions,
or a substring (described below) of a pair of ampersands.

One reason for this behavior is that it avoids unnecessary proliferation of ampersands. For
example, if we had wanted to create the character string 'A&&B', a requirement for paired amper-
sands in SETC expressions would require that we write

&C SETC 'A&&&&B' ???

which would make the language more awkward. The existing rules represent a trade-off between
inconvenience and inconsistency, in favor of greater convenience.

Be aware that substitution of arithmetic-valued variable symbols into character (SETC)
expressions does not preserve the sign of the arithmetic value! For example:

&A SETA −5
 DC F'&A' Generates X'00000005'
&C SETC '&A' &C has value '5' (not '-5'!)

&B SETA X'80000000' (maximum negative number)
&D SETC '&B' &D has value '2147483648' (!)
&E SETA &D Error: too large! (“not a self-defining term”)

If signed arithmetic is important, use arithmetic expressions and variable symbols. If signed values
must be substituted into character variables or ordinary statements, then use the SIGNED func-

20 A+ + : Using HLASM's Macro Facility

tion (see “Character-Valued Functions Using Logical-Expression Format” on page 29) or A2D
function (see “Converting from Arithmetic Data to Character Value Types” on page 32).

Character expressions support two useful capabilities: string concatenation, and substring oper-
ations.

20Character Expressions: String Concatenation

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Concatenate character variables and strings by juxtaposition

• Concatenation operator is the period (.)
&C SETC 'AB' &C has value AB
&C SETC 'A'.'B' &C has value AB

&D SETC '&C'.'E' &D has value ABE
&E SETC '&D&D' &E has value ABEABE

• Remember: a period indicates the end of a variable symbol

&F SETC '&D.&D' &F has value ABEABE
&D SETC '&C.E' &D has value ABE

• Periods are data if not at the end of a variable symbol
&G SETC '&D..&D' &G has value ABE.ABE
&B SETC 'A.B' &B has value A.B

• Individual terms may have duplication factors
&J SETC (2)'A'.(3)'B' &J has value AABBB

Character Expressions: String Concatenation

We are familiar with the notion of string concatenation from the earlier examples of substitution,
where a substituted value is concatenated with the adjoining characters to create the completed
string of characters. As before, the end of a variable symbol may be denoted with a period. The
period is also used as the concatenation operator, as shown in the following examples:

&C SETC 'AB' &C has value AB
&C SETC 'A'.'B' &C has value AB
&D SETC '&C'.'E' &D has value ABE
&D SETC '&C.E' &D has value ABE

&E SETC '&D&D' &E has value ABEABE
&F SETC '&D.&D' &F has value ABEABE

&G SETC '&D..&D' &G has value ABE.ABE
&B SETC 'A.B' &B has value A.B

Each term in a concatenation may have a duplication factor:

&J SETC (2)'A'.(3)'B' &J has value AABBB

As these examples show, there may be more than one way to specify concatenation results.

Part 1: The Conditional Assembly Language 21

21Character Expressions: Substrings

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Substrings specified by 'string'(start_position,span)
&C SETC 'ABCDE'(1,3) &C has value ABC
&C SETC 'ABCDE'(3,3) &C has value CDE

• span may be zero (substring is null)

&C SETC 'ABCDE'(2,0) &C is a null string

• span may be * (meaning “to end of string”)

&C SETC 'ABCDE'(2,*) &C has value BCDE

• Substrings take precedence over duplication factors

&C SETC (2)'abc'(2,2) &C has value bcbc, not bc

• Incorrect substring operations may cause warnings or errors

&C SETC 'ABCDE'(6,1) &C has null value (with a warning)
&C SETC 'ABCDE'(2,─1) &C has null value (with a warning)
&C SETC 'ABCDE'(0,2) &C has null value (with an error)
&C SETC 'ABCDE'(5,3) &C has value E (with a warning)

Character Expressions: Substrings

Substrings are defined by a somewhat unusual notation:

substring = 'source_string'(start_position,span)

where start_position is the position in the source_string where the substring is to begin, and span is
the length of the substring to be extracted.

To illustrate, consider the following examples:

&C SETC 'ABCDE'(1,3) &C has value ABC
&C SETC 'ABCDE'(3,3) &C has value CDE
&C SETC 'ABCDE'(5,3) &C has value E (with a warning)

So long as the substring is entirely contained within the source_string, the results are intuitive.
For cases where one or another of the many possible boundary conditions would cause the sub-
string not to be entirely contained within the source_string, the following rules apply:

1. The length of the source_string must be between 1 and 1024.

2. The span of the substring must be between 0 and 1024.

3. If 1≤ start_position≤ length, and 1≤ span≤ length, and start_position + span≤ length+1, then the
substring is completely contained in the source string, and a normal substring will be
extracted.

4. If start_position + span> length+1, then the substring will be that portion of the source_string
starting at start_position to the end. The assembler will issue a warning message.

5. If span=0, then the substring will be set to null. No error message will be issued.

6. If start_position≤ 0, then the assembler will issue an error message, and the substring will be set
to null.

7. If start_position> length, then the assembler will issue a warning message, and the substring will
be set to null.

8. If span<0, then the assembler will issue a warning message, and the substring will be set to
null.

22 A+ + : Using HLASM's Macro Facility

The assembler provides a simple substring notation meaning “from here to the end of the string”:
simply write the second operand of a substring specification as an asterisk. For example:

&C SETC 'ABCDE'(2,*) &C has value BCDE

will select the substring starting at the second character of 'ABCDE' through the last character,
setting &C to 'BCDE'.

Substrings take precedence over duplication factors, as shown in the following example:

&C SETC (2)'abc'(2,2) &C has value bcbc, not bc

The duplication factor repeats the substring 'bc' twice, rather than first creating the string
'abcabc' and taking the two characters starting at position 2.

String expressions are constructed using the operations of substitution, concatenation, and sub-
stringing. You can also use type and opcode attribute references as character terms, but they are
limited to “single-term” expressions with no duplication factors.

Substring operations apply to the string term they follow, and not to string expressions involving
concatenation or character-valued internal functions (discussed in “Character-Valued Functions
Using Logical-Expression Format” on page 29). For example:

&A SetC 'abcde'
&B SetC 'qrstu'
&C SetC '&A.&B'(4,4) &C contains deqr
&D SetC '&A'.'&B'(4,4) &D contains abcdetu

Note: Don't confuse substring notation with subscripted variable symbols: for substrings, the
parenthesized start_position and span appear following the quoted string:

&SubStr SetC 'string'(start_position,span)

whereas subscripts appear inside the quotes:

&StrVal SetC '&ArrayVar(&Subscript)'

They may of course appear together, to extract a substring of a subscripted character variable
symbol:

&StrVal SetC '&ArrayVar(&Subscript)'(start_position,span)

22Character Expressions: String Lengths

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Use a Count Attribute Reference (K') to determine the number of
characters in a variable symbol's value

&N SETA K'&C Sets &N to number of characters in &C

&C SETC '12345' &C has value 12345
&N SETA K'&C &N has value 5

&C SETC '' null string
&N SETA K'&C &N has value 0

&C SETC '''&&''' &C has value '&&'
&N SETA K'&C &N has value 4

&C SETC (3)'AB' &C has value ABABAB
&N SETA K'&C &N has value 6

• Arithmetic and Boolean variables converted to strings first

&A SETA ─999 K'&A has value 3 (Remember: no sign!)

Part 1: The Conditional Assembly Language 23

Character Expressions: String Lengths

The number of characters in a character variable symbol's value can be determined using a Count
attribute reference (K'). For example:

&C SETC '12345' &C has value 12345
&N SETA K'&C &N has value 5

&C SETC '' null string
&N SETA K'&C &N has value 0

&C SETC '''&&''' &C has value '&&'
&N SETA K'&C &N has value 4

&C SETC (3)'AB' &C has value ABABAB
&N SETA K'&C &N has value 6

Note that the pairing rules for apostrophes and ampersands apply only to character strings, not to
the contents of SETC variables:

&C SETC '''&&''' &C has value '&&'
&D SETC '&C' &D still has value '&&'
&M SETA K'&D &M has value 4

The Count attribute reference is very useful in cases where strings must be scanned from right to
left; thus,

&X SETC '&C'(K'&C,1) Extract rightmost character of &C

assigns the rightmost character of &C to &X.

The value of a count attribute reference applied to an arithmetic or Boolean variable symbol is
determined by first converting the value of the symbol to a character string (remember that arith-
metic values are converted without sign!). The length of the resulting string is the attribute's value.
For example, if &A has value −999, its count attribute is 3.

&A SETA -999 K'&A has value 3

23Conditional Expressions with Mixed Operand Types

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Expressions sometimes simplified with mixed operand types

− Some limitations on substituted values and converted results

• Let &A, &B, &C be arithmetic, Boolean, character:

Variable Type SETA Statement SETB Statement SETC Statement

Arithmetic no conversion zero &A becomes
0; nonzero &A
becomes 1

'&A' is decimal
representation
of magnitude(&A)

Boolean extend &B to
32-bit 0 or 1

no conversion '&B' is '0' or
'1'

Character &C must be a
self-defining
term

&C must be a
self-defining
term; convert to
0 or 1 as above

no conversion

24 A+ + : Using HLASM's Macro Facility

Conditional Expressions with Mixed Operand Types

Conditional assembly expressions are often simpler if mixed operand types are used, avoiding a
need for additional statements for converting to the desired type. Figure 3 indicates the allowed
combinations of SETx statement types and operands; the variables &A, &B, and &C respectively
represent arithmetic, Boolean, and character variable symbols.

Figure 3. Conditional Assembly SET Statement Operand Types

In most cases, the result of a substitution is as expected. However, there are a few cases to note:

• Arithmetic values substituted into Boolean expressions are converted using a simple rule: zero
values are converted to 0, and nonzero values are converted to 1.

• Arithmetic values substituted into character expressions are converted to their unsigned
decimal representation. This means that the magnitude of the arithmetic term is converted to
decimal!

• Character values substituted into arithmetic expressions must be self-defining decimal,
hexadecimal, binary, or character self-defining terms.

• Character values substituted into Boolean expressions must be self-defining decimal,
hexadecimal, binary, or character self-defining terms, which are then converted to 0 or 1 fol-
lowing the first case above.

Variable Type SETA Statement SETB Statement SETC Statement

Arithmetic no conversion zero &A becomes 0;
nonzero &A becomes
1

'&A' is decimal rep-
resentation of mag-
nitude of &A

Boolean extend &B to 32-bit
0 or 1

no conversion '&B' is '0' or '1'

Character &C must represent a
self-defining term

&C must represent a
self-defining term;
converted to 0 or 1
as for arithmetic
variables

no conversion

24Internal Conditional-Assembly Functions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Many powerful internal (built-in) functions

• Internal functions are invoked in two formats:

− Logical-expression format takes two forms:

(expression operator expression) (&A OR &B) (&J SLL 2)
or

(operator expression) (NOT &C) (SIGNED '&J')

(logical-expression format also used in SETB and AIF statements)

− Function-invocation format takes a single form:

function(argument[,argument]...) NOT(&C) FIND('ABC','&CV')

• Eight functions can use either invocation format:
BYTE, DOUBLE, FIND, INDEX, LOWER, NOT, SIGNED, UPPER

• We'll look at functions using logical-expression format first

Part 1: The Conditional Assembly Language 25

Internal Conditional-Assembly Functions
Internal, built-in functions can save effort for common operations such as type conversion, testing
operands, etc. They are invoked in either of two formats:

1. Logical-expression format, which may take either of two forms:

(expression operator expression) (&A OR &B) (&J SLL 2)
or

(operator expression) (NOT &C) (SIGNED '&J')

The logical-expression format is also used in SETB and AIF statements, where the result of
the expression is a Boolean (SETB) value.1

2. Function-invocation format takes a single form:

function(argument[,argument]...) FIND('&S1','&S2')

where the square brackets indicate that you may specify an optional argument, and the ellipsis
(...) indicates that additional optional arguments are allowed.

Built-in functions return either arithmetic (SETA) or character (SETC) results, and their argu-
ments may be arithmetic expressions or character expressions.

There are no Boolean-valued internal functions that return bit values.

The internal functions are:

• Arithmetic-valued functions with arithmetic arguments:

− Logical operations: AND, OR, XOR, NOT
− Shift operations: SLA, SLL, SRA, SRL

• Arithmetic-valued functions with character arguments:

− Representation-conversion functions: B2A, C2A, D2A, X2A
− String-scanning functions: DCLEN, FIND, INDEX
− Validity-checking functions: ISBIN, ISDEC, ISHEX, ISSYM

• Character-valued functions with arithmetic arguments:

− Representation-conversion functions: A2B, A2C, A2D, A2X, BYTE, SIGNED

• Character-valued functions with character arguments:

− Representation-conversion functions involving decimal characters: B2D, C2D, X2D, D2B,
D2C, D2X

− Representation-conversion functions for other forms: B2C, B2X, C2B, C2X, X2B, X2C
− String-manipulation functions: DCVAL, DEQUOTE, DOUBLE, LOWER, UPPER
− Attribute retrieval functions: SYSATTRA, SYSATTRP

1 One nice thing about logical-expression format is that spaces can be used within the parentheses to make statement
formatting more readable.

26 A+ + : Using HLASM's Macro Facility

Functions Using Logical-Expression Format

These internal functions use logical-expression format, as shown in Tables 4 and 5.

• For arithmetic operations: AND, OR, NOT, XOR, SLA, SLL, SRA, SRL

• For character operations: UPPER, LOWER, DOUBLE, INDEX, FIND, BYTE, SIGNED.

The functions SLA, SLL, SRA, SRL, AND, OR, and XOR are available only in logical-
expression format.

Figure 4. Arithmetic-Valued Functions Using Logical-Expression Format

Figure 5. Character-Valued Functions Using Logical-Expression Format

Arithmetic Arguments Character Arguments

NOT, SLA, SLL, SRA, SRL, AND, OR,
XOR

FIND, INDEX

Note: NOT has a single argument; the others have two arguments

Arithmetic Arguments Character Arguments

BYTE, SIGNED LOWER, UPPER, DOUBLE

Note: These functions have a single argument

25Arithmetic-Valued Functions, Logical-Expression Format

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Logical-expression format:

(operand operator operand) or (operator operand)

• Masking/logical operations: AND, OR, NOT, XOR

((&A1 AND &A2) AND X'FF')
(&A1 OR (&A2 OR &A3))
(&A1 XOR (&A3 XOR 7))
(NOT &A1)+&A2
(7 XOR (7 OR (&A+7))) Round &A to next multiple of 8

• Shifting operations: SLL, SRL, SLA, SRA

(&A1 SLL 3) Shift left 3 bits, unsigned
(&A1 SRL &A2) Shift right &A2 bits, unsigned
(&A1 SLA 1) Shift left 1 bit, signed (can overflow!)
(&A1 SRA &A2) Shift right &A2 bits, signed

• Any combination...

(3+(NOT &A) SLL &B)/((&C─1 OR 31)*5)

Part 1: The Conditional Assembly Language 27

26Arithmetic-Valued Functions, Logical-Expression Format ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• DCLEN determines length of constant if substituted in DC

If &S = && then DCLEN('&S') = 1 (2 & paired to 1)
If &S = a''b then DCLEN('&S') = 3 (2 ' paired to 1)

• FIND returns offset in 1st argument of 1st matching character from 2nd

&First_Match SetA Index('&BigStrg','&SubStrg') First string match
&First_Match SetA Index('&HayStack','&OneLongNeedle')

Find('abcdef','dc') = 3 Find('abcdef','DE') = 0 Find('123456','F4') = 4

• INDEX returns offset in 1st argument of 2nd argument

&First_Char SetA Find('&BigStrg','&CharSet') First char match
&First_Char SetA Find('&HayStack','&ManySmallNeedles')

Index('abcdef','cd') = 3 Index('abcdef','DE') = 0 Index('abcdef','F4') = 0
Index('ABCDEF','DE') = 4 Index('ABCDEF','Ab') = 0 Index('123456','23') = 2

Arithmetic-Valued Functions Using Logical-Expression Format

The eight arithmetic functions are in two groups: logical (or masking) operations, and shifting
operations. The logical/masking operations include AND, OR, NOT, and XOR. For example:

((&A1 AND &A2) AND X'FF') Low-order 8 bits of &A1 AND &A2
(&A1 OR (&A2 OR &A3)) OR of 3 variables
(&A1 XOR (&A3 XOR 7)) XOR of 7 and variables &A1 and &A3
(NOT &A1)+&A2 Complement and add

These logical operations act on the 32-bit binary values of arithmetic operands, in exactly the
same way as the corresponding machine instructions N, O, and X. The NOT operator produces
the bit-wise or “ones' complement” of its operand, which has the same effect as XORing the
operand with a word of all one-bits (−1).

To “round up” the value of &A to a multiple of 8 (if it is not already a multiple) you might write:

((&A+7)/8)*8 Round &A to next multiple of 8

Using the masking operations OR and XOR, you can write instead:

(&A+7 AND -8) Round &A to next multiple of 8

The shifting operators for arithmetic operands correspond to the shift instructions provided by the
processor instructions: left or right, and arithmetic (signed) or logical (unsigned).

(&A1 SLL 3) Shift left 3 bits, unsigned
(&A1 SRL &A2) Shift right &A2 bits, unsigned
(&A1 SLA 1) Shift left 1 bit, signed
(&A1 SRA &A2) Shift right &A2 bits, signed

These operators may be used in any combination:

(3+(NOT &A) SLL &B)/((&C-1 OR 31)*5)

Just as with the SLA instruction, the SLA function can generate a fixed-point overflow.

28 A+ + : Using HLASM's Macro Facility

27Character-Valued Functions, Logical-Expression Format

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Character-valued (unary) character operations:
UPPER, LOWER, DOUBLE, SIGNED, BYTE

• UPPER converts all EBCDIC lower-case letters to upper case
(UPPER '&X') All letters in &X set to upper case

• LOWER converts all EBCDIC upper-case letters to lower case
(LOWER '&Y') All letters in &Y set to lower case

• DOUBLE converts single occurrences of & and ' to pairs;
used for substition in statements like DC that will “re-pair” them
(DOUBLE '&Z') Ampersands/apostrophes in &Z doubled

• SIGNED converts arithmetic values to character, with prefixed minus
sign if negative
(SIGNED &A) Converts arithmetic &A to string (signed if negative)

• BYTE converts arithmetic values to a single character (just a byte!)
(BYTE X'F9') Creates a one─byte character value '9'

Character-Valued Functions Using Logical-Expression Format

The assembler supports five character-valued character functions invoked using logical-expression
format: UPPER, LOWER, DOUBLE, SIGNED, and BYTE. Each is a unary operator.

• The UPPER function operates on a string of EBCDIC characters and produces a string in
which all lower-case letters are converted to their upper-case equivalents.

(Upper '&X') All letters in &X set to upper case

• The LOWER function does the inverse of the UPPER function, converting all upper-case
letters to lower case.

(Lower '&Y') All letters in &Y set to lower case

• The DOUBLE function replaces each occurrence of an ampersand and apostrophe (single
quote) with a pair. This allows the result to be directly substituted into a character self-
defining term or into DC-statement character constant (or literal). For example, if the value of
&Z is &&', then

(DOUBLE '&Z') Ampersands/apostrophes in &Z doubled (giving &&&&'')

DOUBLE is very useful when you issue conditional-assembly messages.

• The SIGNED function creates a character-string representation of arithmetic values, with a
prefixed minus sign if the arithmetic value is negative. (Assigning an arithmetic variable in a
SetC statement to a character variable produces only the unsigned magnitude of the arithmetic
value!)

(SIGNED 10) has value '10'
(SIGNED -10) has value '-10'

• The BYTE function allows you to assign any pattern of eight bits to a character variable con-
taining a single byte.

(BYTE 0) returns a character with bit pattern X'00'
(BYTE 64) returns a character with bit pattern X'40'

Part 1: The Conditional Assembly Language 29

28Functions Using Function-Invocation Format

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Function-invocation format:
function(operand,...)

• Representation-conversion functions

− From arithmetic value to character: A2B, A2C, A2D, A2X
− From binary-character string: B2A, B2C, ,B2D, B2X
− From characters (bytes): C2A, C2B, C2D, C2X
− From decimal-character string: D2A, D2B, D2C, D2X
− From hexadecimal-character string: X2A, X2B, X2C, X2D

— All D2* functions accept optional sign; *2D functions always generate a sign

• String validity-testing functions: ISBIN, ISDEC, ISHEX, ISSYM
• String functions: DCLEN, DCVAL, DEQUOTE
• Symbol attribute retrieval functions: SYSATTRA, SYSATTRP

We'll see examples in the Case Studies

Functions Using Function-Invocation Format

Functions using function-invocation format provide a range of capabilities.

• Some functions convert data from one representation to another, as shown in Figure 6 on
page 31. There are three basic conditional-assembly data types: arithmetic, Boolean, and
character. In most situations, Boolean data is treated as a special case of arithmetic data.
Character data can be considered to have four value types:

− bit strings, containing only the characters 0 and 1
− byte or character strings, where each byte may contain any bit pattern
− decimal strings representing (optionally signed) decimal numbers
− hexadecimal strings, where each character is a hexadecimal digit.

• The functions ISBIN, ISDEC, ISHEX, and ISSYM test strings for validity, to verify that they
contain only binary, decimal, or hexadecimal characters, or that they form a valid Assembler
Language symbol.

• DCLEN, DCVAL, and DEQUOTE respectively determine the length of a string after pairs of amper-
sands and apostrophes have been reduced to single occurrences and return the string after such
pairing (as though it had been substituted in a DC statement), and remove leading or trailing
quotes from a string.

• SYSATTRA and SYSATTRP return the values of the Assembler and Program attributes of an ordi-
nary symbol.

These functions are described below.

30 A+ + : Using HLASM's Macro Facility

29Conditional Assembly Type-Conversion Functions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

A-value SetA arithmetic expression

B-string SetC string of binary-digit characters

C-string SetC string of characters treated as 8-bit bytes

D-string SetC string of (optionally) signed decimal-digit characters

X-string SetC string of hexadecimal-digit characters

Function Value

Argument A-value B-string C-string D-string X-string

A-value — A2B A2C, BYTE A2D, SIGNED A2X

B-string B2A — B2C B2D B2X

C-string C2A C2B — C2D C2X

D-string D2A D2B D2C — D2X

X-string X2A X2B X2C X2D —

Internal Type-Conversion Functions

Each of the four value types of character data, and arithmetic data, may be converted among one
another using the representation conversion functions. The notation used to describe the argu-
ments is:

A-value arithmetic expression; a SETA value such as -5
B-string string of binary digits (characters '0' and '1') such as '1010'
C-string string of characters (bytes) such as 'aB?7&Y'
D-string string of (optionally) signed decimal digits such as '+42', '42', and '-42'
X-string string of hexadecimal digits (characters '0' through 'F') such as 'c0ffee'

Figure 6. Representation-Conversion Functions

Some examples of these representation-conversion functions are:

C2A('0000') has arithmetic value -252645136 (-252645136 is an A-value)
B2X('11') has character value '3' ('11' is a B-string)
C2B('a') has character value '10000001' ('a' is a C-string)
D2X('+25') has character value '19' ('+25' is a D-string)
X2B('E') has character value '1110' ('E' is an X-string)

Function Value

Argument A-value B-string C-string D-string X-string

A-value — A2B A2C,
BYTE

A2D,
SIGNED A2X

B-string B2A — B2C B2D B2X

C-string C2A C2B — C2D C2X

D-string D2A D2B D2C — D2X

X-string X2A X2B X2C X2D —

Part 1: The Conditional Assembly Language 31

30Converting from Arithmetic to Character Value Types

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• A2B converts to a string of 32 binary digits

A2B(1) = '00000000000000000000000000000001'
A2B(─1) = '11111111111111111111111111111111'

A2B(2147483647) = '01111111111111111111111111111111'

• A2C converts to 1 or more bytes; BYTE converts to only 1

A2C(─1) = 'ffff' (X'FFFFFFFF') (f = byte of all 1─bits)
A2C(─9) = 'fff7' (X'FFFFFFF7')
A2C(80) = 'nnn&' (X'00000050') (n = byte of all 0─bits)
BYTE(60) = '─' (X'60') (only a single byte)

• A2D converts an arithmetic value to an always-signed decimal string
(SIGNED adds a sign only for negative numbers)
A2D(0) = '+0' A2D(1) = '+1' A2D(─1) = '─1' A2D(─8) = '─8'

SIGNED(1) = '1' SIGNED(─1) = '─1'

• A2X converts to a string of 8 hex digits

A2X(0) = '00000000' A2X(1) = '00000001' A2X(─8) = 'FFFFFFF8'

Converting from Arithmetic Data to Character Value Types

Arithmetic (SETA) values are converted to the four other character value types: binary, bytes
(“characters”), signed decimal strings, and hexadecimal by four corresponding functions.

• A2B converts an arithmetic value to a string of 32 '0' and '1' characters representing the 32
bits of its argument:

A2B(1) = '00000000000000000000000000000001'
A2B(-1) = '11111111111111111111111111111111'
A2B(-8) = '11111111111111111111111111111000'
A2B(99) = '00000000000000000000000001100011'

A2B(16777217) = '00000001000000000000000000000001'
 A2B(2147483647) = '01111111111111111111111111111111'
A2B(-2147483648) = '10000000000000000000000000000000'

• A2C returns the binary value of its argument as a string of four bytes (the four bytes of the
binary value); BYTE converts to only 1 byte.

A2C(0) = 'nnnn' (X'00000000')
A2C(96) = 'nnn-' (X'00000050') (n = byte of all 0-bits)
BYTE(96) = '-' (X'60') (only a single byte)
A2C(-1) = 'ffff' (X'FFFFFFFF') (f = byte of all 1-bits)
A2C(-9) = 'fff7' (X'FFFFFFF7')

A2C(2147483647) = '″fff' (X'7FFFFFFF')
A2C(-385875968) = 'Znnn' (X'E9000000')

A2C(125) = 'nnn'' (X'0000007D')
A2C(-235736076) = '1234' (X'F1F2F3F4')

• A2D converts the binary value of its argument to an always- signed decimal string; SIGNED adds
a sign only for negative values:

A2D(0) = '+0' SIGNED(0) = '0'
A2D(1) = '+1' SIGNED(1) = '1'
A2D(-1) = '-1' SIGNED(-1) = '-1'
A2D(-8) = '-8' A2D(99) = '+99'

A2D(16777217) = '+16777217'
 A2D(2147483647) = '+2147483647'
A2D(-2147483648) = '-2147483648'

32 A+ + : Using HLASM's Macro Facility

• A2X converts an arithmetic value to a string of 8 characters representing the hexadecimal digits
of its argument:

A2X(0) = '00000000' A2X(1) = '00000001'
A2X(-1) = 'FFFFFFFF' A2X(9) = '00000009'
A2X(-8) = 'FFFFFFF8' A2X(99) = '00000063'

A2X(16777217) = '01000001'
 A2X(2147483647) = '7FFFFFFF'
A2X(-2147483648) = '80000000'

31Converting from Character Values to Arithmetic Values

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• B2A converts from bit-strings to arithmetic:

B2A('1001') = 9 B2A('11111111111111111111111111111111') = ─1
B2A('11111111111111111111111111111000') = ─8

• C2A converts from bytes to arithmetic:

C2A('─') = 96 (Argument is a single byte, X'60')
C2A('a') = 129

C2A('nnn2') = 242 (n = byte of all 0─bits)

• D2A converts from decimal strings to arithmetic: (+ signs opt ional)

D2A('') = 0 D2A('─001') = ─1 D2A('+1') = 1 D2A('1') = 1

• X2A converts from hex-strings to arithmetic:

X2A('fffffff8') = ─8 X2A('63') = 99 X2A('7fffffff') = 2147483647

Converting from Character Values to Arithmetic Values

Four functions convert character value types to a binary arithmetic value.

• B2A converts strings of 0 to 32 '0' and '1' characters to the equivalent binary value. Strings
shorter than 32 characters are padded on the left with zeros if necessary.

B2A('') = 0
B2A('001') = 1
B2A('1001') = 9

 B2A('11111111111111111111111111111111') = -1
 B2A('11111111111111111111111111111000') = -8

• C2A converts 0 to 4 characters (left-padded with “null” bytes of eight 0-bits if necessary) to a
4-byte binary value:

C2A('') = 0
C2A('-') = 96
C2A('a') = 129

C2A('nnn2') = 242 (n = byte of all 0-bits)

• D2A converts a string of optionally signed decimal digits to binary:

D2A('') = 0 D2A('000') = 0
D2A('-001') = -1 D2A('+0999') = 999

 D2A('2147483647') = 2147483647
D2A('-2147483648') = -2147483648

Part 1: The Conditional Assembly Language 33

• X2A converts 0 to 8 characters (left-padded with zero characters if necessary) to the equivalent
binary value:

X2A('0') = 0 X2A('1') = 1
X2A('ffffffff') = -1 X2A('fffffff8') = -8

X2A('63') = 99 X2A('7fffffff') = 2147483647

32Converting to and from Decimal Character Data

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• B2D converts binary characters to a signed decimal string
B2D('1') = '+1' B2D('1001') = '+9'
B2D('11111111111111111111111111111111') = '─1'

• C2D converts bytes to a signed decimal string
C2D('a') = '+129' C2D('nnn2') = '+242'

• X2D converts hex characters to a signed decimal string
X2D('') = '+0' X2D('0') = '+0'
X2D('ffffffff') = '─1' X2D('63') = '+99'

• D2B converts decimal characters to binary characters
D2B('+0999') = '00000000000000000000001111100111'

D2B('123456789') = '00000111010110111100110100010101'

• D2C converts decimal characters to bytes
 D2C('─001') = 'ffff' (=X'FFFFFFFF')
D2C('+0231') = 'nnnX' (=X'000000E7')

• D2X converts decimal characters to hex characters
D2X('─001') = 'FFFFFFFF' D2X('+0999') = '000003E7'

D2X('123456789') = '075BCD15' D2X('─2147483647') = 80000001

Converting to and from Decimal Character Data

Six functions convert between strings of decimal characters and the other three character value
types. Three functions convert to decimal strings: they always generate a signed result; and three
functions converting from decimal strings accept optionally signed arguments.

These three functions convert character value types to signed decimal strings.

• B2D converts 0 to 32 '0' and '1' characters (left-padded with zero characters if necessary) to
their equivalent signed decimal value:

B2D('') = '+0'
B2D('0') = '+0'
B2D('1') = '+1'

B2D('11111111111111111111111111111111') = '-1'
B2D('1001') = '+9'

B2D('11111111111111111111111111111000') = '-8'
B2D('1100011') = '+99'

 B2D('1111111111111111111111111111111') = '+2147483647'
B2D('10000000000000000000000000000000') = '-2147483648'

• C2D converts 0 to 4 bytes (left-padded with “null” bytes of eight 0-bits if necessary) to a signed
decimal value:

C2D('') = '+0' C2D('-') = '+96'
C2D('a') = '+129' C2D('nnn2') = '+242'

 C2D(' 2') = '+1077952754' C2D('aaaa') = '-2122219135'
C2D('999') = '+16382457'

• X2D converts 0 to 8 hexadecimal characters (left-padded with zero characters if necessary) to a
signed decimal value:

34 A+ + : Using HLASM's Macro Facility

X2D('') = '+0' X2D('0') = '+0'
X2D('1') = '+1' X2D('9') = '+9'
X2D('63') = '+99' X2D('FFFFFFF8') = '-8'

X2D('7FFFFFFF') = '+2147483647'
X2D('80000000') = '-2147483648'

These three functions convert optionally signed decimal strings to character value types:

• D2B converts a string of decimal characters to a string of 32 '0' or '1' characters representing
the binary value of the argument.

D2B('0') = '00000000000000000000000000000000'
D2B('000') = '00000000000000000000000000000000'
D2B('-001') = '11111111111111111111111111111111'
D2B('+0999') = '00000000000000000000001111100111'

D2B('123456789') = '00000111010110111100110100010101'
 D2B('2147483647') = '01111111111111111111111111111111'
D2B('-2147483647') = '10000000000000000000000000000001'
D2B('-2147483648') = '10000000000000000000000000000000'

• D2C converts a string of decimal characters to a string of 4 bytes having the same binary value
as the argument string:

D2C('0') = 'nnnn' (=X'00000000')
D2C('-001') = 'ffff' (=X'FFFFFFFF')
D2C('+0231') = 'nnnX' (=X'000000E7')

D2C('2130706431') = '=fff' (=X'7EFFFFFF')

• D2X converts a string of decimal characters to 8 hexadecimal characters having the same binary
representation as the argument string:

D2X('0') = '00000000' D2X('000') = '00000000'
D2X('-001') = 'FFFFFFFF' D2X('+0999') = '000003E7'

D2X('123456789') = '075BCD15' D2X('2147483647') = '7FFFFFFF'
D2X('-2147483647') = '80000001' D2X('-2147483648') = '80000000'

33Converting Among Binary, Bytes, and Hex Strings

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• B2C converts binary digits to bytes

B2C('') = '' (null string) B2C('10000001') = 'a' (X'81')
B2C('0000') = 'n' (X'00') B2C('100000001011100') = ' *' (X'405C')

• B2X converts binary digits to hex digits

B2X('') = '' B2X('1000000') = '40' B2X('001111101') = '07D'
B2X('0000000000001') = '0001' B2X('10111000101110001011100') = '5C5C5C'

• C2B converts bytes to binary digits

C2B('a') = '10000001' C2B('****') = '01011100010111000101110001011100'
 C2B('') = '' C2B(' *') = '0100000001011100'

• C2X converts bytes to hex characters

C2X('') = '' C2X(' ') = '40' C2X('a') = '81' C2X('9999') = 'F9F9F9F9'

• X2B converts hex digits to binary digits

X2B('') = '' X2B('7D') = '01111101' X2B('040') = '000001000000'

• X2C converts hex digits to bytes

X2C('') = '' X2C('81') = 'a' X2C('405c') = ' *' X2C('5c5c5c') = '***'

Part 1: The Conditional Assembly Language 35

Converting Among Bit, Byte, and Hexadecimal String Data

The following functions convert character value data representing binary, byte, and hexadecimal
data. Because they do not involve data that represents (or has been converted to or from) SETA
values, their arguments and results may be longer than conversion to a 32-bit arithmetic value
would allow.

• B2C converts strings of '0' and '1' characters to bytes. If the argument string length is not a
multiple of 8, it is padded on the left with zero characters to form an integral number of result
bytes.

B2C('') = '' (null string)
B2C('0000') = 'n' (X'00')

B2C('00000000000000000') = 'nnn' (X'000000')
B2C('1000000') = ' ' (X'40')
B2C('10000001') = 'a' (X'81')

B2C('100000001011100') = ' *' (X'405C')
B2C('1011100010111000101110001011100') = '****' (X'5C5C5C5C')
B2C('11111001111110011111100111111001') = '9999' (X'F9F9F9F9')

B2C('100000010101001101010011010100110101001') = ' zzzz' (X'40A9A9A9A9')

• B2X converts strings of '0' and '1' characters in groups of 4 to equivalent characters repres-
enting hexadecimal digits. If the argument string length is not a multiple of 4, it is padded on
the left with zero characters.

B2X('') = '' (null string)
B2X('1000000') = '40'

B2X('001111101') = '07D'
B2X('0010000001') = '081'

B2X('0000000000001') = '0001'
B2X('100000001011100') = '405C'

 B2X('1011100010111000101110001011100') = '5C5C5C5C'
B2X('11111001111110011111100111111001') = 'F9F9F9F9'

• C2B converts each byte in the argument string to groups of eight '0' and '1' characters:

C2B('') = '' C2B(' ') = '01000000'
C2B('a') = '10000001' C2B(''') = '01111101'
C2B(' *') = '0100000001011100'

 C2B('****') = '01011100010111000101110001011100'
 C2B('9999') = '11111001111110011111100111111001'
C2B(' zzzz') = '0100000010101001101010011010100110101001'

C2B('n') = '00000000' C2B('n*') = '0000000001011100'

• C2X converts each byte in the argument string to 2 hexadecimal characters:

C2X('') = '' C2X(' ') = '40'
C2X('a') = '81' C2X(' *') = '405C'
C2X('n*') = '005C' C2X('9999') = 'F9F9F9F9'

C2X('123456') = 'F1F2F3F4F5F6'

• X2B converts each hexadecimal character in the argument string to four '0' and '1' characters:

X2B('') = ''
X2B('7D') = '01111101'
X2B('040') = '000001000000'
X2B('0081') = '0000000010000001'

X2B('000405C') = '0000000000000100000001011100'
X2B('5C5C5C5C') = '01011100010111000101110001011100'

X2B('F5F6F9F9F9F9') = '11110101111101101111100111111001111110011111101'

36 A+ + : Using HLASM's Macro Facility

• X2C converts each pair of hexadecimal characters in the argument string to a byte having the
equivalent value. If the argument string has an odd number of characters, it is padded on the
left with a zero character.

X2C('') = '' X2C('81') = 'a'
X2C('040') = 'n ' X2C('405c') = ' *'

X2C('000040') = 'nn ' X2C('5c5c5c5c') = '****'
X2C('f9f9f9f9') = '9999' X2C('f1f2f3f4f5f6') = '123456'

34Validity-Testing Functions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• ISBIN tests 1-32 characters for binary digits

ISBIN('1') = 1 ISBIN('0') = 1 ISBIN('2') = 0
ISBIN('11111111111111111111111111111111') = 1 (32 characters)
ISBIN('000000000000000000000000000000000') = 0 (33 characters)

• ISDEC tests 1-10 characters for assignable decimal value

ISDEC('1') = 1 ISDEC('─12') = 0 (sign not allowed)
ISDEC('11111111111') = 0 (11 characters)
ISDEC('2147483648') = 0 (value too large)

• ISHEX tests 1-8 characters for valid hexadecimal digits

ISHEX('1') = 1 ISHEX('a') = 1 ISHEX('G') = 0 ISHEX('ccCCCCcc') = 1
ISHEX('123456789') = 0 (too many characters)

• ISSYM tests alphanumeric characters for a valid symbol

ISSYM('1') = 0 ISSYM('$') = 1 ISSYM('1A') = 0 ISSYM('Abc') = 1
ISSYM('_@$#1') = 1 ISSYM('ABCDEFGHIJabcd.....ghiABCD') = 0 (64 characters)

Validity-Testing Functions

Four functions help you determine the validity of strings whose contents might be used in other
contexts. Each function returns a 0 (false) or 1 (true) value.

• ISBIN tests whether all the characters in the string are either '0' or '1'. At most 32 characters
are allowed.

ISBIN('0') = 1
ISBIN('1') = 1
ISBIN('2') = 0 (not binary)

 ISBIN('11111111111111111111111111111111') = 1 (32 characters)
ISBIN('000000000000000000000000000000000') = 0 (33 characters)

• ISDEC tests whether all the characters in the string are decimal digits, and may validly be con-
verted to 32-bit binary. Signs are not allowed; at most 10 characters are allowed.

ISDEC('001') = 1 ISDEC('-12') = 0 (sign not allowed)
ISDEC('1111111111') = 1 ISDEC('11111111111') = 0 (11 characters)
ISDEC('2147483647') = 1 ISDEC('2147483648') = 0 (value too large)

• ISHEX tests whether all the characters in the string are valid hexadecimal digits. Mixed-case
letters are allowed; the argument string may contain at most 8 characters.

ISHEX('1') = 1 ISHEX('a') = 1
ISHEX('G') = 0 ISHEX('12ef') = 1

ISHEX('ccCCCCcc') = 1 ISHEX('123456789') = 0 (too many characters)

• ISSYM tests whether the characters in the string represent a valid Assembler Language symbol.

Part 1: The Conditional Assembly Language 37

ISSYM('1') = 0 ISSYM('$') = 1
ISSYM('_') = 1 ISSYM('1A') = 0

ISSYM('Abc') = 1 ISSYM('_@$#1') = 1
ISSYM('aaaa') = 1

ISSYM('abcdefghijklmnopqrstuvwxyz') = 1
 ISSYM('YYYYYYYYYYYYY.........YYYYYYYY') = 1 (63 characters)
ISSYM('ABCDEFGHIJabcd..........ghiABCD') = 0 (64 characters)

35Character-Valued String Functions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• DCVAL pairs quotes and ampersands, and returns the string generated
as if substituted in DC (compare to DCLEN, slide 36)

If &S = a''b&&c then DCVAL('&S') = a'b&c (single quote and ampersand)

• DEQUOTE removes a single leading and/or trailing quote

If &S = '' then DEQUOTE('&S') = null string (both quotes removed)
If &S = '1F1B' then DEQUOTE('&S') = 1F1B (quotes removed at both ends)

• DOUBLE pairs quotes and ampersands (inverse of DCVAL)

Let &A have value a'b and &B have value a&b; then

(DOUBLE '&A') = DOUBLE('&A') = a''b (two quotes)
(DOUBLE '&B') = DOUBLE('&B') = a&&b (two ampersands)

• LOWER converts all letters to lower case

(LOWER 'aBcDeF') = LOWER('aBcDeF') = 'abcdef'

• UPPER converts all letters to upper case

(UPPER 'aBcDeF') = UPPER('aBcDeF') = 'ABCDEF'

Character-Valued String Functions

These functions help you manage character strings.

• DCVAL returns its argument string with all paired apostrophes and ampersands collapsed to
single occurrences, as would be the case if the argument string were used as the nominal value
of a C-type constant. (The function does not perform substitutions of variable symbols!)

If &S = null then DCVAL('&S') = null string
If &S = '' then DCVAL('&S') = ' (single quote)
If &S = && then DCVAL('&S') = & (single ampersand)
If &S = a''b then DCVAL('&S') = a'b (single quote)
If &S = a''b&&c then DCVAL('&S') = a'b&c (single quote and ampersand)

• DEQUOTE removes any single quotation marks (apostrophes) from the first and/or last characters
of the argument string.

If &S = null then DEQUOTE('&S') = null string
If &S = ' then DEQUOTE('&S') = ' (single quote)
If &S = '1F then DEQUOTE('&S') = 1F (leading quote removed)
If &S = 1B' then DEQUOTE('&S') = 1B (trailing quote removed)
If &S = '' then DEQUOTE('&S') = null string (both quotes removed)
If &S = '1F1B' then DEQUOTE('&S') = 1F1B (quotes removed at both ends)

• DOUBLE pairs quotes and ampersands (the inverse of DCVAL)

DOUBLE(a'b) = a''b (two quotes)
DOUBLE(a&b) = a&&b (two ampersands)

38 A+ + : Using HLASM's Macro Facility

• LOWER converts all letters to lower case

LOWER('aBcDeF') = 'abcdef'

• UPPER converts all letters to upper case

UPPER('aBcDeF') = 'ABCDEF'

36Arithmetic-Valued String Functions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• DCLEN determines length of string if substituted in DC

If &S = '' then DCLEN('&S') = 1 (2 ' paired to 1)
If &S = && then DCLEN('&S') = 1 (2 & paired to 1)
If &S = a''b then DCLEN('&S') = 3 (2 ' paired to 1)
If &S = a''b&&c then DCLEN('&S') = 5 (' and & paired)
If &S = &&&''' then DCLEN('&S') = 4 (one pairing each)

• FIND returns offset in 1st argument of any character from 2nd

Find('abcdef','dc') = ('abcdef' Find 'dc') = 3 ('c' matches 3rd character)
Find('abcdef','DE') = ('abcdef' Find 'DE') = 0 ('DE' doesn't match 'd' or 'e')
Find('abcdef','Ab') = ('abcdef' Find 'Ab') = 2 ('b' matches 2nd character)
Find('ABCDEF','Ab') = ('ABCDEF' Find 'Ab') = 1 ('A' matches 1st character)

• INDEX returns offset in 1st argument of entire 2nd argument

Index('abcdef','cd') = ('abcdef' Index 'cd') = 3
Index('abcdef','DE') = ('abcdef' Index 'DE') = 0
Index('abcdef','Ab') = ('abcdef' Index 'Ab') = 0

Arithmetic-Valued String Functions

• DCLEN examines a string for the presence of paired apostrophes and ampersands to determine
how many characters would be generated if the string was used as the nominal value of a
C-type constant. (The function does not perform substitutions of variable symbols, as a DC
statement would!)

If &S = '' then DCLEN('&S') = 1 (2 ' paired to 1)
If &S = && then DCLEN('&S') = 1 (2 & paired to 1)
If &S = a''b then DCLEN('&S') = 3 (2 ' paired to 1)
If &S = a''b&&c then DCLEN('&S') = 5 (' and & paired)
If &S = &&&''' then DCLEN('&S') = 4 (one pairing each)
If &S = ''''' then DCLEN('&S') = 3 (5 quotes, only two pairings)

• FIND returns the offset in the first argument string of any character in the second argument
string.

Find('abcdef','dc') = ('abcdef' Find 'dc') = 3 ('c' matches 3rd character)
Find('abcdef','DE') = ('abcdef' Find 'DE') = 0 ('DE' doesn't match 'd' or 'e')
Find('abcdef','Ab') = ('abcdef' Find 'Ab') = 2 ('b' matches 2nd character)
Find('ABCDEF','Ab') = ('ABCDEF' Find 'Ab') = 1 ('A' matches 1st character)
Find('123456','F4') = ('123456' Find 'F4') = 4 ('4' matches 4th character)

• INDEX returns the offset in the first argument of the first occurrence of the entire second argu-
ment string.

Part 1: The Conditional Assembly Language 39

Index('abcdef','cd') = ('abcdef' Index 'cd') = 3
Index('ABCDEF','cd') = ('ABCDEF' Index 'cd') = 0
Index('abcdef','DE') = ('abcdef' Index 'DE') = 0
Index('abcdef','Ab') = ('abcdef' Index 'Ab') = 0
Index('ABCDEF','DE') = 4

37External Conditional-Assembly Functions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Interfaces to assembly-time environment and resources

• Two types of external, user-written functions

1. Arithmetic functions: like &A = AFunc(&V1, &V2, ...)

&A SetAF 'AFunc',&V1,&V2,... Arithmetic arguments
&LogN SetAF 'Log2',&N Logb(&N)

2. Character functions: like &C = CFunc('&S1', '&S2', ...)

&C SetCF 'CFunc','&S1','&S2',... String arguments
&RevX SetCF 'Reverse','&X' Reverse(&X)

• Functions may have zero to many arguments

• Standard linkage conventions

External Conditional-Assembly Functions

High Level Assembler for z/OS, z/VM, & z/VSE supports a powerful and flexible capability for
invoking externally-defined functions during the assembly. These functions can perform any
desired action, and provide easy access to the environment in which the assembler is operating.
They are invoked using the SETAF and SETCF statements, by analogy with SETA and SETC.

The syntax of the statements is similar to that of SETA and SETC: a local or global variable
symbol appears in the name field; it receives the value returned by the function. The operation
mnemonic indicates the type of function to be called, and the type of value assigned to the name-
field variable. The first operand in each case is a character expression giving the name of the
function to be called. The remaining operands are optional, and their presence depends on the
function: some functions could require no arguments, others could require several. The type of
each argument is the same as that of the receiving “target” variable: arithmetic arguments for
SETAF functions, and character arguments for SETCF functions.

A compact notational representation of this description is

&Arith_Var SETAF 'Arith_function'[,arith_val]...
&Char_Var SETCF 'Char_function'[,'character_val']...

For example, we might invoke the LOG2 and REVERSE functions with these two statements:

&LogN SetAF 'Log2',&N Logb(&N)
&RevX SetCF 'Reverse','&X' Reverse(&X)

Interface descriptions and code samples for these two functions are described in “External Condi-
tional Assembly Functions” on page 234. Details of external function interfaces are described in
the High Level Assembler for z/OS, z/VM, & z/VSE Programmer's Guide.

40 A+ + : Using HLASM's Macro Facility

38Statement Selection: Conditional Assembly Control Flow

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Lets the assembler select different sequences of statements for
further processing

• Key elements are:

1. Sequence symbols

− Used to “mark” posit ions in the statement stream

− A condi t ional assembly “ label”

2. Two statements that reference sequence symbols:

AGO condit ional-assembly “uncondit ional branch”

AIF condit ional-assembly “condit ional branch”

3. One statement that defines a sequence symbol:

ANOP condit ional-assembly “No-Operat ion”

Statement Selection: Conditional Assembly Control Flow
Much of the power of the conditional assembly language lies in its ability to direct the assembler
to select different sequences of statements for processing. The key facilities required for statement
selection are sequence symbols, which are used to mark positions in the statement stream for refer-
ence by other statements and the AIF and AGO statements, which allow the normal sequence of
statement processing to be altered. The ANOP statement provides a “place holder” for defining a
sequence symbol.

39Sequence Symbols

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Sequence symbol: an ordinary symbol preceded by a period (.)

.A .Repeat_Scan .Loop_Head .Error12

• Used to mark a statement

− Defined by appearing in the name field of a statement

.A LR R0,R9

.B ANOP ,

− Referenced as the target of AIF, AGO statements

• Not assigned any value (absolute, relocatable, or other)

• Purely local scope; no sharing of sequence symbols across scopes

• Cannot be created or substituted (unlike variable symbols)

− Cannot even be created by substitution in a macro-generated macro (!)
(AINSERT provides a way around this)

• Never passed as the value of any symbolic parameter

Part 1: The Conditional Assembly Language 41

Sequence Symbols

Sequence symbols are the key to statement selection: they “mark” the position of a specific state-
ment in the stream of statements to be processed by the assembler. They are written as an ordi-
nary symbol preceded by a period (.), as in the following examples:

.A .Repeat_Scan .Loop_Head .Error12

Sequence symbols have some unusual properties compared to ordinary symbols.

• Sequence symbols are defined by appearing in name field of any statement. They may appear
on ordinary-assembly statements and on conditional-assembly statements, with no difference
in meaning or behavior.

• Sequence symbols are not assigned an absolute or relocatable value, and they do not appear in
the assembler's Symbol Table. They cannot be used in any expression.

• Sequence symbols have purely local scope. That is, there is no sharing of sequence symbols
between macros, or between macros and ordinary “open code” assembly.

• Sequence symbols cannot be created or substituted (unlike variable symbols).

• Sequence symbols are never passed as values of any symbolic parameter. Thus, although they
can appear in the name field of a macro instruction statement (or macro “call”), they are never
made available to the macro definition as the value of a name-field variable symbol.

• Sequence symbols are used as the target of AIF and AGO statements to alter sequential state-
ment processing, and for no other purpose.

• Sequence symbols may be defined before or after references to them. This means that both
forward and backward “branches” are possible (implying possible endless loops).2

40The ANOP Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• ANOP: conditional-assembly “No-Operation”

• Serves only to hold a sequence-symbol marker before statements that
don't have room for it in the name field

.NewVal ANOP ,
&ARV SETA &ARV+1 Name field required for receiving variable

• No other effect

− Conceptually similar to (but very different from!)

Target DC 0H For branch targets in ordinary assembly

2 The ability of conditional assembly branching to go “backward” to an earlier point in the statement stream means that
great care must be taken when defining sequence symbols in COPY segments, because the same symbol might be
defined in open code or in another COPYed instance of the same segment. Typically, the assembler will not be able to
complete enough processing to create a listing with an error message.

42 A+ + : Using HLASM's Macro Facility

ANOP Statement

The ANOP statement provides a “place holder” for a sequence symbol that could not otherwise
be attached to a desired statement. In the following example the desired “target” is a SETA state-
ment, which requires that an arithmetic variable symbol appear in the name field:

.NewVal ANOP , Mark the following statement
&ARV SETA &ARV+1 Name field required for target variable

Thus, the ANOP statement provides a way for AIF and AGO statements to refer to the SETA
statement.

41The AGO Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Two forms: Ordinary AGO and Extended AGO

• AGO unconditionally alters normal sequential statement processing

− Assembler breaks normal sequential statement processing, resumes at
statement marked with the specified sequence symbol

• Ordinary AGO (“Go-To” statement)

AGO sequence_symbol

− Example:

AGO .Target Next statement processed is marked by .Target

• Example of use:

┌──────── AGO .BB
│ * (1) This statement is ignored
└� .BB ANOP

* (2) This statement is processed

The AGO Statement

The AGO statement unconditionally alters the sequence of statement processing, which resumes
at the statement “marked” with the specified sequence symbol. It is written in the form

AGO sequence_symbol

Example:

AGO .Target Next statement processed is marked by .Target

The assembler breaks its normal sequential statement processing, and resumes processing at the
statement “marked” with the specified sequence symbol. For example,

AGO .BB
* (1) This statement is ignored
.BB ANOP
* (2) This statement is processed

the AGO statement will cause the first comment statement (1) to be skipped, and processing will
resume at the ANOP statement.

forward/backward branch in the statement stream

Part 1: The Conditional Assembly Language 43

The Extended AGO Statement

42The Extended AGO Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Extended AGO (or “Computed Go-To”, “Switch” statement)

AGO (arith_expr)seqsym_1[,seqsym_k]...

• Value of arithmetic expression determines which “branch” is taken
from sequence-symbol l ist

− Value must l ie between 1 and number of sequence symbols in “branch” l ist

• Warning! if the value of the arithmetic expression is out of range, no
“branch” is taken!

AGO (&SW).SW1,.SW2,.SW3,.SW4
MNOTE 12,'Invalid value of &&SW = &SW..' Message is a good practice!

− Strongly recommended practice: put something after the AGO to indicate the
bad value of &SW

The assembler provides a convenient extension to the simple AGO statement, in the form of the
“Extended AGO” statement. It is analogous to “switch” or “case” statements in other languages.
The operand field contains a parenthesized arithmetic expression, followed by a list of sequence
symbols, as shown in Figure 7.

AGO (arith_expr)seqsym_1[,seqsym_k]...

Figure 7. General Form of the Extended AGO Statement

The extended AGO statement tests the value of the arithmetic_expression to select one of the
sequence symbols as a “branch target”: if the value is 1, the first sequence symbol is selected; if
the value is 2, the second sequence symbol is selected; and so forth. If the value of the arithmetic
expression does not correspond to any entry in the list (e.g., the value of the expression may be
less than or equal to zero, or larger than the number of sequence symbols in the list), the assem-
bler will not take any branch, and will not issue any diagnostic message about the “failed” branch!
Thus, it is important to verify that the values of arithmetic expressions used in extended AGO
statements are always valid.

A recommended technique to catch invalid values is:

AGO (&SW).SW1,.SW2,.SW3,.SW4
MNOTE 12,'Invalid value of &&SW = &SW..' Always a good practice!

where a message indication is placed after the AGO to trap cases where the arithmetic variable's
value is invalid. (We'll see more about MNOTE on page 47.)

44 A+ + : Using HLASM's Macro Facility

43The AIF Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• AIF conditionally alters normal sequential statement processing

• Two forms: Ordinary AIF and Extended AIF

• Ordinary AIF:

AIF (Boolean_expression)seqsym

− Example:

AIF (&A GT 10).Exit_Loop

• If Boolean_expression is

true: continue processing at specified sequence symbol
false: continue processing with next sequential statement

┌──────── AIF (&Z GT 40).BD
│ * (1) This statement is processed if (&Z GT 40) is false
└� .BD ANOP

* (2) This statement is processed

The AIF Statement

The AIF statement conditionally selects a new sequence of statements, by testing a condition
before deciding whether or not to “branch” to the statement designated by a specified sequence
symbol. The ordinary AIF statement is written in this form:

AIF (Boolean_expression)seqsym

For example:

AIF (&A GT 10).Exit_Loop

If the “Boolean_expression” is true, statement processing will continue at the statement marked
with the specified sequence symbol. If the “Boolean_expression” is false, processing continues
with the next sequential statement following the AIF. For example:

AIF (&A GT 10).BD
* (1) This statement is processed if (&A GT 10) is false
.BD ANOP
* (2) This statement is processed

In this case, the statement following the AIF will be processed if the Boolean expression
(&A GT 10) is false; if the condition defined by the Boolean condition is true, the next statement
to be processed will be the ANOP statement.

The operation of the extended AGO statement illustrated in Figure 7 on page 44 is precisely
equivalent to the following set of AIF statements:

AIF (arith_expr EQ 1)seqsym_1
AIF (arith_expr EQ 2)seqsym_2
- - -
AIF (arith_expr EQ k)seqsym_k

This helps to illustrate why it is possible for no “branch” to be taken if the value of arith_expr
isn't between 1 and k.

Part 1: The Conditional Assembly Language 45

The Extended AIF Statement

44The Extended AIF Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Extended AIF (Multi-condition branch, Case statement)

AIF (bool_expr_1)seqsym_1[,(bool_expr_n)seqsym_n]...

• Equivalent to a sequence of ordinary AIF statements

AIF (bool_expr_1)seqsym_1
─ ─ ─
AIF (bool_expr_n)seqsym_n

• Boolean expressions are evaluated in turn until first true one is found

− Remaining Boolean expressions are not evaluated

• Example:

AIF (&A GT 10).SS1,(&BOOL2).SS2,('&C' EQ '*').SS3

&OpPosn SetA Find('+─*/','&String') Search for operator character
AGo (&OpPosn).Plus,.Minus,.Mult,.Div Branch accordingly

.* Do something if none is found!

The extended form of the AIF statement lets you write multiple conditions and “branch targets”
on a single statement, as shown Figure 8.

AIF (bool_expr_1)seqsym_1[,(bool_expr_n)seqsym_n]...

Figure 8. General Form of the Extended AIF Statement

The Boolean expressions are evaluated in turn until the first true expression is found; the next
statement to be processed will be the one “marked” by the corresponding sequence symbol. The
remaining Boolean expressions are not evaluated after the first true expression is found. If none is
true, processing continues with the next sequential statement.

An example of an extended AIF statement is:

AIF (&A GT 10).SS1,(&BOOL2).SS2,('&C' EQ '*').SS3

The extended AIF statement illustrated in Figure 8 is entirely equivalent to the following
sequence of ordinary AIF statements:

AIF (bool_expr_1)seqsym_1
AIF (bool_expr_2)seqsym_2
- - -
AIF (bool_expr_n)seqsym_n

The primary advantage of the extended AIF statement is in providing a concise notation for what
would otherwise require multiple AIF statements.

Here are two examples of the Extended AGO statement in combination with the INDEX and FIND
functions.

1. Suppose the character variable symbol &Response might contain one of four values: YES, NO,
MAYBE, and NONE, and we wish to branch to some processing statements. The search can be
done in a single statement:

46 A+ + : Using HLASM's Macro Facility

&OK SetC 'YES NO MAYBENONE ' 5 positions per term
&RVal SetA 4+Index('&OK','&Response') Search for match

AGO (&RVal./5).Yes,.No.,Maybe,.None Process response
- - - No match found

2. Suppose you want to search an “expression string” for the presence of the arithmetic operators
+ , − , *, and /. The FIND function lets you locate an operator easily:

&OpPosn SetA Find('+-*/','&String') Search for operator character
AGo (&OpPosn).Plus,.Minus,.Mult,.Div Branch accordingly
- - - etc. No operator found

45Displaying Symbol Values and Messages: MNOTE

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Useful for diagnostics, tracing, information, error messages
− See macro debugging discussion (slide 85)

• Syntax:
MNOTE severity,'message text'

• severity may be
− any arithmetic expression with value between 0 and 255

— value of severity is used to determine assembly completion code

− an asterisk; the message is treated as a comment

− omitted

• Displayable quotes and ampersands must be paired

• Examples:
.Msg_1B MNOTE 8,'Missing Required Operand' (severity 8)
.X14 MNOTE ,'Conditional Assembly has reached .X14' (severity 1)
.Trace4 MNOTE *,'Value of &&A = &A., value of &&C = ''&C.''' (no severity)

MNOTE 'Hello World (How Original!)' (no severity)

Displaying Symbol Values and Messages: The MNOTE Statement
The MNOTE statement provides a way for the conditional assembly language to “communicate”
to the programmer. It can be used in both “open code” and in macros to provide diagnostics,
trace information, and other data in an easily readable form. By providing suitable controls, you
can produce or suppress such messages easily, which facilitates debugging of macros and of pro-
grams with complex uses of the conditional assembly language. For example, a program could
issue MNOTE statements like the following:

.Msg_1B MNOTE 8,'Missing Required Operand'

.X14 MNOTE ,'Conditional Assembly has reached .X14'

.Trace4 MNOTE *,'Value of &&A = &A., value of &&C = ''&C.'''
MNOTE 'Hello World (How Original!)'

The first MNOTE sets the return code for the assembly to be at least 8; the second could indicate
that the flow of control in a conditional assembly has reached a particular point (and will supply
a default severity code value of 1); the third provides information about the current values of two
variable symbols; and the fourth illustrates a simple message.

The first two MNOTEs are treated as “error” messages, which means that they will be flagged in
the error summary in the listing and will appear in the SYSTERM output if the TERM option
was specified. A setting of an assembly severity code is also performed. The latter two MNOTEs
will be treated as comments, and will appear only in the listing.

Part 1: The Conditional Assembly Language 47

Any quotation marks and ampersands intended to be part of the message must be paired, as illus-
trated in the example above. (The DOUBLE function (on page 38) will do this for you.)

The High Level Assembler provides two system variable symbols (&SYSM_SEV and
&SYSM_HSEV) that allow you to determine the current values of MNOTE statement severities.
These two variables will be discussed in “&SYSM_HSEV and &SYSM_SEV” on page 260.

Examples of Conditional Assembly
We now describe two simple examples of open-code conditional assembly. Further examples of
conditional assembly techniques will be illustrated when we discuss macros.

46Examples: Generate Bytes with Values 1-N

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Example 0: write everything by hand

N EQU 5 Predefined absolute symbol
DC AL1(1,2,3,4,N) Define the constants

− Defect: if the value of N changes, must rewrite the DC statement

• Example 1: generate separate statements using arithmetic variables

− Pseudocode: DO for K = 1 to N [GEN(DC AL1(K))]

N EQU 5 Predefined absolute symbol
LCLA &J Local arithmetic variable symbol, initially 0

┌� .Test AIF (&J GE N).Done Test for completion (N could be LE 0!)
│ &J SETA &J+1 │ Increment &J
│ DC AL1(&J) │ Generate a byte constant
└─────── AGO .Test │ Go to check for completion

.Done ANOP �─────────┘ Generation completed

• Try it!

Example 1: Generate Bytes with Values 1-N

Suppose we wish to generate DC statements defining a sequence of byte values from 1 to N,
where N is a predefined value. This can be done by writing statements like

N EQU 12
DC AL1(1,2,3,...,N)

but this requires knowing the exact value of N every time the program is modified and re-
assembled.

Conditional assembly techniques can be used to solve this problem so that changing the EQU
statement defining N will not require any rewriting. Pseudo-code for such a sequence might look
like this:

DO for K = 1 to N [GEN(DC AL1(K))]

Conditional-assembly statements to generate the DC statements are:

48 A+ + : Using HLASM's Macro Facility

(1) N EQU 5 Predefined absolute symbol
(2) LCLA &J Local arithmetic variable symbol, initially 0
(3) .Test AIF (&J GE N).Done Test for completion (N could be LE 0!)
(4) &J SETA &J+1 Increment &J
(5) DC AL1(&J) Generate a byte constant
(6) AGO .Test Go to check for completion
(7) .Done ANOP Generation completed

Figure 9. Generating a Sequence of Bytes, Individually Defined

The LCLA declaration (2) of &J also initializes it to zero; we cannot omit the declaration in this
example, because the first appearance of &J is in the AIF statement (3), not in the SETA state-
ment (4). The AIF statement (3) compares &J to N (a predefined (1) absolute symbol), and if &J
exceeds N, a “branch” is taken to the label .Done (7). If the AIF test does not change the flow of
statement processing, the next statement (4) increments &J by one, and its new value is then sub-
stituted in the DC statement (5). The following AGO (6) then returns control to the test in the AIF
statement at sequence symbol .Test (3).

This example is of course a hard way to create such a sequence; most programmers would write
something like this:

Seq DC (N)AL1(*-Seq+1) Generate bytes with 1,2,...,N

47Example 2: Generate a Character String

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Generate a string with the byte values (like '1,2,3,4,5')

− Pseudocode:
Set S='1'; DO for K = 2 to N [S = S || ',K'); GEN(DC AL1(S)]

N EQU 5 Predefined absolute symbol
LCLA &K Local arithmetic variable symbol
LCLC &S Local character variable symbol

&K SETA 1 Initialize counter
┌──────── AIF (&K GT N).Done2 Test for completion (N could be LE 0!)
│ &S SETC '1' Initialize string
│┌� .Loop ANOP Loop head
││ &K SETA &K+1 Increment &K
││ AIF (&K GT N).Done1 Test for completion
││ &S SETC '&S'.',&K' │ Continue string: add comma and next value
│└──────── AGO .Loop │ Branch back to check for completed
│ .Done1 DC AL1(&S.) �─┘ Generate the byte string
└─� .Done2 ANOP Generation completed

• Try it with 'N EQU 30', 'N EQU 90', 'N EQU 300'

Another way that generates only a single DC statement constructs the nominal value string for
the DC statement. A pseudo-code sketch of this method is:

Set S='1'; DO for K = 2 to N [S = S || ',K'); GEN(DC AL1(S)]

A conditional-assembly code sequence might be:

Part 1: The Conditional Assembly Language 49

N EQU 5 Predefined absolute symbol
LCLA &K Local arithmetic variable symbol
LCLC &S Local character variable symbol

&K SETA 1 Initialize counter
AIF (&K GT N).Done2 Test for completion (N could be LE 0!)

&S SETC '1' Initialize string
.Loop ANOP Loop head
&K SETA &K+1 Increment &K

AIF (&K GT N).Done1 Test for completion
&S SETC '&S'.',&K' Continue string: add comma and next value

AGO .Loop Branch back to check for completed
.Done1 DC AL1(&S.) Generate the byte string
.Done2 ANOP Generation completed

Figure 10. Generating a Sequence of Bytes, as a Single Operand String

In this program fragment, a single character string is constructed with the sequence of integer
values separated by commas. The first SETC statement sets the local character variable symbol &C
to '1', and the following loop then concatenates successive values of the arithmetic variable
symbol &K onto the string with a separating comma, on the right. When the loop is completed,
the DC statement inserts the entire string of numbers into the nominal value field of the AL1
operand.

Test this example with values of N large enough to cause the string &S to become longer than
(say) 60 characters: assign a value of 30 to N, and observe what the assembler does with the gener-
ated DC statement. (It creates a continuation continuation automatically!) Then try larger values
of N.

Both these examples share a shortcoming: if more than one such sequence of byte values is
needed in a program, with different numbers of elements in each sequence, these “blocks” of con-
ditional assembly statements must be repeated with a new and different set of sequence symbols.
We will see in “Case Study 2: Generating a Sequence of Byte Values” on page 115 that a simple
macro definition can make this task easier to solve.

48Example 3: System-Dependent I/O Statements

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Suppose a system-interface module declares I/O control blocks for
MVS, CMS, and VSE:

&OpSys SETC 'MVS' Set desired operating system
─ ─ ─
AIF ('&OpSys' NE 'MVS').T1 Skip if not MVS

Input DCB DDNAME=SYSIN,...etc... Generate MVS DCB
─ ─ ─
AGO .T4

.T1 AIF ('&OpSys' NE 'CMS').T2 Skip if not CMS
Input FSCB ,LRECL=80,...etc... Generate CMS FSCB

─ ─ ─
AGO .T4

.T2 AIF ('&OpSys' NE 'VSE').T3 Skip if not VSE
Input DTFCD LRECL=80,...etc... Generate VSE DTF

─ ─ ─
AGO .T4

.T3 MNOTE 8,'Unknown &&OpSys value ''&OpSys''.'

.T4 ANOP

• Setting of &OpSys selects statements for running on one system
− Then, assemble the module with a system-specific macro library

50 A+ + : Using HLASM's Macro Facility

Example 3: Generating System-Dependent I/O Statements

Suppose you are writing a module that provides operating system services to an application. For
example, suppose one portion of the module must read input records, and that you wish to use
the appropriate system-interface macros for each of the MVS, CMS, and VSE operating systems.

We use conditional-assembly statements to select the sequences appropriate to the system for
which the module is intended. Suppose you have defined a character-valued variable symbol
&OpSys whose values may be MVS, CMS, or VSE. Then the needed code sequences might be defined
as in Figure 11:

&OpSys SETC 'MVS' Set desired operating system
- - -
AIF ('&OpSys' NE 'MVS').T1 Skip if not MVS

Input DCB DDNAME=SYSIN,...etc... Generate MVS DCB
- - -
AGO .T4

.T1 AIF ('&OpSys' NE 'CMS').T2 Skip if not CMS
Input FSCB ,LRECL=80,...etc... Generate CMS FSCB

- - -
AGO .T4

.T2 AIF ('&OpSys' NE 'VSE').T3 Skip if not VSE
Input DTFCD LRECL=80,...etc... Generate VSE DTF

- - -
AGO .T4

.T3 MNOTE 8,'Unknown &&OpSys value ''&OpSys''.'

.T4 ANOP

Figure 11. Conditional Assembly of I/O Module for Multiple OS Environments

In this example, different blocks of code contain the necessary statements for particular operating
environments. In any portion of the program that contains statements for an environment, condi-
tional assembly statements direct the assembler to select the correct statements for processing. By
setting single variable symbol &OpSys, you can tailor the application to a chosen environment
without having to make into multiple copies of its processing logic, one for each environment.

Thus, the first AIF statement tests whether the variable symbol &OpSys has value 'MVS'; if so, then
the following statements generate an MVS Data Control Block. (You must of course supply an
appropriate macro library to the assembler.)

The technique illustrated here allows you to make your programs more portable across operating
environments, and across versions and releases of any one operating system, without requiring
major rewriting efforts or duplicated coding each time some new function is to be added.

Part 1: The Conditional Assembly Language 51

49Conditional Assembly Language Oddities

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Normal, every-day language considerations:

− Arithmetic overflows in arithmetic expressions

− Incorrect string handling (bad substrings, exceeding 1024 characters)

• Some items described previously ...

1. Character string comparisons: shorter string is always less (slide 16)

2. Different pairing rules for ampersands and apostrophes (slide 19)

3. SETC of an arithmetic value uses its magnitude (slide 19)

4. Character functions may not be recognized in SetA expressions (slide 27)

5. Computed AGO may fall through (slide 42)

6. Logical operators in SETx and AIF statements (slide 51)

• Remember, it 's not a very high-level language!

− But you can use it to create one!

Conditional Assembly Language Eccentricities
The previous text has described several potential pitfalls in the conditional assembly language;
they are summarized here.

1. When character strings of unequal lengths are compared, the shorter string is always treated as
being less than the longer string, even though a comparison of their first characters might indi-
cate otherwise. (See “Evaluating and Assigning Boolean Expressions: SETB” on page 17.)

2. The pairing rules for ampersands and apostrophes are different from those in the ordinary
assembler Language (apostrophes are, but ampersands are not). (See “Evaluating and
Assigning Character Expressions: SETC” on page 19.)

3. Conversion of an arithmetic variable to a character string returns the magnitude of the vari-
able; no minus sign is provided for negative values. The SIGNED internal function provides a
minus sign. (See “Evaluating and Assigning Character Expressions: SETC” on page 19.)

4. Internal function evaluations involving string functions cannot always be “nested” in arith-
metic expressions. (See “Character-Valued Functions Using Logical-Expression Format” on
page 29.)

5. If the number of sequence symbols listed on an extended AGO does not match the value of
the supplied variable, no branch is taken. (See “The Extended AGO Statement” on page 44.)

6. The rules for evaluating expressions involving logical operators such as AND and OR are dif-
ferent for SetA (arithmetic) and SetB (Boolean) expressions. AIF expressions are evaluated
using the SetB rules. (See “Logical Operators in SETA, SETB, and AIF Statements” on
page 55.)

In addition, all arithmetic overflow conditions are flagged; they cannot be suppressed. Most forms
of incorrect string handling are also diagnosed.

52 A+ + : Using HLASM's Macro Facility

Conditional Assembly Language Special Topics
Here we mention two special topics that sometimes arise when using the conditional assembly
language:

• Substitution, evaluation, and re-scanning of substituted values.

• The interpretation of logical operators in SETA, SETB, and AIF statements.

50Substitution, Evaluation, and Re-Scanning

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Points of substitution identified only by variable symbols

− HLASM is not a general string- or pattern-matching macro processor

• Statements once scanned for points of substitution are not re-scanned
(But there's a way around this with the AINSERT statement.. . more later)

&A SETC '3+4'
&B SETA 5*&A Is the result 5*(3+4) or (5*3)+4 ??

** ASMA102E Arithmetic term is not self─defining term; default = 0
(Neither! The characters '3+4' are not a self=defining term!)

• Substitutions cannot create points of substitution
(But there's a way around this with the AINSERT statement.. . more later)

• Another example (the SETC syntax and the &&s are explained later):
&A SETC '&&B' &A has value &&B
&C SETC '&A'(2,2) &C has value &B

&B SETC 'XXX' &B has value XXX
Con DC C'&C' Is the result &B or XXX?

** ASMA127S Illegal use of Ampersand

The operand '&B' is not re-scanned; the statement gets a diagnostic

Comments on Substitution, Evaluation, and Re-Scanning

The assembler uses a method of identifying points of substitution that may differ from the
methods used in some other languages.

1. Points of substitution are identified only by the presence of variable symbols. Ordinary
symbols (or other strings of text) are never recognized as candidates for substitution.

2. Statements are scanned only once to identify points of substitution. If a substituted value
seems to cause another variable symbol to “appear” (possibly suggesting further points of sub-
stitution), these “secondary” substitutions will not be performed.

3. This single-scan rule applies both to ordinary-statement substitutions, and to conditional-
assembly statements. Thus, statements once scanned for points of substitution will not be
re-scanned (or “re-interpreted”) further.

Consider the arithmetic expression '5*&A'. We would expect it to be evaluated by substituting
the value of &A, and then multiplying that value by 5.

If this is used in statements such as

&A SETC '10'
&B SETA 5*&A

then we would find that &B has the expected value, 50. However, in the statements:

&A SETC '3+4'
&B SETA 5*&A

we are faced with several possibilities. First, is the value of &B now 35, corresponding to
“5*(3+4)”? That is, is the sum 3+4 evaluated before the multiplication? Second, is the value

Part 1: The Conditional Assembly Language 53

of &B now 19, corresponding to “(5*3)+4”? That is, is the string “5*3+4” evaluated according
to the familiar rules for arithmetic expressions?

In fact, a third situation occurs: because the expression 5*&A is not re-scanned in any way. To
evaluate the expression 5*&A, the assembler requires that the value of &A must be a self-defining
term. That is, the assembler expects to evaluate a numeric constant. Because it is not — the
'+' character is not part of a decimal self-defining term — the assembler produces this error
message:

** ASMA102E Arithmetic term is not self-defining term; default = 0

indicating that the substituted “term” 3+4 is improperly formed.

A similar result occurs if predefined absolute symbols are used as terms. If they are used
directly (without substitution), they are valid; however, the name of the symbol may not be
substituted as a character string. To illustrate:

N Equ 3+4 N is an ordinary symbol, value 7
&B SetA 5*N &B has value 35

&T SetC 'N' Set &T to the character N
&C SetA 5*&T Error message for invalid term!

As another example, you might ask what happens in this situation: will the substituted value
of &B in the DC statement be substituted again? (The pairing rules in SETC statements for
ampersands are different from the pairing rules in DC statements, and are explained in “Evalu-
ating and Assigning Character Expressions: SETC” on page 19.)

&A SETC '&&B' &A has value &&B
&C SETC '&A'(2,2) &C has value &B
&B SETC 'XXX' &B has value XXX
Con DC C'&C' Is the result &B or XXX?

The answer is “no”. In fact, this DC statement results in an error message:

** ASMA127S Illegal use of Ampersand

Because the assembler does not re-scan the DC statement to attempt further substitutions for
&C, there will be a single ampersand remaining in the nominal value ('&B') of the C-type con-
stant. (We will see in “The AINSERT Statement” on page 183 that there are some ways
around this problem.)

As a final example, note that substitution uses a left-to-right scan, and that new variable
symbols are not created “automatically”. For example, if the two character variable symbols
&C1 and &C2 have values 'X' and 'Y' respectively, then the substituted value of '&C1&C2' is
'XY', and not the value of '&C1Y'. Similarly, the string '&&C1.C2' represents '&&C1.C2', and
not the value of '&XC2'!

The only mechanism for “manufacturing” variable symbols is that of the created variable
symbol, whose recognition requires the notation previously described.

54 A+ + : Using HLASM's Macro Facility

51Logical Operators in SETA, SETB, and AIF

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• “Logical” operators may appear in SETA, SETB, and AIF statements:

− AND, OR, XOR, NOT

• Interpretation in SETA and SETB is well defined (see slide 23)

− SETA: treated as 32-bit masking operators

− SETB: treated as Boolean connectives

• In AIF statements, possibly ambiguous interpretation:

AIF (1 AND 2).Skip

− Arithmetic evaluation of (1 AND 2) yields 0 (bit-wise AND)

− Boolean evaluation of (1 AND 2) yields 1 (both operands TRUE)

• Rule: AIF statements use Boolean interpretation

− Consistent with previous language definitions

AIF (1 AND 2).Skip will go to .Skip!

Logical Operators in SETA, SETB, and AIF Statements

The AND, OR, XOR, and NOT logical operators may appear in SETA, SETB, and AIF state-
ments. In AIF statements there may be an ambiguous interpretation, while their interpretation in
SETA and SETB statements is well defined:

• in SETA statements, they are treated as 32-bit masking operators;
• in SETB statements, they are treated as Boolean connectives (see “Conditional Expressions

with Mixed Operand Types” on page 25).

In AIF statements, the following example illustrates is a possible ambiguity:

AIF (1 AND 2).Skip

If the expression (1 AND 2) is evaluated using “SETA rules”, its value is zero, because the arith-
metic representations of 1 and 2 have no one-bits in common, so their logical AND is zero.

However, if the expression is evaluated using “SETB rules”, then according to the conversion
rules described in “Conditional Expressions with Mixed Operand Types” on page 25, the result
must be 1 (both 1 and 2 are nonzero, so they are first converted to Boolean terms having value
1).

To avoid any possibility of ambiguity, High Level Assembler uses the Boolean interpretation in
AIF statements. Thus,

AIF (1 AND 2).Skip

will cause a conditional-assembly branch to .Skip.

Part 1: The Conditional Assembly Language 55

Part 2: Basic Macro Concepts

52

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Part 2: Basic Macro Concepts

• Definition

• Recognition

• Expansion

Macros are a powerful mechanism for enhancing any language, and they are a very important part
of the Assembler Language. Macros are used in many ways to simplify programming tasks.

We begin with a conceptual overview of macros that is not specific to the Assembler Language.
Then we investigate the Assembler Language's implementation of macros, including the following
topics:

• macro definition: defining your macro

• macro encoding: how the assembler converts the definition into an internal format to simplify
interpretation and expansion

• macro-instruction recognition: how the assembler identifies a macro call and its elements

• macro parameters and arguments

• macro expansion and text generation

• macro argument attributes and structures

• global variable symbols

• macro debugging

56 A+ + : Using HLASM's Macro Facility

53What is a Macro Facility?

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• A mechanism for extending a language

− Introduce new statements into the language

− Define how the new statements translate into the “base language”

— Which may include exist ing macros!

− Allow mixing old and new statements

• Helps you create your own application-specific languages

− Extend the base language, or even hide it entirely!

− Create higher-level language appropriate to application needs

− Can be made highly portable, efficient

What is a Macro Facility?
A macro facility is a mechanism for extending a language. It can be used not only to introduce
new statements into the language, but also to define how the new statements should be translated
into the “base language” on which they are built. One major advantage of macros is that they
allow you to mix “old” (existing) and “new” statements, so that your language can grow incre-
mentally to accommodate new functions, added requirements, and other benefits when you are
able to take advantage of them. The “old” statements may include existing macros, providing
added leverage with each increment of growth.

In the Assembler Language, these new statements are called “macro instructions” or “macro
calls”. The use of the term “call” implies a useful analogy to subroutines; there are many parallels
between (assembly-time) macro calls and (run-time) subroutine calls.

Macros and Subroutines

You can think of a macro as an “assembly-time subroutine”. Macros and subroutines have many
properties in common:

• They are “named” collections of statements invoked by that name, and to which various argu-
ments are passed

• Their arguments are processed according to the logic of the internal statements
• Once written, they can be used in many programs.

The major difference is that subroutines are called at the time a program is executed by a “hard-
ware” processor (after having been translated to machine code), but a macro is executed by “soft-
ware” during the translation (assembly) process, prior to the generation of machine code.

Macros have several advantages over most high-level language subroutines and functions (“proce-
dures”):

• access to attribute information about arguments
• great flexibility in specifying and processing arguments
• simple methods for managing complex argument list structures.

However, macros also have several limitations:

• computed values returnable only via global variable symbols
• limited string- and statement-rescan capabilities.

Part 2: Basic Macro Concepts 57

54Benefits of Macro Facilities

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Code re-use: write once, use many times and places

• Reliability and modularity: write and debug “localized logic” once

• Reduced coding effort: minimize focus on uninteresting details

• Simplification: hide complexities, isolate impact of changes

• Easier application debugging: fewer bugs and better quality

• Standardize coding conventions painlessly

• Encapsulated, insulated interfaces to other functions

• Increased flexibility, portability, and adaptability of programs

Benefits of Macro Facilities

Macro facilities can provide you with many direct and immediate benefits:

• Code re-use: once a macro is written, it becomes available to many programmers and applica-
tions. A single definition can find multiple uses, even within a single application.

• Reliability and modularity: code and debug the logic in one place.

• Reduced coding effort: macro needs to be written only once, and then can be used in many
places.

• Reduced focus on uninteresting details: macros allow you to create “higher-level” elements of
your programming language, relieving you of concerns with details that are only marginally
relevant to your programming task.

• Greater application portability: because almost every system supports a macro assembler, it is
easy to port an application written in “macro language” to another host environment simply
by writing an appropriate set of macros definitions on the new system.3

• Easier debugging, with fewer bugs and better quality: once you have debugged your macros,
you can write your applications using their higher-level concepts and facilities, and then debug
your programs at that higher level. Concerns with low-level details are minimized, because you
are much less likely to make simple oversights among masses of uninteresting details.

• Standardize coding conventions painlessly: if your organization requires that certain coding
conventions be followed, it is very simple to embody them in a set of macros that all program-
mers can use. Then, if the conventions need to change, only one set of objects − the macros
− needs to be changed, not the entire application suite.

3 The SNOBOL4 language was implemented entirely in terms of a set of macros that defined a “string processing imple-
mentation language”. The entire SNOBOL4 system could be “ported” to a new system with what the authors called
“about a week of concentrated work by an experienced programmer”. You may be interested in consulting The Macro
Implementation of SNOBOL4, by Ralph Griswold. Another example is the IBM Fortran G compiler, which was
written entirely in a portable macro-based language.

58 A+ + : Using HLASM's Macro Facility

• Provide encapsulated interfaces to other functions, insulated from interface changes: using
macros, you can support interfaces among different elements of your applications, and
between applications and operating environments, in a controlled and defined way. This
means that changes to those interfaces can be made in the macros, without affecting the
coding of the applications themselves.

• Localized logic: specific and detailed code sequences can be implemented once in a macro, and
used wherever needed, without every user of the macro having to understand the “inner
workings” of the macro's logic.

• Increased flexibility and adaptability of programs: you can adapt your applications to different
requirements by modifying only the macro definitions, without having to revise the funda-
mental logic of the program.

55The Macro Concept: Fundamental Mechanisms

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macro processors must manage three basic mechanisms:

1. Macro definition: identify statements as creating a macro

2. Macro recognition: identify a character string as a macro “call”

How do we know it 's invoking a macro?

3. Macro expansion: generate a character stream to replace the “call”

If it is a macro call, what should be done?...

• Macro processors typically do three things when a macro call is
recognized:

1. Text insertion: injection of one stream of source program text into another
stream

2. Text modification: tai loring (“parameterization”) of the inserted text

3. Text selection: choosing alternative text streams for insertion

The Macro Concept: Fundamental Mechanisms
Macro processors typically rely on two basic processes:

• Macro recognition requires that the processor identify a string of characters as a macro invoca-
tion or macro call, indicating that the string is to be replaced.

• Macro expansion or macro generation causes the macro definition to be interpreted by the
processor, with the usual result that the original string is replaced with a new (and presumably
different) string. Some macro processors let you re-scan the replacement string to see if it
offers new macro recognition opportunities.

In macro expansion, there are three fundamental mechanisms used by almost all macro
processors:

• text insertion: the creation of a stream of characters to replace the string recognized in the
macro “call”

• text parameterization: the tailoring and adaptation of the generated stream to the conditions of
the particular call

• text selection: the ability to generate alternative streams of characters, depending on various
conditions available during macro expansion.

Part 2: Basic Macro Concepts 59

These correspond to the mechanisms already described for the conditional assembly language: for
example, text parameterization uses the process of substitution, and text selection uses that of
statement selection.

56Basic Macro Concepts: Text Insertion

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Insertion of one stream of source program text into another stream

Macro Definition Main Program Logical Effect
Name = MAC01 ┌──────────────┐ ┌────────────┐

┌──────────────┐ │ AA │ │ AA │
│ CCC │ │ BB │ │ BB │
│ DDD │ │ MAC01 │ ──� │+ CCC │
└──────────────┘ │ EE │ │+ DDD │

│ FF │ │ EE │
└──────────────┘ │ FF │

└────────────┘

• The processor recognizes MAC01 as a macro name

• The text of the macro definition replaces the MAC01 “macro call” in the
Main Program

• When the macro ends, processing resumes at the next statement (EE)

• “ + ” character indicates a generated statement

Text Insertion

The simplest and most basic mechanism of macro processing is that of replacing a string of char-
acters, or one or more statements, by other (often longer and more complex) strings or sets of
statements.

In Figure 12, a set of statements has been defined to be a macro named MAC01. When the
processor of the Main Program recognizes the string MAC01 as matching that of the macro, that
string is replaced by the text within the macro definition. Finally, when the macro ends, state-
ment processing resumes at the next statement (EE) following the macro call.

This is called text insertion: the injection of one stream of source text into another stream.

Macro Definition Main Program Logical Effect
Name = MAC01 ┌──────────────┐ ┌────────────┐

┌──────────────┐ │ AA │ │ AA │
│ CCC │ │ BB │ │ BB │
│ DDD │ │ MAC01 │ ──� │+ CCC │
└──────────────┘ │ EE │ │+ DDD │

│ FF │ │ EE │
└──────────────┘ │ FF │

└────────────┘

Figure 12. Basic Macro Mechanisms: Text Insertion

The “+” characters shown in the “Logical Effect” column correspond to the characters inserted
in the assembler listing to indicate that the corresponding statements were generated.

60 A+ + : Using HLASM's Macro Facility

57Basic Macro Concepts: Text Parameterization

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Parameterization: tailoring of the inserted text
Macro Definition Main Program Logical Effect

Name = MAC02 ┌──────────────┐ ┌────────────┐
Parameters X,Y │ │ │ │

┌──────────────┐ │ │ │ AA │
│ BBB │ │ AA │ │+ BBB │
│ X │ │ MAC02 CC,DD │ ──� │+ CC │
│ Y │ │ FF │ │+ DD │
│ EEE │ │ │ │+ EEE │
└──────────────┘ │ │ │ FF │

└──────────────┘ │ │
└────────────┘

• Processor recognizes MAC02 as a macro name, with arguments CC,DD
− Arguments CC,DD are associated with parameters X,Y by position

(“ in order of appearance”)
— As in al l high-level languages

• The text generated from the macro definition is modified during
insertion
− The macro definition itself is unchanged

Text Parameterization and Argument Association

Simple text insertion has rather limited uses, because we usually want to adapt the inserted text to
accommodate the conditions of each macro invocation. The simplest form of such adaptation is
“text parameterization”. In Figure 13, a macro named MAC02 is defined with two parameters X
and Y: that is, they are place-holders in the definition that indicate where other text strings are
expected to be inserted when the macro is expanded.

Macro Definition Main Program Logical Effect
Name = MAC02 ┌──────────────┐ ┌────────────┐
Parameters X,Y │ │ │ │
┌──────────────┐ │ │ │ AA │
│ BBB │ │ AA │ │+ BBB │
│ X │ │ MAC02 CC,DD │ ──� │+ CC │
│ Y │ │ FF │ │+ DD │
│ EEE │ │ │ │+ EEE │
└──────────────┘ │ │ │ FF │

└──────────────┘ │ │
└────────────┘

Figure 13. Basic Macro Mechanisms: Text Parameterization

When a macro call is recognized, additional information besides the simple act of activating the
definition can be passed to the macro expansion. Thus, when the processor of the Main Program
recognizes MAC02 as a macro name, it also provides the two arguments CC and DD to the macro
expander, which substitutes them for occurrences of the two parameters X and Y, respectively.
The argument CC is associated with parameter X, and DD is associated with Y.

This example of parameter-argument association is typical of many macro processors: association
proceeds in left-to-right order, matching each positional parameter in turn with its corresponding
positional argument. This is the form of association used in almost all high-level programming
languages; other forms of association (such as keyword association) are possible, as we will see
shortly.

Part 2: Basic Macro Concepts 61

58Basic Macro Concepts: Text Selection

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Selection: choosing alternative text streams for insertion

Macro Definition Main Program Logical Effect
Name = MAC03 ┌──────────────┐ ┌────────────┐
Parameter X │ │ │ AA │

┌────────────────────────┐ │ AA │ │+ RRR │
│ RRR │ │ MAC03 0 │ │+ TTT │
│ if (X = 0) skip 1 stmt │ │ BB │ ──� │ BB │
│ SSS │ │ MAC03 1 │ │+ RRR │
│ TTT │ │ CC │ │+ SSS │
└────────────────────────┘ │ │ │+ TTT │

└──────────────┘ │ CC │
└────────────┘

• Processor recognizes MAC03 as a macro name with argument whose
value is 0 or not 0

• Conditional actions in the macro definition allow selection of different
insertion streams

Text Selection

Text selection is fundamental to most macro processors, because it allows choices among alterna-
tive sequences of generated text. In Figure 14, a simple form of text selection is modeled by the
if statement: the parameter X is associated with the argument of the two calls to MAC03. A simple
test of the argument corresponding to X tells whether or not to generate the string SSS. If the
argument is 0, SSS is not generated; otherwise it is.

Macro Definition Main Program Logical Effect
Name = MAC03 ┌──────────────┐ ┌────────────┐
Parameter X │ │ │ AA │

┌────────────────────────┐ │ AA │ │+ RRR │
│ RRR │ │ MAC03 0 │ │+ TTT │
│ if (X = 0) skip 1 stmt │ │ BB │ ──� │ BB │
│ SSS │ │ MAC03 1 │ │+ RRR │
│ TTT │ │ CC │ │+ SSS │
└────────────────────────┘ │ │ │+ TTT │

└──────────────┘ │ CC │
└────────────┘

Figure 14. Basic Macro Mechanisms: Text Selection

62 A+ + : Using HLASM's Macro Facility

59Basic Macro Concepts: Call Nesting

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Generated text may include calls on other (“inner”) macros

− New statements can be defined in terms of previously-defined extensions

• Generation of statements by the outer (enclosing) macro is suspended
to generate statements from the inner

• Multiple levels of call nesting are OK (including recursion)

• Technical Detail: Inner macro calls recognized during expansion of the
outer macro, not during definition and encoding of the outer macro

− Lets you pass arguments of outer macros to inner macros that depend on
arguments to, and decisions in, outer macros

− Provides better independence and encapsulation

− Allows passing parameters through multiple levels

− Can change definition of inner macros without having to re-define the outer

Macro Call Nesting

A key strength of the macro language is its ability to build new capabilities on existing facilities.
The most common of these abilities is “macro call nesting” or “macro nesting”: generated text
may include (or create!) calls on other macros (“inner macro calls”). This mechanism lets you
define new statements in terms of previously-defined extensions; it is fundamental to much of the
power and “leverage” of macro languages.4

The generation process for inner macro calls requires that the macro processor maintain a “push-
down stack” for its activities.

• Generation of statements by an outer (enclosing) macro is suspended temporarily to generate
statements from the inner.

• Multiple levels of call nesting are allowed (including recursion: a macro may call itself directly
or indirectly), and are a source of added power and flexibility.

The inner calls are recognized during expansion of the outer (enclosing) macro, not during macro
definition and encoding. This may seem a minor and obscure technical detail, but in practice it
has wide-ranging implications.

• By deferring the recognition of inner macro calls until an enclosing macro is expanded, you
can pass arguments to inner macros that depend on arguments to, and analyses in, outer
macros.

• Recognition following expansion provides better independence and encapsulation: you can
change the definition of the inner macro without having to re-define the outer.

• You will also save coding effort. If the definition of an inner macro needed to be changed, and
its definition was already “embodied” in some way in other macros that called it, then all the
“outer” macro definitions would have to be revised.

4 Some call this process “bootstrapping” because each macro can be used to build new ones, increasing the power and
expressiveness of your macros at each step.

Part 2: Basic Macro Concepts 63

60Macro Call Nesting: Example

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Two macro definitions: OUTER contains a call on INNER

Macro Definitions Main Program Logical Effect
Name = OUTER ┌──────────────┐ ┌────────────┐

┌──────────────┐ │ │ │ AA │
│ BBB │ │ AA │ │+ BBB │
│ INNER │ │ OUTER │ ──� │+ CCCC │
│ EEE │ │ FF │ │+ DDCC │
└──────────────┘ │ INNER │ │+ EEE │

Name = INNER │ GG │ │ FF │
┌──────────────┐ │ │ │+ CCCC │
│ CCCC │ └──────────────┘ │+ DDDD │
│ DDDD │ │ GG │
└──────────────┘ └────────────┘

• Expansion of OUTER is suspended until expansion of INNER completes

In the example in Figure 15, the OUTER and INNER macros are known to the processor of the
Main Program. When OUTER is recognized as a macro name, processing of the Main Program
is suspended and expansion of the OUTER macro begins. When INNER is recognized as a
macro name, processing of the OUTER macro is also suspended and expansion of the INNER
macro begins. When the INNER macro expansion completes, the OUTER macro resumes
expansion at the next sequential statement (EE) following the call on INNER; when the expan-
sion of the OUTER macro completes, processing resumes in the Main Program following the
OUTER statement, at FF.

Note also that the INNER macro can be called from the Main Program, because it is known to
the processor at the time its call is recognized.

Macro Definitions Main Program Logical Effect
Name = OUTER ┌──────────────┐ ┌────────────┐

┌──────────────┐ │ │ │ AA │
│ BBB │ │ AA │ │+ BBB │
│ INNER │ │ OUTER │ ──� │+ CCCC │
│ EEE │ │ FF │ │+ DDCC │
└──────────────┘ │ INNER │ │+ EEE │
Name = INNER │ GG │ │ FF │

┌──────────────┐ │ │ │+ CCCC │
│ CCCC │ └──────────────┘ │+ DDDD │
│ DDDD │ │ GG │
└──────────────┘ └────────────┘

Figure 15. Basic Macro Mechanisms: Call Nesting

Each of the capabilities described above can be expressed in a natural way in the Assembler Lan-
guage.

64 A+ + : Using HLASM's Macro Facility

61Macro Definition Nesting: Example

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macro definitions may contain macro definitions

Macro Definitions Main Program Logical Effect
Name = OUTER ┌──────────────┐ ┌────────────┐

┌──────────────┐ │ │ │ AA │
│ BBB │ │ AA │ │+ BBB │

 ┌─│ MACRO INNER │ │ OUTER │ ──� │+ EEE │
 │ │ CCCC │ │ FF │ │+ CCCC │
 │ │ DDDD │ │ INNER │ │+ DDDD │
 └─│ MACEND INNER │ │ │ │ FF │

│ EEE │ └──────────────┘ │+ CCCC │
│ INNER │ │+ DDDD │
└──────────────┘ └────────────┘

Name = INNER
 ┌──────────────┐ ┐

│ CCCC │ │ This definition is created
│ DDDD │ │ only when OUTER is called.

 └──────────────┘ ┘

• Expanding OUTER causes INNER to be defined

− INNER can then be called from anywhere after it has been defined

Macro Definition Nesting

While macro call nesting is widely used, macro definition nesting is relatively rare. The idea of
macro definition nesting is illustrated in Figure 16, where we suppose that the definition of the
macro named INNER is enclosed within the MACRO and MACEND statements.

Macro Definitions Main Program Logical Effect
Name = OUTER ┌──────────────┐ ┌────────────┐

┌──────────────┐ │ │ │ AA │
│ BBB │ │ AA │ │+ BBB │

 ┌─│ MACRO INNER │ │ OUTER │ ──� │+ EEE │
 │ │ CCCC │ │ FF │ │+ CCCC │
 │ │ DDDD │ │ INNER │ │+ DDDD │
 └─│ MACEND INNER │ │ │ │ FF │

│ EEE │ └──────────────┘ │+ CCCC │
│ INNER │ │+ DDDD │
└──────────────┘ └────────────┘
Name = INNER

 ┌──────────────┐ ┐
│ CCCC │ │ This definition is created
│ DDDD │ │ only when OUTER is called.

 └──────────────┘ ┘

Figure 16. Basic Macro Mechanisms: Nested Macro Definitions

In this example, only the OUTER macro is known initially to the processor of the Main
Program. When OUTER is recognized as a macro call, processing of the Main Program is sus-
pended and expansion of OUTER begins. When the OUTER-generated statement
MACRO INNER is recognized, the processor begins to create a new macro definition for
INNER, saving the following statements until the MACEND INNER statement is recognized.

Later in the expansion of the OUTER macro, the nested call on the INNER macro is recognized,
and the previously described mechanisms are used to generate the statements of the INNER
macro. When the expansion of OUTER completes and processing of the Main Program
resumes, the INNER macro call is now recognized and expanded.

Part 2: Basic Macro Concepts 65

Note that the INNER macro definition is known to the macro processor only after it has been
generated during expansion of the OUTER macro. If INNER had been called from the Main
Program prior to a call on OUTER, the processor would have to treat it as an unknown opera-
tion. After OUTER has been called, INNER can be called from anywhere in the main program
or from other macros.

62The Assembler Language Macro Definition

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• A macro definition has four parts:

┌─────────────────────────┐
(1) │ MACRO │ Macro Header (begins a definition).

├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤
(2) │ Prototype Statement │ Model of the macro instruction

│ │ that can call on this definition;
│ │ a model or “template” of the new
│ │ statement introduced into the
│ │ language by this definition.
│ │ A single statement.
├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤

(3) │ Model Statements │ Declarations, conditional assembly
│ │ statements, and text for selection,
│ │ modification, and insertion.
│ │ Zero to many statements.
│ │
├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤

(4) │ MEND │ Macro Trailer (ends a definition).
└─────────────────────────┘

63The Assembler Language Macro Definition ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

1. MACRO and MEND statements delimit start and end of the definition

2. Declares the macro name on a prototype statement

• Prototype statement also declares parameter variable symbols

3. Model statements (“macro body”) provide logic and text

• Definitions may be found

− “ in- l ine” (a “source macro def ini t ion”)

− in a l ibrary (COPY can bring definitions “in-l ine”)

− or both

• Macro call recognition rules affected by where the definition is found

66 A+ + : Using HLASM's Macro Facility

The Assembler Language Macro Definition
The definition of a macro declares the macro name that represents a set of statements. An
Assembler Language macro definition has four parts:

1. a macro header statement (MACRO: the start of the definition)

2. a prototype statement provides the macro name and a model or “template” of the macro-
instruction “call” that must be recognized in order to activate this definition

3. the macro body, containing declarations of variable symbols, model statements to be
parameterized and generated, and conditional assembly statements to assign values to variable
symbols and to select alternative processing sequences

4. a macro trailer statement (MEND: the end of the definition).

These four parts are illustrated in Figure 17:

┌─────────────────────────┐
(1) │ MACRO │ Macro Header (begins a definition).

├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤
(2) │ Prototype Statement │ Model of the macro instruction

│ │ that can call on this definition;
│ │ a model or “template” of the new
│ │ statement introduced into the
│ │ language by this definition.
│ │ A single statement.
├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤

(3) │ Model Statements │ Declarations, conditional assembly
│ │ statements, and text for selection,
│ │ modification, and insertion.
│ │ Zero to many statements.
│ │
├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤

(4) │ MEND │ Macro Trailer (ends a definition).
└─────────────────────────┘

Figure 17. Assembler Language Macro Definition: Format

A macro definition may be “in-line” (also called a “source macro definition”) or in a library.
Where the definition is found by the assembler affects the recognition rules, as we'll see in
“Macro-Instruction Recognition: Details” on page 98.

Macro-Instruction Definition Example

We can rewrite the example in Figure 12 on page 60 to look more like a “real” macro, as
follows:

Part 2: Basic Macro Concepts 67

Main Program Logical Effect
Macro Definition ┌───────────────┐ ┌────────────────┐
┌───────────┐ │ START │ │ START │
│ MACRO │ │ AA │ │ AA │
│ MAC01 │ │ BB │ │ BB │
│ CCCC │ │ MAC01 │ │+ CCCC │
│ DDDD │ │ EE │ │+ DDDD │
│ MEND │ │ FF │ │ EE │
└───────────┘ │ END │ │ FF │

└───────────────┘ │ END │
└────────────────┘

Figure 18. Assembler Language Macro Mechanisms: Text Insertion by a “Real” Macro

64Macro-Instruction Recognition Rules

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

1. If the operation mnemonic is already known as a macro name, use its
definit ion

2. If an operation mnemonic does not match any operation mnemonic
already known to the assembler (it might be “undefined”):

a. Search the library for a macro definition of that name

b. If found, encode and then use that macro definition

c. If there is no library member with that name, the mnemonic is flagged as
“undef ined” .

• Macros may be redefined during the assembly!

− New macro definit ions supersede previous mnemonic definit ions

• Name recognition activates interpretation of the macro definition

− Also cal led “macro expansion” or “macro generat ion”

Macro-Instruction Recognition Rules

The assembler recognizes a macro instruction as follows:

1. If the macro name has already been defined in the program (as a “source” or “in-line” defi-
nition, either explicitly or because a COPY statement brought it from a library, or because a
previous macro instruction statement brought the definition from the library), use it in prefer-
ence to any other definition of that operation.

• You may use a macro definition to override the assembler's default definitions of all
machine instruction statements, and of most “native” Assembler Instruction statements.
Some of the conditional-assembly statements cannot be overridden.

2. If an operation mnemonic does not match any operation mnemonic known to the assembler
(i.e., it is “possibly undefined”), the assembler will then:

a. Search the library for a macro definition of that name.

b. If the assembler finds a library member with that name, the macro name defined on the
prototype statement must match the member name. The assembler will then encode and
use this definition.

68 A+ + : Using HLASM's Macro Facility

c. If there is no library member with that name, then the operation code is flagged as “unde-
fined”.

While it is not a common practice, macros may be redefined during the assembly by introducing a
new macro definition with the same name.

When the assembler scans a statement, and identifies its operation field as a macro name, recogni-
tion of the name activates a macro definition interpreter. This is called “macro expansion” or
“macro generation”, and typically results in insertion of program text into the assembler's input
stream.

Source or “in-line” macros are usable only in the program that contains them, whereas library
macros can be used in any program.

The O' attribute reference can be used to determine the status of a macro or instruction name. Its
uses are specialized, and will not be discussed here.

65Macro Expansion and MEXIT

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macro expansion or generation is initiated by recognition of a macro
instruction

• Assembler suspends current activity, begins to “execute” or
“interpret” the encoded definit ion

− Parameter values assigned from associated arguments
− Conditional assembly statements interpreted, variable symbols assigned

values
− Model statements substituted and generated

• Generated statements immediately scanned for inner macro calls

− Recognition of an inner call suspends current expansion, starts a new one

• Expansion terminates when MEND is reached, or MEXIT is interpreted

− MEXIT is equivalent to “AGO to MEND” (but quicker)
− Some error conditions may also cause termination

• Resume previous activity (calling-macro expansion, open code)

Macro Expansion, Generated Statements, and the MEXIT Statement

When the assembler recognizes a macro instruction, macro expansion or macro generation begins.
The assembler suspends its current activity and begins to “execute” or “interpret” the encoded
definition of the called macro.

During expansion, the first step is to assign parameter values from the associated arguments on
the macro call. Subsequently, conditional assembly statements are interpreted, variable symbols
are assigned values, substitutions are made in model statements as needed, and generated state-
ments are output.

The generated statements are immediately scanned for inner macro calls; recognition of an inner
call suspends the current expansion, and starts an expansion for the newly-recognized inner
macro.

Expansion of a macro terminates either when the MEND statement is reached, or an expansion-
terminating MEXIT macro-exit statement is interpreted. MEXIT is equivalent to an “AGO to MEND”
statement, but is quicker to execute, because the assembler need not search for the target of the
AGO statement.

Part 2: Basic Macro Concepts 69

66Macro Comments and Readability Aids

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Assembler Language supports two types of comment statement:

1. Ordinary comments (“*” in first column position)

− Can be generated from macros l ike all other model statements

2. Macro comments (“.*” in first two column positions)

− Not model statements; never generated

MACRO
&N SAMPLE1 &A
.* This is macro SAMPLE1. It has a name─field parameter &N,
.* and an operand─field positional parameter &A.
* This comment is a model statement, and might be generated

• Two instructions help format your macro-definition listings:

− ASPACE provides blank lines in listing of macros
− AEJECT causes start of a new listing page for macros

Macro Comments and Readability Aids
You can embed “macro comments” into the body of a macro definition. Because both ordinary
comment statements (with an asterisk in the left margin) and blank lines (for spacing) are model
statements, they can be part of the generated text from a macro expansion. Macro comments are
never generated, and are defined by the characters .* in the first two columns, as illustrated in
Figure 19:

MACRO
&N SAMPLE1 &A
.* This is macro SAMPLE1. It has a name-field parameter &N,
.* and an operand-field positional parameter &A.

- - -
* This comment is a model statement, and might be generated

- - -
MEND

Figure 19. Example of Ordinary and Macro Comment Statements

You should comment your macro definitions generously, because the conditional assembly lan-
guage is sometimes difficult to read and understand.

Formatting and printing macro definitions can be simplified by using the ASPACE and AEJECT
statements. ASPACE provides blank lines in the assembler's listing of a macro definition, and
AEJECT causes the assembler to start a new listing page when it is printing a macro definition.
Both are not model statements, and are not generated.

70 A+ + : Using HLASM's Macro Facility

67Example 1: Define General Register Equates

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Generate EQUates for general register names (GR0, ..., GR15)

MACRO (Macro Header Statement)
GREGS (Macro Prototype Statement)

GR0 EQU 0 (First Model Statement)

.* ─ ─ ─ etc. Similarly for GR1 ── GR14

GR15 EQU 15 (Last Model Statement)
MEND (Macro Trailer Statement)

• A more interesting variation with a conditional-assembly loop:

MACRO
GREGS
LCLA &N Define a counter variable, initially 0

┌� .X ANOP , Next statement can't be labeled
│ .* 2 points of substitution in EQU statement
│ GR&N EQU &N
│ &N SETA &N+1 Increment &N by 1
└───────── AIF (&N LE 15).X Repeat for all registers 1─15

MEND

Example 1: Define Equated Symbols for Registers
Suppose you wish to define a macro named GREGS that generates a sequence of EQU state-
ments to define symbolic names GR0, GR1, ..., GR15 for the sixteen General Purpose Registers.
Calling the GREGS macro will define them:

MACRO (Macro Header Statement)
GREGS (Macro Prototype Statement)

GR0 EQU 0 ┌─(First Model Statement)
GR1 EQU 1 │
GR2 EQU 2 │
GR3 EQU 3 │
GR4 EQU 4 │
GR5 EQU 5 │
GR6 EQU 6 │
GR7 EQU 7 │ Model Statements
GR8 EQU 8 │
GR9 EQU 9 │
GR10 EQU 10 │
GR11 EQU 11 │
GR12 EQU 12 │
GR13 EQU 13 │
GR14 EQU 14 │
GR15 EQU 15 └─(Last Model Statement)

MEND (Macro Trailer Statement)

Figure 20. Simple Macro to Generate Register Equates

The macro definition can be made more compact by using conditional assembly statements to
form a loop inside the macro:

Part 2: Basic Macro Concepts 71

MACRO
GREGS
LCLA &N Define a counter variable, initially 0

.X ANOP ,

.* 2 points of substitution in EQU statement
GR&N EQU &N
&N SETA &N+1 Increment &N by 1

AIF (&N LE 15).X Repeat for all registers 1-15
MEND

Figure 21. Macro to Generate Register Equates Differently

We'll revisit this example when we discuss “Case Study 1: Defining Equated Symbols for
Registers” on page 110.

68Macro Parameters and Arguments

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Important to distinguish parameters and arguments :

• Parameters are

− declared on macro definit ion prototype statements

− always local character variable symbols

− assigned values by association with the arguments of macro calls

• Arguments are

− supplied on a macro instruction (macro call)

− almost any character string (typically, symbols or numbers)

− providers of values to associated parameters

Macro Parameters and Arguments
In the following discussion, we will distinguish parameters and arguments, as follows:

• Parameters are

− declared on the prototype statements of macro definitions

− always read-only local character variable symbols

− assigned values by being associated with the arguments of a macro instruction

− sometimes known as “dummy arguments” or “formal parameters”.

• Arguments are

− supplied on a macro instruction statement (“macro call”)

− almost any character string (typically, symbols)

− the providers of values to the corresponding associated parameters

− sometimes known as “actual arguments” or “actual parameters”.

72 A+ + : Using HLASM's Macro Facility

69Macro-Definition Parameters

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Parameters are declared on the prototype statement

− as operands, and as the name-field symbol

• All macro parameters are read-only local variable symbols

− Name may not match any other variable symbol in this scope

— To modify it, assign its value to a local SET symbol

• Parameters usually declared in exactly the same order as the
corresponding actual arguments will be supplied on the macro call

− Exception: keyword-operand parameters are declared by writ ing an equal
sign after the parameter name

− Can provide default keyword-parameter value on prototype statement

• Example of parameters: one name-field, two positional, one keyword

MACRO
&Name MYMAC3 &Param1,&Param2,&KeyParm=YES

─ ─ ─
MEND

Macro-Definition Parameters

Parameters in a macro definition are implicitly declared by appearing as operands (and the name-
field symbol) on the prototype statement. These declared parameters are variable symbols, but
they cannot be assigned a value in the body of the macro because the value is assigned by associ-
ation when the macro is called, as described in “Macro Parameter-Argument Association” on
page 76. Usually, parameters are declared in the same order as the corresponding actual argu-
ments will be supplied on the macro call.

If you need to modify the value of a symbolic parameter, assign it first to a local SET symbol.

The exceptions are keyword parameters: they are declared by writing an equal sign after the
parameter name. You can also provide a default value for a keyword parameter on the prototype
statement, by placing that value after the equal sign. When the macro is called, argument values
for keyword parameters are supplied by writing the keyword parameter name, an equal sign, and
the argument's value, as an operand of the macro call.

The name of a parameter may not be the same as that of any other variable symbol known in the
macro's scope.

For example, suppose we write a macro prototype statement as shown in Figure 22:

MACRO
&Name MYMAC3 &Param1,&Param2,&KeyParm=YES

- - -
MEND

Figure 22. Sample Macro Prototype Statement

The prototype statement defines a name-field parameter (&Name), two positional parameters
(&Param1,&Param2), and one keyword parameter (&KeyParm) with a default value YES.

Unlike positional arguments and parameters, keyword arguments and parameters may appear in
any order, and may be mixed freely among the positional items on the prototype statement and
the macro call, as in the following figure:

Part 2: Basic Macro Concepts 73

MACRO
&Name MYMAC3 &KeyParm=YES,&Param1,&Param2

- - -
MEND

Figure 23. The Same Macro Prototype Statement

70Macro-Instruction Arguments

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Arguments are:

− Operands (and name field entry) of a macro instruction

− Arbitrary strings (with some syntax l imitations)

— Most often, just ordinary symbols
— Internal quotes and ampersands in quoted strings must be paired

• Separated by commas, terminated by an unquoted blank

− Like ordinary Assembler-Language statement operands

− Comma and blank must otherwise be quoted

• Omitted (null) arguments are recognized, and are valid
• Examples:

MYMAC1 A,,'String' 2nd argument null (omitted)
MYMAC1 A,'','String' 2nd argument not null!
MYMAC1 Z,RR,'Testing, Testing' 3rd with quoted comma and blank
MYMAC1 A,B,'Do''s, && Don''ts' 3rd argument with everything...

Macro-Instruction Arguments

The arguments of a macro instruction are its name-field entry and its operands. They may be
arbitrary strings of characters, with some syntax limitations such as requiring strings containing
quotes and ampersands to contain pairs of each. Most often, the operands will be symbols;
literals are allowed in almost all circumstances.

The operands are separated by commas and terminated by an unquoted blank, conforming to the
normal Assembler Language syntax rules. If an argument is intended to contain a character
normally used to delimit operands (blank, comma, parentheses, and sometimes apostrophes and
periods), they must be quoted with apostrophes. Remember that the enclosing apostrophes are
passed as part of the associated parameter's value, so you may need to test for (and maybe
remove) them before processing the enclosed characters.

Positional arguments are written in the order required for correspondence with their associated
positional parameters in the macro definition. Keyword arguments may be intermixed freely in
any order among the positional arguments, without affecting the ordering of the positional argu-
ments (but doing so usually makes the macro call harder to read).

Omitted (null) arguments are valid. To illustrate, suppose a macro named MYMAC1 expects
three positional arguments. Then in the following example,

74 A+ + : Using HLASM's Macro Facility

MYMAC1 A,,'String' 2nd argument null (omitted)

MYMAC1 A,'','String' 2nd argument not null!

MYMAC1 Z,RR,'Testing, Testing' 3rd with quoted comma and blank

MYMAC1 A,B,'Do''s, && Don''ts' 3rd argument with everything...

the first call omits the second argument (it's a null string); the second call has a non-null quoted
(but empty) character string; the third call has a quoted character string containing an embedded
comma and space in its third argument; and the fourth call has a variety of special characters in
its quoted-string third argument.

For proper argument parsing and recognition, pairs of quotes or ampersand characters are
required within quoted strings used as macro arguments. These pairs of characters are not con-
densed into a single character when the argument is associated (“passed”) to the corresponding
symbolic parameter.

An argument consisting of a single ampersand will be diagnosed by the assembler as an invalid
variable symbol. An argument consisting of a single apostrophe will appear to initiate a quoted
string, and the assembler's reactions are unpredictable; one possibility is an error message indi-
cating “no ending apostrophe”.

71Macro Parameter-Argument Association

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Three ways to associate (caller's) arguments with (definition's)
parameters:

1. by position, referenced by declared parameter name (most common way)

2. by position and by argument number (using &SYSLIST variable symbol)

3. by keyword: always referenced by name, order is arbitrary

− Argument values supplied by writ ing keyname=value

• Example 1: (Assume prototype statement as on slide/foil 69)

&Name MYMAC3 &Param1,&Param2,&KeyParm=YES Prototype

Lab1 MYMAC3 X,Y,KeyParm=NO Call: 2 positional, 1 keyword argument

* Parameter values: &Name = Lab1
* &KeyParm = NO
* &Param1 = X
* &Param2 = Y

Part 2: Basic Macro Concepts 75

72Macro Parameter-Argument Association ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Example 2:

Lab2 MYMAC3 A Call: 1 positional argument

* Parameter values: &Name = Lab2
* &KeyParm = YES
* &Param1 = A
* &Param2 = (null string)

• Example 3:

MYMAC3 H,KeyParm=MAYBE,J Call: 2 positional, 1 keyword argument

* Parameter values: &Name = (null string)
* &KeyParm = MAYBE
* &Param1 = H
* &Param2 = J

• Common practice: put positional items first, keywords last

Macro Parameter-Argument Association

There are three ways to associate arguments with parameters:

1. by position, referenced by the declared positional parameter name (this is the most usual way
for macros to refer to their arguments)

2. by position and argument number (using the &SYSLIST system variable symbol, which we
will discuss in “Macro-Instruction Argument Lists and the &SYSLIST Variable Symbol” on
page 86)

3. by keyword: keyword arguments are always referenced by name, and the order in which they
appear is arbitrary.5 Values provided for keyword arguments override default values declared
on the prototype statement.

Note that the name-field parameter can be treated as a positional argument in a macro by refer-
encing it as &SYSLIST(0).

To illustrate, consider the examples in Figure 24 on page 77. Assuming the same macro defi-
nition prototype statement shown in Figure 22 on page 73, the resulting values associated with
the parameters are as shown:

5 The Ada™ programming language is the first major high-level language to support keyword parameters and argu-
ments. Assembler Language programmers have been using them for decades!

76 A+ + : Using HLASM's Macro Facility

Lab1 MYMAC3 X,Y,KeyParm=NO 2 positional, 1 keyword argument

* Parameter values: &Name = Lab1 &KeyParm = NO
* &Param1 = X &Param2 = Y

Lab2 MYMAC3 A 1 positional argument

* Parameter values: &Name = Lab2 &KeyParm = YES
* &Param1 = A &Param2 = (null string)

MYMAC3 H,KeyParm=MAYBE,J 2 positional, 1 keyword argument

* Parameter values: &Name = (null string) &KeyParm = MAYBE
* &Param1 = H &Param2 = J

Figure 24. Macro Parameter-Argument Association Examples

In the third example, the keyword argument KeyParm=MAYBE appears between the first and second
positional arguments.

It is best not to mix positional and keyword parameters and arguments, because it may be diffi-
cult to count the positional items correctly.

73Example 2: Generate a Byte Sequence (BYTESEQ1)

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Rewrite previous example (slide 46) as a macro

• BYTESEQ1 generates a separate DC statement for each byte value

MACRO
&L BYTESEQ1 &N Prototype stmt: positional parameters &L, &N
.* BYTESEQ1 ── generate a sequence of byte values, one per statement.
.* No checking or validation is done.

LclA &K
┌──────── AIF ('&L' EQ '').Loop Don't define the label if absent
� &L DS 0AL1 Define the label
├� .Loop ANOP
 &K SetA &K+1 Increment &K
│ AIF (&K GT &N).Done Check for termination condition
│ DC AL1(&K) │
└──────── AGO .Loop │ Continue
 .Done MEND �────────────┘

• Examples

BSeq1 BYTESEQ1 5
BYTESEQ1 1

Part 2: Basic Macro Concepts 77

Example 2: Generate a Sequence of Byte Values (BYTESEQ1)
We can write a macro named BYTESEQ1 with a single parameter that will generate a sequence
of bytes, using the same techniques as the conditional-assembly example given in Figure 9 on
page 49. The pseudo-code for the BYTESEQ1 macro is quite simple:

IF (name-field label is present) GEN(label DS 0AL1)
DO for K = 1 to N [GEN(DC AL1(K))]

This macro generates a separate DC statement for each byte value. As we will see later, it has
some limitations that are easy to fix.

MACRO
&L BYTESEQ1 &N Prototype statement: 2 positional parameters
.* BYTESEQ1 -- generate a sequence of byte values, one per statement.
.* No checking or validation is done.

LclA &K
AIF ('&L' EQ '').Loop Don't define the label if absent

&L DS 0AL1 Define the label
.Loop ANOP ,
&K SetA &K+1 Increment &K

AIF (&K GT &N).Done Check for termination condition
DC AL1(&K)
AGO .Loop Continue

.Done MEND
* Two test cases
BSeq1 BYTESEQ1 5

BYTESEQ1 1

Figure 25. Macro to Define a Sequence of Byte Values

74Macro Argument Attributes and Structures

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Several mechanisms “ask questions” about macro arguments

• Simplest forms are attribute references

− Determine attributes of the actual arguments

− Most common questions: “What is it?” and “How big is it?”

• Most attribute references provide data about possible base-language
properties of symbols: Type (T'), Length (L'), Scale (S'), Integer (I'),
Defined (D'), and “OpCode” (O') attributes

• Count (K') and Number (N') attribute references provide data about
argument structures

− K' determines the count of characters in an argument

− N' determines the number and nesting of argument l ist structures

− Neither references any base language attribute

78 A+ + : Using HLASM's Macro Facility

Macro Argument Attributes and Structures
Attribute references let you determine properties (attributes) of actual arguments. They also
provide information about possible base language use of the symbols: what kinds of objects they
name, the length attribute of the named object, etc.

Three major classes of attribute inquiry facilities are provided:

1. The “mechanical” or “physical” characteristics of macro arguments, independent of any
meaning they might have, can be determined by

• two attribute references:

− Count (K') supplies the actual count of characters in the argument, and

− Number (N') tells you how many elements appear in an argument list structure. (It
also provides the largest subscript assigned to a dimensioned variable symbol, as we
saw at “Declaring Variable (SET) Symbols” on page 9)

• list-structure referencing and decomposition operations, using subscripted references to
parameter variable symbols.

A powerful list scanning capability helps you decompose argument structures, especially
parenthesized lists. With this notation, you can

− determine the number and nesting of list structures

− extract sublists or sublist elements

− use substring and concatenation operations to manipulate portions of lists and list ele-
ments.

List structures and techniques for scanning them are described at “Macro-Instruction
Argument Lists and Sublists” on page 84.

2. The type attribute reference (T') allows you to ask “What base-language type might be
attached to it?” about a macro argument. The value of the type attribute reference can tell you
whether the argument is

• a base-language symbol that names data, machine instructions, macro instructions,
sections, etc.

• a self-defining term (binary, character, decimal, or hexadecimal)

• an “unknown” type.

3. The “Opcode” attribute (O') can be used to test a symbol for possible use as an instruction.
Its value tells you whether the symbol represents an assembler instruction, a machine instruc-
tion mnemonic, an already-encoded macro name, or a library macro name. Its uses will not
be described further here.

Only the opcode (O') and type (T') attribute references have character values.

4. The base-language attributes of ordinary symbols used as macro arguments can be determined
by using any of four attribute references: Length (L'), Scale (S'), Integer (I'), and Defined
(D'). These have numeric values.

There is an important difference between the number (N') and count (K') attributes and all the
others: N' and K' treat their operands only as strings of characters, independent of any meaning
that might be associated with the strings.

Thus, if the argument associated with the parameter &X is the five characters (A,9), then K'&X is 5
and N'&X is 2. Other attribute references probe more deeply into the possible meanings of a
parameter. Thus, T'&X(1) would test what the character A might designate: if A is a label on a
constant, T'&X(1) would return information about the type of the constant. If the type attribute is
indeed that of a constant, then L'&X(1) would provide its length attribute. Similarly, T'&X(2)

Part 2: Basic Macro Concepts 79

would be N, indicating that it is a self-defining term that may be used wherever such terms are
valid.

Attribute references of attribute references (such as K'L'&X) are not allowed, but it's easy to use
intermediate variable symbols to determine the result.

We will now look at several attribute references in more detail. Summary information about attri-
butes is described at “Summary of Attribute References” on page 87.

75Macro Argument Attributes: Type

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Type attribute reference (T') answers

− “What is i t?”

− “What meaning might it have in the ordinary assembly (base) language?”

— The answer can be “None” or “ I can't tel l ” !

− Value of T' is a single character

• Assume the following statements in a program:

A DC A(*)
B DC F'10'
C DC E'2.71828'
D MVC A,B

• And, assume the following prototype statement for MACTA:

MACTA &P1,&P2,...,etc.

− Just a numbered list of positional parameters...

76Macro Argument Attributes: Type ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Then a call to MACTA like

Z MACTA A,B,C,D,C'A',,'?',Z Call MACTA with various arguments

• would provide these type attributes:

T'&P1 = 'A' aligned, implied─length address
T'&P2 = 'F' aligned, implied─length fullword binary
T'&P3 = 'E' aligned, implied─length short floating─point
T'&P4 = 'I' machine instruction statement
T'&P5 = 'N' self─defining term
T'&P6 = 'O' omitted (null)
T'&P7 = 'U' unknown, undefined, or unassigned
T'&P8 = 'M' macro instruction statement

• Many Type Attribute values are the same as constant types

80 A+ + : Using HLASM's Macro Facility

Macro-Instruction Argument Properties: Type Attribute

The type attribute reference is often the first used in a macro, to help the macro determine “What
is it?”. It tries to answer the question “What meaning might this argument string have in the base
language?” Typical uses are in conditional assembly statements like these:

AIF (T'&Param1 eq 'O').Omitted Argument is null
AIF (T'&Param1 eq 'U').Unknown Unknown argument type

To illustrate some values returned by a type attribute reference, assume these statements appear in
a program:

A DC A(*)
B DC F'10'
C DC E'2.71828'
D MVC A,B

If the same program contains a macro named MACTA with positional arguments
&P1,&P2,...,etc., and MACTA is called with the following arguments, then a type attribute refer-
ence to each of the positional parameters would return the indicated values:

Z MACTA A,B,C,D,C'A',,'?',Z Call MACTA with various arguments

T'&P1 = 'A' aligned, implied-length address
T'&P2 = 'F' aligned, implied-length fullword binary
T'&P3 = 'E' aligned, implied-length short floating-point
T'&P4 = 'I' machine instruction statement
T'&P5 = 'N' self-defining term
T'&P6 = 'O' omitted (null)
T'&P7 = 'U' unknown, undefined, or unassigned
T'&P8 = 'M' macro instruction statement

A type attribute reference can return any of 28 possible values.

Length, Integer, and Scale Attributes

The Length (L') attribute of a symbol refers to the implicit or explicit length of the area of storage
named by the symbol. Symbols not naming areas of storage are assigned a default length attribute
1 if an explicit length value was not provided in its definition.

Addr DS A L'Addr = 4
R5 EQU 5 L'R5 = 1
Go BR 14 L'Go = 2

For symbols naming constants defined by DC and DS statements, the Integer (I'), and Scale (S')
attributes can be used to test properties related to numeric scaling.

• For decimal constants of types P and Z, the Integer attribute is the number of digits to the left
of an explicit or implied decimal point, and the Scale attribute is the number of digits to the
right of the decimal point.

• For binary constants of types F and H, the Scale attribute is the number of bits to the right of
the radix point, and the Integer attribute is the number of non-sign bits in the constant minus
the Scale attribute.

HalfW DC HS7'98.765432' S'HalfW = 7, I'HalfW = 8
FullW DC FS6'1.3' S'FullW = 6, I'FullW = 25
DblW DC FDS5'1.23' S'DblW = 5, I'DblW = 58

• For hexadecimal floating-point constants of types E, D, and L, the Scale attribute is the
number of de-normalizing zero hexadecimal digits in the fraction, and the Integer attribute is
the number of hexadecimal digits in the fraction (6, 14, and 28 respectively) minus the value of
the Scale attribute.

Part 2: Basic Macro Concepts 81

EConst DC ES2'0.8' S'EConst = 2, I'EConst = 4
DConst DC DS3'0.9' S'DConst = 3, I'DConst = 11
LConst DC LS5'123.4567' S'LConst = 5, I'LConst = 23

• For binary floating-point constants, the Scale attribute is always zero, and the Integer attribute
is the same as for a hexadecimal floating-point constant of the same length.

• For decimal floating-point constants, the Scale attribute is always zero, and the Integer attri-
bute is the decimal precision of the operand.

The Integer and Scale attributes are used much less often in conditional than in ordinary assembly
statements.

Defined Attribute

Sometimes a macro will need to define a symbol that might or might not have been previously
defined, perhaps by another macro. The D' (“Defined”) attribute reference returns 1 if the symbol
is known to the assembler, and 0 otherwise. A typical test might be:

AIF (D'&Symbol eq 1).Known Don't re-define if known
&Symbol DS A
.Known ANOP ,

If a symbol has not been encountered in the text of the program at the point where an attribute
reference other than a Defined attribute reference is tested, the assembler will enter Lookahead
Mode to search for the symbol and enter it into the symbol table if found. However, a Defined
attribute reference to a symbol will not cause this Lookahead Mode scan.

77Macro Argument Attributes: Count

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Count attribute reference (K') answers:

− “How many characters in a SETC variable symbol's value (or in its
character representation, if not SETC)?”

• Suppose macro MAC8 has many positional and keyword parameters:

MAC8 &P1,&P2,&P3,...,&K1=,&K2=,&K3=,...

• This macro instruction would give these count attributes:

MAC8 A,BCD,'EFGH',,K1=5,K3==F'25'

K'&P1 = 1 corresponding to A
K'&P2 = 3 ABC
K'&P3 = 6 'DEFG'
K'&P4 = 0 (omitted; explicitly null)
K'&P5 = 0 (implicitly null; no argument)
K'&K1 = 1 5
K'&K2 = 0 (null default value)
K'&K3 = 6 =F'25'

Macro-Instruction Argument Properties: Count Attribute

A macro argument has one inherent property: the number of characters it contains. These can be
determined for any argument using a count attribute reference, K'. For example, if MAC8 has posi-
tional parameters &P1, &P2, ..., etc., and keyword parameters &K1, &K2, ..., etc., then for a
macro instruction statement such as the following:

MAC8 A,BCD,'EFGH',,K1=5,K2=,K3==F'25'

we would find that

82 A+ + : Using HLASM's Macro Facility

K'&P1 = 1 corresponding to A
K'&P2 = 3 ABC
K'&P3 = 6 'DEFG'
K'&P4 = 0 (omitted; explicitly null)
K'&P5 = 0 (implicitly null; no argument)
K'&K1 = 1 5
K'&K2 = 0 (null default value)
K'&K3 = 6 =F'25'

When the value of a parameter is assigned to a character variable, the content of the parameter
string is unchanged; the pairing rules for ampersands and apostrophes apply only to character
strings, not to argument strings.

78Macro Argument Attributes: Lists and Number Attribute

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Number attribute reference (N') answers
“How many items in a list or sublist?”

• List: a parenthesized sequence of items separated by commas

Examples: (A) (B,C) (D,E,,F)
No. list items: 1 2 4

• List items may themselves be lists, to any (reasonable) nesting depth

Examples: ((A)) (A,(B,C)) (A,(B,C,(D,E,,F),G),H)
No. list items: 1 1 2 1 4 3 2

• Subscripts on parameters refer to argument list (and sublist) items

− Each added subscript references one nesting level deeper

− Provides powerful l ist-parsing capabil i t ies

• N' also determines maximum subscript used for a subscripted variable
symbol

Macro-Instruction Argument Properties: Lists and Number Attributes

It is sometimes useful to pass groups of related arguments as a single unit, by grouping them into
a list. This can save the effort needed to name additional parameters on the macro prototype
statement, and can simplify the documentation of the macro call.

A list is a parenthesized sequence of items, separated by commas. The following are examples of
lists:

(A) (B,C) (D,E,,F)

Figure 26. Sample Macro Argument List Structures

List items may themselves be lists (which may in turn contain lists). Examples of lists containing
sublists are:

((A)) (A,(B,C)) (A,(B,C,(D,E,,F),G),H)

Figure 27. Sample Macro Argument Nested List Structures

Lists may have any number of items, and any level of nesting, subject only to the constraint that
the size of the argument may not exceed 1024 characters.

Part 2: Basic Macro Concepts 83

The number attribute reference (N') determines the number of elements in a list or sublist, or the
number of elements in a subscripted variable symbol. For example, if the three lists in Figure 26
were arguments associated with parameters &P1, &P2, and &P3 respectively, then a number attribute
reference to each parameter would return the following values:

N'&P1 = 1 (A) is a list of 1 item
N'&P2 = 2 (B,C) is a list of 2 items
N'&P3 = 4 (D,E,,F) is a list of 4 items; the third is null

&Z(17) = 42 Set an element of a subscripted variable symbol
N'&Z = 17 maximum subscript of &Z is now 17

79Macro Argument List Structure Examples

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Assume the same macro prototype as in slide 77:

MAC8 &P1,&P2,&P3,&P4,... Prototype

MAC8 (A),A,(B,C),(B,(C,(D,E))) Sample macro call

• Then, the lists, sublists, and number attributes are:

&P1 = (A) N'&P1 = 1 1─item list: A
&P1(1) = A N'&P1(1) = 1 (A is not a list)
&P2 = A N'&P2 = 1 (A is not a list)
&P3 = (B,C) N'&P3 = 2 2─item list: B and C
&P3(1) = B N'&P3(1) = 1 (B is not a list)
&P4 = (B,(C,(D,E))) N'&P4 = 2 2─item list: B and (C,(D,E))
&P4(2) = (C,(D,E)) N'&P4(2) = 2 2─item list: C and (D,E)
&P4(2,2) = (D,E) N'&P4(2,2) = 2 2─item list: D and E
&P4(2,2,1) = D N'&P4(2,2,1) = 1 (D is not a list)
&P4(2,2,2) = E N'&P4(2,2,2) = 1 (E is not a list)

Macro-Instruction Argument Lists and Sublists

To extract list items from argument lists and sublists within a macro, subscripts are attached to
the parameter name. For example, if &P is a positional parameter, and N'&P is not zero (meaning
that the argument associated with &P is not null or badly formed), then &P(1) is the first item in
the list, &P(2) is the second, and &P(N'&P) is the last item.

To determine whether any list item is itself a list, we use another number attribute reference. For
example, if &P(1) is the first item in the list argument associated with &P, then N'&P(1) is the
number of items in the sublist associated with &P(1). For example, if argument ((X,Y),Z,T) is
associated with &P, then

N'&P = 3 items are (X,Y), Z, and T
N'&P(1) = 2 items are X and Y

As list arguments contain more deeply nested sublists, the number of subscripts used to refer to
their list items also increases. For example, &P(1,2,3) refers to the third item in the sublist
appearing as the second item in the sublist appearing as the first item in the list argument associ-
ated with &P. Suppose MAC8 has positional parameters &P1,&P2,..., etc.. Then, for a macro
instruction statement such as the following:

84 A+ + : Using HLASM's Macro Facility

MAC8 (A),A,(B,C),(B,(C,(D,E))) Sample macro call

&P1 = (A) N'&P1 = 1 list of 1 item, A
&P1(1) = A N'&P1(1) = 1 (A is not a list)
&P2 = A N'&P2 = 1 (A is not a list)
&P3 = (B,C) N'&P3 = 2 list of 2 items, B and C
&P3(1) = B N'&P3(1) = 1 (B is not a list)
&P4 = (B,(C,(D,E))) N'&P4 = 2 list of 2 items, B and (C,(D,E))
&P4(2) = (C,(D,E)) N'&P4(2) = 2 list of 2 items, C and (D,E)
&P4(2,2) = (D,E) N'&P4(2,2) = 2 list of 2 items, D and E
&P4(2,2,1) = D N'&P4(2,2,1) = 1 (D is not a list)
&P4(2,2,2) = E N'&P4(2,2,2) = 1 (E is not a list)

A possibly confusing situation occurs when an argument is not parenthesized. In the macro call

MAC8 (A),A

the first argument is a parenthesized list with one item. Then, the number attributes and sublists
of the two arguments are:

&P1 = (A) N'&P1 = 1 (a 1-item list)
&P1(1) = A N'&P1(1) = 1 (A is not a list)
&P2 = A N'&P2 = 1 (A is not a list)

which may be unexpected. These “rules of thumb” may help you understand number attribute
references to variable symbols:

1. If the variable symbol is dimensioned, its number attribute is the subscript of the highest-
numbered element of the array to which a value has been assigned.

2. If the variable symbol is not dimensioned and is not a macro parameter (either explicitly
named, or implicitly named as &SYSLIST(n)), its number attribute is zero.

3. If the first character of a macro argument is a left parenthesis, count the number of unquoted
and un-nested commas between it and the next matching right parenthesis. That number plus
1 is the number attribute of the “list”.

4. If there is no initial left parenthesis, the number attribute is 1.

It can be important to know whether or not a list item is parenthesized, so you should test the
first and last characters to verify that the list is enclosed in parentheses. (Some macros test only
for the opening left parenthesis, assuming that the assembler will automatically enforce correct
nesting of parentheses. This is not always a safe assumption.)

There may not be a problem if a single item is or is not enclosed in parentheses (depending on
how the argument is tested and substituted). For example,

LR 0,(R9)
and

LR 0,R9

will be processed the same way by the assembler.

Part 2: Basic Macro Concepts 85

80Macro Argument Lists and &SYSLIST

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• &SYSLIST(k): a synonym for the k-th positional parameter

− Whether or not a named positional parameter was declared

− Additional subscripts for deeper nesting levels

• N'&SYSLIST = number of all positional arguments

• Assume a macro prototype MACNP (with or without parameters)

• Then these four arguments have Number attributes as shown:

MACNP A,(A),(C,(D,E,F)),(YES,NO)

N'&SYSLIST = 4 MACNP has 4 arguments
N'&SYSLIST(1) = 1 &SYSLIST(1) = A (A is not a list)
N'&SYSLIST(2) = 1 &SYSLIST(2) = (A) a list with 1 item
N'&SYSLIST(3) = 2 &SYSLIST(3) = (C,(D,E,F)) a list with 2 items
N'&SYSLIST(3,2) = 3 &SYSLIST(3,2) = (D,E,F) a list with 3 items
N'&SYSLIST(3,2,1) = 1 &SYSLIST(3,2,1) = D (D is not a list)
N'&SYSLIST(4) = 2 &SYSLIST(4) = (YES,NO) a list with 2 items

• &SYSLIST(0) refers to the macro call 's name field entry

Macro-Instruction Argument Lists and the &SYSLIST Variable Symbol

It is often useful to be able to call a macro with an indefinite number of arguments that we will
process “identically” or “equivalently”; there may be no particular benefit from naming and then
referring to each parameter by name.

The system variable symbol &SYSLIST can be used to refer to the positional elements of the
argument list: &SYSLIST(k) refers to the k-th positional argument, whether or not a corre-
sponding positional parameter was declared on the macro's prototype statement. Each additional
subscript refers to a nested sublist; &SYSLIST(2,1,3) refers to the third element in the first element
in the second positional argument. &SYSLIST(0) refers to the entry in the name field of the
macro call (which need not be present). The total number of positional arguments in the macro
instruction's operand list can be determined using N'&SYSLIST.

No other reference to &SYSLIST can be made without subscripts. Thus, it is not possible to
refer to all the arguments (or to all the positional parameters) as a group using a single
unsubscripted reference to &SYSLIST.

To illustrate &SYSLIST references, suppose we have defined a macro named MACNP; whether
or not any positional parameters are declared on the macro prototype statement doesn't matter
for this example. If we write the following macro call:

MACNP A,(A),(C,(D,E,F)),(YES,NO)

then the number attributes of the &SYSLIST items, and their values, are the following:

N'&SYSLIST = 4 MACNP has 4 arguments
N'&SYSLIST(1) = 1 &SYSLIST(1) = A (A is not a list)
N'&SYSLIST(2) = 1 &SYSLIST(2) = (A) a list with 1 item
N'&SYSLIST(3) = 2 &SYSLIST(3) = (C,(D,E,F)) a list with 2 items
N'&SYSLIST(3,2) = 3 &SYSLIST(3,2) = (D,E,F) a list with 3 items
N'&SYSLIST(3,2,1) = 1 &SYSLIST(3,2,1) = D (D is not a list)
N'&SYSLIST(4) = 2 &SYSLIST(4) = (YES,NO) a list with 2 items

References to sublists are made in the same way as for named positional parameters. One addi-
tional (leftmost) subscript is needed for &SYSLIST references, because that parameter is being
referenced by number rather than by name.

86 A+ + : Using HLASM's Macro Facility

Summary of Attribute References

All eight types of attribute reference are valid in macros and conditional assembly statements; only
L', I', and S' are valid in ordinary assembly statements. Other usage limitations depend on the
type of the value of the reference.

Figure 28. Attribute Usage in the Base and Conditional Languages

Attr.
Val.
(*) Base Language

Conditional Language

Open Code Macros

L A OK OK OK

I A OK for symbol types
D, E, F, G, H, K, L, P,
Z

OK OK

S A OK for symbol types
D, E, F, G, H, K, L, P,
Z

OK OK

T C OK in most contexts SET symbols, symbolic parameters, system variable
symbols, and ordinary symbols

D A Not allowed For ordinary symbols, SETC variables whose
values are ordinary symbols, and predefined literals

O C Not allowed Note (1) OK

N A Not allowed Note (2) Note (3)

K A Not allowed OK OK

Notes:
(*) Attribute values are arithmetic (A) or character(C)
(1) Valid only if the operand resolves to a valid symbol; not valid if the type attribute of the
operand is N or O, or U (if the operand is not a valid symbol)
(2) For dimensioned variable symbols only (0 if not dimensioned).
(3) For &SYSLIST, symbolic parameters, and dimensioned variable symbols only (0 if not
dimensioned).

81Global Variable Symbols

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macro calls have a serious defect:

− Can't assign (i.e. return) values to arguments

— unlike most high level languages

− “One-way” communication with a macro: arguments in, statements out

— No “function-valued macros” that return a value to the caller using the name of the
macro

• Values can be shared among macros (and/or with open code) by using
global variable symbols

− Scope: available to all declarers

− Can use the same name as a local variable in a scope that does not declare
the name as global

• One macro can create (multiple) values for others to use

Part 2: Basic Macro Concepts 87

Global Variable Symbols
Thus far, our macro examples have been self-contained: all their communication with the
“outside world” has been through values received in their their argument lists and the statements
they generated.

In the Assembler Language, macro calls have a serious omission: they can't assign (i.e. return)
values to arguments, unlike most high level languages. That is, all macro arguments are “input
only”. Thus, communication with the interior of a macro by way of the argument list appears to
be “one-way”: arguments go in, but only statements come out.

Furthermore, there is no provision for defining macros which act as “functions”, macros which
return a value associated with the macro name itself. This capability is available with external
functions, but their access to global variables is severely limited (they must be passed as argu-
ments, and their values cannot be updated by the external function).

Thus, values to be shared among macros and with open code use a different mechanism, global
variable symbols. Global variable symbols are shared by and are available to all declarers. (You
may use the same name as a local variable in a scope that does not declare the name as global.)

With an appropriate choice of named global variable symbols, one macro can create single or
multiple values for others to use.

The “dictionary” or “pool” of global symbols has similar behavior to certain kinds of external
variables in high level languages: all declarers of external variables may refer to them. However,
the assembler imposes no conformance rules of ordering or size on declared global variable
symbols; you simply declare the ones you need, and the assembler will know where to find them
so they can be shared with other declarers. (Unlike some high-level languages, sharing of the
assembler's global variable symbols is purely by name!)

82Variable Symbol Scope Rules: Summary

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Global Variable Symbols

− Available to all declarers of those variables on GBLx statements (macros
and open code)

− Must be declared explicitly

− Arithmetic, Boolean, and Character types; may be subscripted

− Values persist through an entire assembly

— Values kept in a single, shared, common dictionary

− Values are shared by name

− All declarations must be consistent (type, scalar vs. dimensioned)

88 A+ + : Using HLASM's Macro Facility

83Variable Symbol Scope Rules: Summary ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Local Variable Symbols

− Explicitly and implicitly declared local variables

− Symbolic parameters

— Values are “read-only”

− Local copies of system variable symbols

— Value is constant throughout a macro expansion (except &SYSM_SEV, &SYSM_HSEV)

— Values kept in a local, transient dictionary

• Created on macro entry, discarded on macro exit

— Recursion implies a separate dictionary for each entry

− Open code has its own local dictionary

Variable Symbol Scope Rules: Summary

Let us review and summarize the scope rules for variable symbols.

• Global variable symbols are available to all macros and open code that have declared the
symbols as GBLx. The three types denoted by “x” are as for local variable symbols:
Arithmetic, Boolean, and Character.

• The values of global variable symbols persist through an entire assembly, and their values are
kept in a single, common dictionary. They may be referenced and set by any declarer.

• Local variable symbols include explicitly and implicitly declared variables, symbolic parame-
ters, and system variable symbols. They are not shared with other macros, or with open code.
Open code has its own local dictionary, which is active throughout an assembly. Local vari-
able symbols may be referenced or set only in their local scope.

• System variable symbols and parameters are “read-only”, meaning that their values are con-
stant throughout a macro invocation, and cannot be changed. The only system variable
symbol whose value may change are &SYSM_SEV and &SYSM_HSEV, which depend on severity set-
tings of MNOTE statements. (System variable symbols are summarized in “System (&SYS)
Variable Symbols” on page 249.)

• Variable symbol values for macros are kept in a transient local dictionary that is created on
macro entry and discarded on macro exit. Note that recursion implies a separate dictionary
for each entry to the macro; every invocation has its own local, non-shared dictionary.

The following figure illustrates the use of local and global variable symbol dictionaries for local
and global symbols, and for macros.

Part 2: Basic Macro Concepts 89

 �─────────────────────── Local Dictionaries ───────────────────────�
�─────────── One per macro invocation ───────────�

┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ LCLs, system │ │ LCLs, parms, │ │ LCLs, parms, │ │ LCLs, parms, │
│ var syms │ │ sys var syms │ │ sys var syms │ │ sys var syms │
└──────────────┘ └──────────────┘ └──────────────┘ └──────────────┘

 Open Code � MAC1 � MAC2 � MAC3 �
┌──────────────┐ ┌──────────────┐ ┌──────────────┐ ┌──────────────┐
│ ... │ │ Macro │ │ Macro │ │ Macro │
│ GBLA &A,&B │ │ MAC1 ... │ │ MAC2 ... │ │ MAC3 ... │
│ GBLB &X │ │ GBLC &C,&D │ │ GBLA &A │ │ GBLC &C │
│ ... │ │ ... │ │ GBLB &X │ │ ... │
│ ... │ │ ... │ │ ... │ │ ... │
└──────────────┘ └──────────────┘ └──────────────┘ └──────────────┘

� � � �

┌──┐
│ GBLA &A GBLB &X GBLC &C │
│ GBLA &B GBLC &D │
└──┘
 �─────────────────────── Global Dictionary ────────────────────────�

Figure 29. Example of Variable Symbol Dictionaries

The open code dictionary contains system variable symbols applicable to open code, and any
local variable symbols declared in open code. Each of the macro dictionaries contains local vari-
able symbols, parameter values, and the values of system variable symbols local to the macro,
such as &SYSNDX. Finally, the global variable symbol dictionary contains all global symbols
declared in open code and in any macro. Only declarers of a global variable symbol may refer to
it; in Figure 29, only open code and macro MAC2 may refer to the GLBL symbol &X.

84Macro Debugging Techniques

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Complex macros can be hard to debug

− Written in an poorly structured language

• Some useful debugging facilities are available:

1. MNOTE statement

− Can be inserted l iberally to trace control f lows and display values

2. MHELP statement

− Built- in assembler trace and display faci l i ty
− Many levels of control; output can be quite verbose!

3. ACTR statement

− Limits number of condit ional branches within a macro
− Very useful if you suspect excess looping

4. LIBMAC Option

− Library macros appear to be defined in-l ine

5. PRINT MCALL statement, PCONTROL(MCALL) option

− Displays inner-macro cal ls

90 A+ + : Using HLASM's Macro Facility

Macro Debugging Techniques
No discussion of macros would be complete without some hints about debugging them. The
macro language is complex and not well structured, and the “action” inside a macro is generally
hidden because each statement is not displayed as it is interpreted.

We briefly describe four statements and two options useful for macro debugging:

• the MNOTE statement

• the MHELP statement

• the ACTR statement

• the LIBMAC option

• the PRINT MCALL statement and the PCONTROL(MCALL) option.

85Macro Debugging: The MNOTE Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• MNOTE allows the most detailed controls over debugging output
(see also slide 45)

• You specify exactly what to display, and where

MNote *,'At Skip19: &&VG = &VG., &&TEXT = ''&TEXT'''

• You can control which ones are active (with global variable symbols)

GblB &DEBUG(20)
─ ─ ─
AIF (NOT &DEBUG(7)).Skip19
MNote *,'At Skip19: &&VG = &VG., &&TEXT = ''&TEXT'''

.Skip19 ANop

• You can use &SYSPARM values to set debug switches

• You can “disable” MNOTEs with conditional-assembly comments

.* MNote *,'At Skip19: &&VG = &VG., &&TEXT = ''&TEXT'''

Macro Debugging: The MNOTE Statement

We have already touched on the use of MNOTE statements in “Displaying Symbol Values and
Messages: The MNOTE Statement” on page 47. Their main benefits for debugging macros are:

• MNOTE statements may be placed at exactly those points where you know that internal
information may be most useful, and exactly the needed items can be displayed.

• The MNOTE message text can provide specific indications of the internal state of the macro
at that point, and why it is being provided.

• Though it requires additional programming effort to insert MNOTE statements in a macro,
they can be left “in place”, and enabled or disabled at will. Typical controls include “com-
menting out” the statement (with a “.*” conditional-assembly comment), or adding global
debugging switches to control which statements will be executed:

GblB &DEBUG(20)
- - -
AIF (NOT &DEBUG(7)).Skip19
MNote *,'At Skip19: &&VG = &VG., &&TEXT = ''&TEXT'''

.Skip19 ANop

Part 2: Basic Macro Concepts 91

If the debug switch &DEBUG(7) is 1, then the MNOTE statement will produce the desired
output.

86Macro Debugging: The MHELP Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• MHELP controls display of conditional-assembly flow tracing and
var iable “dumping”

− Use with care; output is potentially large

• MHELP operand value is sum of 8 bit values:

1 Trace macro calls (name, nesting depth, &SYSNDX value)
2 Trace macro branches (AGO, AIF)
4 AIF dump (dump scalar SET symbols before AIFs)
8 Macro exit dump (dump scalar SET symbols on exit)
16 Macro entry dump (dump parameter values on entry)
32 Global suppression (suppress GBL symbols in AIF, exit dumps)
64 Hex dump (SETC and parameters dumped in hex and EBCDIC)
128 MHELP suppression (turn off all active MHELP options)

− Best to set operand with a GBLA symbol (can save/restore its value), or
from &SYSPARM value

• Can also limit total number of macro calls (see Language Reference)

Macro Debugging: The MHELP Statement

The MHELP statement is more general but less specific in its actions than the MNOTE state-
ment. Once an MHELP option is enabled, it stays active until it is reset. The MHELP operand
specifies which actions should be activated; the value of the operand is the sum of the “bit values”
for each action:

1 Trace macro calls

MHELP 1 produces a single line of information, giving the name of the called macro, its
nesting level, and its &SYSNDX number. This information can be used to trace the flow
of control among a complex set of macros, because the &SYSNDX value indicates the
exact sequence of calls.

2 Trace macro branches

The AIF and AGO branch trace provides a single line of information giving the name of
the macro being traced, and the statement numbers of the model statements from which
and to which the branch occurs. Unfortunately, the target sequence symbol name is not
provided, nor is branch tracing active for library macros. This latter restriction can be
overcome if you specify the LIBMAC option; tracing is then active for library macros.

4 AIF dump

When MHELP 4 is active, all scalar (undimensioned) SET symbols in the macro dic-
tionary (i.e., explicitly or implicitly declared in the macro) are displayed before each AIF
statement is interpreted.

8 Macro exit dump

MHELP 8 has the same effect as the preceding (MHELP 4), but the values are also dis-
played at the time a macro expansion is terminated by either an MEXIT or MEND state-
ment.

92 A+ + : Using HLASM's Macro Facility

16 Macro entry dump

MHELP 16 displays the values of the symbolic parameters passed to a macro at the time
it is invoked. This information can be very helpful when debugging macros that create or
pass complex arguments to inner macros.

32 Global suppression

Sometimes you will use the MHELP 4 or MHELP 8 options to display variable symbols
in a macro that has also declared a large number of scalar global symbols, and you are
only interested in the local variable symbols. Setting MHELP 32 suppresses the display of
the global variable symbols.

64 Hex dump

When used in conjunction with any of MHELP's “display” options (MHELP 4, 8, and
16), causes the value of displayed SETC symbols to be produced in both character
(EBCDIC) and hexadecimal formats. If you are using character string data that contains
non-printing characters, this option can help with understanding the values of those
symbols.

128 MHELP suppression

Setting MHELP 128 will suppress all currently active MHELP options. (MHELP 0 will
do the same.)

These values are additive: you may specify any combination. Thus,

MHELP 1+2 Trace macro calls and AIFs

will enable both macro call tracing and AIF branch tracing.

As you might infer from the values just described, these MHELP “switches” fit in a single byte.
The actions of the MHELP facility are controlled by a fullword in the assembler, of which these
values are the rightmost byte. The remaining three high-order bytes can be used to control the
maximum number of macro calls allowed in an assembly; the details are described in the High
Level Assembler for z/OS, z/VM, & z/VSE Language Reference manual.

The output of the MHELP statement can sometimes be large, especially if multiple traces and
dumps are active. It is particularly useful in situations where the macro(s) you are debugging
were ones you didn't write, and in which you cannot conveniently insert MNOTE statements.
Also, if macro calls are nested deeply, the MHELP displays can help with understanding the
actions taken by each inner macro.

To provide some level of dynamic control over the MHELP options in effect, set a global arith-
metic variable outside the macros to be traced, and then refer to that value inside any macro
where the options might be modified; the MHELP operand can then be saved in a local arith-
metic value, and restored to its “global” value on exit. Another useful technique is to derive the
MHELP operand from the &SYSPARM string supplied to the assembler at invocation time; this
lets you debug macros without making any changes to the program's source statements.

Part 2: Basic Macro Concepts 93

87Macro Debugging: The ACTR Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• ACTR helps control excessive looping

− Specifies the maximum number of conditional-assembly branches in a macro
or open code

ACTR 200 Limit of 200 successful branches

− Scope is local (to open code, and to each macro)

— Can set different values for each; default is 4096

− Count decremented by 1 for each successful branch

− When count goes negative, macro's invocation is terminated

• Executing erroneous conditional assembly statements halves the
ACTR value!

.* Following statement has syntax errors
&J SETJ &J+? If executed, would cause ACTR = ACTR / 2

Macro Debugging: The ACTR Statement

The ACTR statement is used to limit the number of conditional assembly branches (AIF and
AGO) executed within a macro invocation (or in open code). It is written

ACTR arithmetic_expression

where the value of the “arithmetic_expression” will be used to set an upper limit on the number
of branches executed by the assembler. In the absence of an ACTR statement, the default ACTR
value is 4096, which is adequate for most macros.

ACTR is most useful in two situations:

1. If you suspect a macro may be looping or branching excessively, you can set the macro's
ACTR value lower to limit the number of branches.

2. If a very large or complex macro makes a large number of branches, you can set the macro's
ACTR value high enough that all normal expansions can be handled safely.

If the macro definition contains errors detected during encoding, the ACTR value may be divided
by 2 each time such a statement is interpreted. This helps avoid wasting resources on what will
undoubtedly be a failed assembly.

The ACTR value is local to each scope, including open code. If exceeded in a macro, the expan-
sion is terminated; if exceeded in open code, the rest of the source program is treated as com-
ments, and is not processed. An ACTR value can be changed within its scope by executing other
ACTR statements.

94 A+ + : Using HLASM's Macro Facility

88Macro Debugging: The LIBMAC Option

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• The LIBMAC option causes library macros to be defined “in-line”

− Specify as invocation option, or on a *PROCESS statement

*PROCESS LIBMAC

• Errors in library macros can be hard to find:

− HLASM can only indicate “There's an error in macro XYZ”

− Specific location (and cause) are hard to determine

• LIBMAC option causes library macros to be treated as “source”

− Can use ACONTROL [NO]LIBMAC statements to limit LIBMAC range

• Errors can be indicated for specific macro statements

• Errors can be found without

− modifying any source

− copying macros into the program

Macro Debugging: The LIBMAC Option

The LIBMAC assembler option is very helpful in locating errors in macros whose definitions
have been placed in a macro library. Because library macros are edited as they are read, they do
not have statement numbers associated with each statement of the definition. If the assembler
detects errors during encoding or expansion of a library macro, it provides less precise information
about the problem's causes.

The LIBMAC option causes the assembler to treat library macro definitions as though they were
found in the primary source stream. When an error condition is detected, the assembler is able (in
most cases) to supply the number of the relevant statement and provide more precise diagnostics.
This makes locating and correcting errors much easier.

If your program calls many macros, but only one or two macros need this form of analysis, you
can “bracket” the calls with ACONTROL statements to limit the range of statements during
which the LIBMAC option will be in effect:

ACONTROL LIBMAC Turn LIBMAC option on
OddMacro ... The macro to be analyzed
ACONTROL NOLIBMAC Turn LIBMAC option off
GoodMac ... Trusted macro, analysis not needed

This facility would not be needed, of course, if macros could be perfectly debugged before they
were placed into a macro library. Unfortunately, creators and testers of macro definitions cannot
always anticipate all possible uses, so errors sometimes occur long after a macro was written and
“certified”.

Part 2: Basic Macro Concepts 95

89Macro Debugging: The PRINT MCALL Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• PRINT [NO]MCALL controls display of inner macro calls

PRINT MCALL Turns ON inner─macro call display
PRINT NOMCALL Turns OFF inner─macro call display

− Normally, you see only the outermost call and generated code from it and all
nested calls

— Diff icult to tel l which macro may have received invalid arguments

− With MCALL, HLASM displays each macro call before processing it

— Some l imitat ions on length of displayed information

• PCONTROL([NO]MCALL) option

− Forces PRINT MCALL on [or off] for the assembly

− Specifiable at invocation time, or on a *PROCESS statement:

*PROCESS PCONTROL(MCALL)

Macro Debugging: The PRINT MCALL Statement

The PRINT MCALL statement and the PCONTROL(MCALL) assembler option can be very
helpful in locating errors in nested macro calls. Under normal circumstances, the assembler dis-
plays only the outermost macro call, and (if PRINT GEN is in effect) the code generated from
that call and all nested calls.

If a complex nest of macro calls generates incorrect code, it can sometimes be difficult to isolate
the problem to a specific macro, or to the interfaces among the macros. The PRINT MCALL
statement causes the assembler to display inner macro calls before they are processed; this can
help in ensuring that correct arguments are passed to each macro. For example, suppose you
have defined two macros, OUTER and INNER:

Macro
&L OUTER &P,&Q,&R
&T SetC '&P._0
&L.X INNER &Q,ZZ,&T

MEnd

Macro
&L INNER &F,&G,&H

DC C'F=&F., G=&G., H=&H'
MEnd

Then, if you call the OUTER macro with the statement

K OUTER A,B,C

the listing will show only the call to OUTER and (if PRINT GEN is in effect) the generated DC
statement. If PRINT MCALL is in effect, the listing will also show the call to INNER:

K OUTER A,B,C
+KX INNER B,ZZ,A_C
+ DC C'F=B, G=ZZ, H=A_C'

End

If macro arguments are modified when passed to inner macros (as in this example), debugging can
be made much simpler if the actual arguments of the inner macro calls are visible.

96 A+ + : Using HLASM's Macro Facility

The PRINT MCALL statement is subject to a “global” override through the use of the
PCONTROL option, which specifies that PRINT MCALL should be active or not for the entire
assembly, no matter what PRINT MCALL or PRINT NOMCALL statements may be present
in the source program.

IBM Macro Libraries

Every IBM operating system provides several macro libraries that can provide helpful examples of
macro coding techniques.6 Some macros simply set up parameters lists for calls to a system
service; these tend to be less instructive than macros that generate sequences of instructions for
other uses. You will probably want to defer study of very large macros until you are comfortable
with reading and writing your own macro definitions.

But do remember that many IBM macros were written in the early days of System/360; the
assemblers of those times were far less powerful than today's High Level Assembler, so the coding
techniques may appear unnecessarily complicated by today's standards.

Macro Special Topics
Here we mention topics that sometimes arise when defining and calling macros:

• Macro-instruction recognition.

• Macro-definition encoding

• Nested macro definitions

• Constructed keyword arguments

• Macro parameter usage in model statements

• Macro argument lists and sublists

90Macro-Instruction Recognition: Details

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• A macro “call” could use a special CALL syntax, such as

MCALL macroname(arg1,arg2,etc...)
or MCALL macroname,arg1,arg2,etc...

• Advantages to having syntax match base language's:

− Format of prototype dictated by desire not to introduce arbitrary forms of
statement recognition for new statements

− No special characters, statements, or rules to “tr igger” recognition

− No need to distinguish language extensions from the base language

− Allows overriding of most existing mnemonics; language extension can be
natural (and invisible)

• No need for “MCALL”; just make “macroname” the operation code

6 Not that the coding techniques are necessarily the best; as mentioned earlier, the conditional assembly language is
awkward and unfamiliar to many programmers, and was especially so in the early days when many macros were
written.

Part 2: Basic Macro Concepts 97

Macro-Instruction Recognition: Details

Both macro name declaration (definition) and recognition have specific rules that are closely tied
to the base language syntax of the Assembler Language. Some macro languages and pre-
processors require special characters or syntactic forms to “trigger” the invocation of a macro.
For example, an Assembler Language macro “call” could use or require a special CALL syntax,
such as

MCALL macroname(arg1,arg2,etc...)
or MCALL macroname,arg1,arg2,etc...

However, there are advantages to having the syntax of macro calls match the base language's, and
to allow overriding of existing mnemonics; hence, we simply elide the MCALL and make the
“macroname” become the operation mnemonic and the arguments become the operands of the
macro instruction statement.

While many possible forms of macro definition and recognition are possible, the general format
used in the Assembler Language is dictated by a desire not to introduce arbitrary forms of state-
ment syntax and recognition rules for new statements.

The SETAF and SETCF instructions use explicit invocation:

SETxF function_name,arg1,arg2,etc...

in order to avoid conflicts between instruction names and external function names.

91Macro-Definition Encoding (“Editing”)

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Assembler compiles a macro definition into an efficient internal format

− Macro name is identified and saved; all parameters are identified

− COPY statements processed immediately

− Model and conditional assembly statements converted to “internal text” for
faster interpretation

− All points of substitution are marked in name, operation, and operand fields

— But not in remarks f ields or comment statements

− Some errors in model statements are diagnosed

— Others may not be detected until macro expansion

− “Dictionary” (variable-symbol table) space is defined

− Parameter names discarded, replaced by dictionary indexes

• Avoids the need for repeated searches and scans on subsequent uses

Macro-Definition Encoding

Because the assembler is designed to support extensive use of macros, their implementations
reflect a need to provide efficient processing. Thus, the assembler initially converts macro defi-
nitions into an efficient encoded internal format for later use; this is sometimes called “macro
editing”.

• The macro's name is identified and saved (so that later references to the macro name can be
recognized as macro calls).

• All parameters are identified, and entries for them are made in a “local macro dictionary”.

98 A+ + : Using HLASM's Macro Facility

• Parameter and system variable symbol names are discarded, and references to them are
replaced by indexes into the local macro dictionary.

• COPY statements are recognized and processed immediately. This allows common sets of
declarations to be shared among macros.

• Model and conditional assembly statements are converted to “internal text” for faster interpre-
tation.

• All points of substitution in the name, operation, and operand fields are identified and marked.
(Substitutions are not supported in the remarks field, nor in comment statements.) Because
these points of substitution are determined during macro encoding, it is perhaps more under-
standable why substituting strings like '&A' will not cause a further effort to re-scan the state-
ment and substitute the value represented by &A.

Note: Because generated machine instruction statements are scanned differently from gener-
ated macro instructions, you can create substitutions in remarks fields by creating an
“operand” that contains the true operands, one or more blanks, and the characters of the
remarks field. This technique is laborious and rarely worth the effort; using AINSERT may be
easier.

• Some errors in model statements are diagnosed, but others may not be detected until macro
expansion is attempted.

• “Dictionary” (symbol table) space is defined for local variable symbols, and space is added to
the global variable symbol dictionary for newly-encountered global names.

Encoding a macro definition in advance of any expansions avoids the need for repeated library
searches and encoding scans on subsequent uses of the macro.

Some macro processors re-interpret macro definitions each time the macro is invoked. This pro-
vides greater flexibility (which is not often needed) at the expense of much slower interpretation
and expansion. The design choice made in the assembler was to encode the macro for fast inter-
pretation and expansion.

92Nested Macro Definitions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Nested macro definitions are supported
− Nested Macro/MEnd pairs are counted

• Question: should outer macro variables parameterize nested macro
definitions?

Macro , Start of MAJOR's definition
&L MAJOR &X

LCLA &A Local variable
─ ─ ─

┌─ Macro , Start of MINOR's definition
│ &N MINOR &Y
│ LCLA &A Local variable
│ ─ ─ ─
│ &A SetA 2*&A*&Y Evaluate expression (Problem: MAJOR's or MINOR's &A?)
│ ─ ─ ─
└─ MEnd , End of MINOR's definition

─ ─ ─
MNote *,&&A = &A' Display value of &A
MEnd , End of MAJOR's definition

• HLASM does not parameterize inner macro text (AINSERT helps)
− Statements are “shielded” from substitutions (no nested-scope problems)

Part 2: Basic Macro Concepts 99

Nested Macro Definitions

Nested macro definitions are supported in the Assembler Language, but is more complicated than
illustrated in the simple example in Figure 16 on page 65. To illustrate one complication, con-
sider the following example:

Macro , Start of MAJOR's definition
&L MAJOR &X

LCLA &A Local variable
- - -

┌─ Macro , Start of MINOR's definition
│ &N MINOR &Y
│ LCLA &A Local variable
│ - - -
│ &A SetA 2*&A*&Y Evaluate expression (Problem: MAJOR's or MINOR's &A?)
│ - - -
└─ MEnd , End of MINOR's definition

- - -
MNote *,&&A = &A' Display value of &A
MEnd , End of MAJOR's definition

Figure 30. Macro Definition Nesting in High Level Assembler

The variable symbol &A appears in both the MAJOR outer macro and the MINOR inner
macro. Thus, the macro encoder must decide how to process occurrences of &A in the nested
definition of MINOR: should they be marked as points of substitution, and by which macro
should the substitutions be done, using its value of &A?

To avoid complex syntax and rules of interpretation, the assembler simply treats all statements
between the Macro and MEnd statements of nested macro definitions as uninterpreted strings of text
into which no substitutions are performed. In effect, all nested macro definitions are “shielded”
from enclosing definitions. This means that a macro definition can generate a macro definition,
but cannot parameterize, modify, or “tailor” it in any way. The nested definition is simply gener-
ated as a sequence of statements.

Some of the limitations imposed by this choice can be overcome by using the AINSERT state-
ment, described in “The AINSERT Statement” on page 183.

You would get the same results if the two macros were defined independently; but this method of
“packaging” one macro definition inside another can help avoid accidental invocation of a sec-
ondary, inner macro before the primary, outer macro has been called.

100 A+ + : Using HLASM's Macro Facility

93Constructed Keyword Arguments Do Not Work

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Keyword arguments cannot be created by substitution

• Suppose a macro prototype statement is

 &X TestMac &K=KeyVal,&P1 Keyword and Positional Parameters

• If you construct an “apparent” keyword argument and call the macro:

 &C SetC 'K=What' Create an apparent keyword
TestMac &C,Maybe Call with “keyword” 'K=What'?

• This looks like a keyword and a positional argument:

+ TestMac K=What,Maybe Call with ″keyword″?

• In fact, the argument is positional, with value 'K=What' !

• Macro calls are not re-scanned after substitutions!

− The loss of generality is traded for gains in efficiency

Constructed Keyword Arguments

You may need to construct argument lists for macro calls, and be tempted to create keyword
arguments. Suppose you have written a macro with a prototype statement like this:

 &X TestMac &K=KeyVal,&P1 Keyword and Positional Parameters

and you want to construct a keyword argument:

 &C SetC 'K=What' Create an apparent keyword
TestMac &C,Maybe Call with “keyword” 'K=What'?

While this appears to be a properly formed keyword argument K=What, it is actually treated as a
positional argument, because the statement is not re-scanned after the value of &C has been substi-
tuted. The little test program shown in Figure 31 shows what happens: the substituted string is
treated as a positional argument.

Macro
 &X TestMac &K=KeyVal,&P1 Keyword and Positional Parms

MNote *,'P1=''&P1.'', K=''&K.''' Display values of each
MEnd

TestMac Yes,K=No Test with positional first
+*,P1='Yes', K='No'

TestMac K=No,Yes Test with keyword first
+*,P1='Yes', K='No'

 &C SetC 'K=What' Create an apparent keyword

TestMac &C,Maybe Call with 'keyword' first?
+*,P1='K=What', K='KeyVal'

Figure 31. Example of a Substituted (Apparent) Keyword Argument

The original design of the System/360 assembler and its successors focused on efficient macro
expansion, so macro calls containing substitutions were not re-scanned.

Part 2: Basic Macro Concepts 101

94Macro Parameter Usage in Model Statements

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Values supplied by arguments in the macro instruction (“call”) are
substituted in parameter symbols as character strings

• Parameters may be substituted in name, operation, and operand fields
of model statements

− Substitution points ignored in remarks fields and comment statements

— Can sometimes play tr icks with operand f ields containing blanks

— AINSERT lets you generate fully substituted statements

• Some limitations on which opcodes may be substituted in conditional
assembly statements

− Can't substitute ACTR, AGO, AIF, ANOP, AREAD, COPY, GBLx, ICTL, LCLx,
MACRO, MEND, MEXIT, REPRO, SETx, SETxF

− The assembler must understand basic macro structures at the time it
encodes the macro!

• Implementation trade-off: generation speed vs. generality

Macro Parameter Usage in Model Statements
Values are assigned to macro parameters from the corresponding arguments on the macro-
instruction statement, either by position in left-to-right order (for positional arguments), or by
name (for keyword arguments). These are then substituted as character strings into model state-
ments (wherever points of substitution marked by the parameter variable symbols appear).

The points of substitution in model statements may be in the name, operation, and operand field
fields, but not in the remarks field, nor in comment statements. (For some operations, it is pos-
sible to construct an operand string containing embedded blanks followed by “remarks” into
which substitutions have been done. We will leave as an exercise the delights of discovering how
to do this.)

Substitutions are not allowed in some places in conditional or ordinary assembly statements such
as COPY, REPRO, MACRO, and MEND, because the assembler must know some information
about the basic structure of the macro definition at the time it is encoded. For example, substi-
tuting the string MEND for an operation code in the middle of a macro definition could completely
alter that definition!

The original implementation of the conditional assembly language assumed that macros will be
used frequently, so that speed of generation was more important than complete generality. Since
this conditional assembly language is more powerful than that of most macro-processors or pre-
processors, the choice seemed reasonable.

102 A+ + : Using HLASM's Macro Facility

95Macro Argument Lists and Sublists: Details

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• HLASM can treat macro argument lists in two ways:
as lists or as strings

• Old assemblers pass these two types of argument differently:

MYMAC (A,B,C,D) Macro call with a list argument

&Char SetC '(A,B,C,D)' Create argument for MYMAC call
MYMAC &Char Macro call with a string argument

• COMPAT(SYSLIST) option enforces “old rules”

− Inner-macro arguments treated as having no list structure

− Prototype statements must parse the argument one character at a time

• NOCOMPAT(SYSLIST) relaxes restrictions on inner macros

Macro Argument Lists and Sublists: Details

In older assemblers, all inner-macro arguments passed as strings were treated as having no struc-
ture; that is, the operand scanner for the inner macro call recognized no list structure, even if it is
present (as in case 3 on page 104). Thus, for example, a reference inside the INNER macro to
(say) the length attribute of the argument would be diagnosed as invalid, because the argument
would not be recognized either as a symbol or as a list. The most serious defect of this treatment
is that the powerful facilities in the conditional assembly language, such as number attribute refer-
ences (N') and subscripted &SYSLIST notation, could not be used be used to “parse” the
operand to extract individual list elements.

The COMPAT(SYSLIST) option can affect how you handle lists of arguments passed to macros.
While this is rarely a concern, there are situations where your macros can be written more simply
if you can utilize the High Level Assembler's enhanced ability to handle lists.

There are two types of lists passed as arguments to macros:

1. a positional argument list, and
2. a parenthesized list of terms passed as a single argument.

For example, a list of four positional arguments appears in the call

MYMAC A,B,C,D Macro call with four arguments

and may be treated as a list using the &SYSLIST system variable symbol. A list of items passed
as a single argument appears in the call

MYMAC (A,B,C,D) Macro call with one argument (a list)

where the argument (A,B,C,D) is a list of four items. We will now examine the second of these
forms, where an argument is a list.

Part 2: Basic Macro Concepts 103

Inner-Macro Sublists

There are several ways to create and then pass arguments from an outer macro to an inner:

1. by direct substitution of an enclosing-macro's entire argument:

MACRO
&L OUTER &A,&B,&C Three positional parameters

- - -
&L INNER &B Pass second parameter as an argument to INNER

- - -
MEND
- - -
OUTER R,(S,T,U),V Passes (S,T,U) to INNER

The second argument of OUTER is passed unchanged as the argument of INNER.

2. by substitution of parts:

MACRO
&L OUTER &A,&B,&C

- - -
&L INNER &B(1) Pass first element of &B

- - -
MEND
- - -
OUTER R,(S,T,U),V Passes S to INNER
OUTER R,S,T Passes S to INNER

In this case, the first list element of the second argument of OUTER is passed unchanged as
the argument of INNER. If the argument of the call to OUTER corresponding to the param-
eter &B is not a list, then the entire argument will be passed.

3. by construction as a string, in part or as a whole:

MACRO
&L OUTER &A,&B,&C

- - -
&T SETC '('.'&B'(2,K'&B−2).')'

- - -
&L INNER &T Pass parenthesized string of &B

- - -
MEND
- - -
OUTER R,(S,T,U),V Passes (S,T,U) to INNER

In this case, a string variable &T is constructed, and its contents (S,T,U) is passed as the argu-
ment to INNER.

The method used can effect the recognition and treatment of arguments by inner macros. It
might appear that the third example should give the same results as the first, because they both
pass the argument (S,T,U) to INNER. They can be treated quite differently: is (S,T,U) a list or a
string?

If you specify the COMPAT(SYSLIST) option, you must scan the argument string &Arg one
character at a time to extract the needed pieces of information. Thus, macros called as inner
macros may have to be much more complex than outer-level macros, because they analyze argu-
ments one character at a time; substituted arguments to inner macros are treated as having no
structure.

However, if you specify NOCOMPAT(SYSLIST), all macro arguments will be treated the same
way, independent of the level of macro invocation; no distinction is made between outermost and
inner macro calls. Thus, you can use the full power of the &SYSLIST notation, sublist
notations, and number attributes.

104 A+ + : Using HLASM's Macro Facility

Part 2: Basic Macro Concepts 105

Part 3: Macro Techniques

96

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Part 3: Macro Techniques

Macro instructions (or macros) give you a wonderfully flexible set of possibilities. Macros share
many of the properties of ordinary subroutines (you can think of a macro as an assembly-time
subroutine!) that can be called from many different applications: once created, they may be used
to simplify many other tasks. Their capabilities range from the very simple:

• perform “housekeeping” such as saving registers, making subroutine calls, and restoring the
registers and returning (for example, the operating system supplies the SAVE, CALL, and
RETURN macros for these functions)

• define symbols for registers and fixed storage areas, and declare data structures to define or
map certain system control blocks used by programs to communicate with the operating
system (macros such as REGEQU, DCB, and DCBD)

• generate short code sequences to convert among data types, justify numeric fields, search
tables, validate data values, and other helpful tasks.

to the very complex:

• macros have been created to define “artificial languages” in which entire applications are
written. Examples include

− the SNOBOL47 programming language,

− specialized compiler-writing operations8,

7 See The Macro Implementation of SNOBOL4, by Ralph E. Griswold (Freeman & Co., San Francisco, 1972). Chapter
10 describes the macro techniques used.

8 The IBM Fortran G-Level compiler was written in an assembler macro language that allowed it to be quickly and
easily ported to other systems.

106 A+ + : Using HLASM's Macro Facility

− insurance9,

− teleprocessing10

and banking, marketing, and other applications.

Our purpose here is to show that you can write macros to simplify almost any programming task,
from the simple and small to the very complex and powerful.

97Macros as a Higher Level Language

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macros can perform very simple to very complex tasks

− Housekeeping (register saving, calls, define symbols, map structures)
− Define your own application-specific language increments and features

• Macros can be built incrementally to suit your application needs

− Can develop “application-specif ic languages” and increments
— Easier to learn, because it relates to your application

− Code re-use promotes faster learning, fewer errors

• Avoid struggling with the latest “universal language” fad

− HLLs: you fit your application to someone else's language

− Macros: you fit your language to your application

— Add new capabil i t ies to exist ing applications without converting

• Macros can provide most of the benefits of HLLs

− Abstract data types, private data types; information hiding, encapsulation;
avoiding side-effects; polymorphism; enhanced portability, etc.

Macros many advantages:

• Macros can perform as much or as little as is needed for a particular task.

• Macros can be built incrementally; simple functions can be used by more complex functions
as they are written.

• New “language” implemented by macros can be adapted to the needs of the application,
giving an application-specific language that may be better suited to its needs than any general-
purpose “higher level” language designed to (nearly) fit (nearly) everything. When completed,
a macro can be used by everyone, giving immediate benefits of code re-use.

• Macro-based implementations are often more efficient than compiled code. A compiler must
accept arbitrary combinations of statements, and then attempt to optimize them; a macro-
based language can concentrate on just those parts of the application for which optimization
efforts are justified.

• A macro-based language is your language! You need not adapt the expression of your applica-
tion to fit the peculiarities and rigidities of a particular language or compiler (or of a language
designer's pet theories). You can select whatever language features are appropriate and useful
for your application.

9 Allstate Insurance implemented many of their applications in an easy-to-learn macro language that required much less
training than traditional HLLs.

10 The SPRINT system was originally developed by the Southern Pacific railroad for communicating within its rail
system. It is described in Total Operations Processing System for the Southern Pacific Company, IBM Data Processing
Application, E20-0310.

Part 3: Macro Techniques 107

• Macro-based languages are usually easier to learn, because they relate better to your business
needs than general-purpose languages.11

• Macros can also provide an excellent introduction to language and compiler concepts, in a
controllable way. You can create and analyze generated code immediately, and can build
useful language fragments without having to worry about extensive side-effects. Macros also
allow you to investigate tradeoffs involved in compile-time vs. run-time issues such as a choice
between generating in-line code or calls to a run-time library.

Higher-level languages are often deemed useful because they provide desirable “advanced” fea-
tures. Macros can also deliver most of these features, and many more:

• Abstract Data Types are user-specified types for data objects, and sets of procedures used to
access and manipulate them. This “encapsulation” of data items and logic is one of the key
benefits claimed for object-oriented programming; it is a natural consequence of macro pro-
gramming.

• Information Hiding helps hide the details of an implementation from the user. The concept of
separating application logic from data representations is an old and well established program-
ming principle. This also is a natural and normal benefit of macro programming.

• Private Types are user-defined data types for which details of the implementing procedures are
hidden.

• Avoiding Side-Effects is achieved by having functions only return a value without altering
input values or setting shared variables not declared in the invocation of a procedure.

• Polymorphism allows functions to accept arguments of different types, and enhances compo-
nent reuse in other contexts.

98Examples of Macro Techniques

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Sample-problem “case studies” i l lustrate some techniques

1. Define EQUated names for registers

2. Generate a sequence of byte values

3. “MVC2” macro takes the length to be moved from second operand

4. Generate lists of named integer constants

5. Create length-prefixed message text strings and free-form comments

6. Recursion (indirect addressing, factorials, Fibonacci numbers)

7. Basic and advanced bit-handling techniques

8. Defining assembler and user-specified data types and operations

9. Util izing Program Attributes for strong and private typing

10. “Front-ending” or “wrapping” a l ibrary macro

11 Many studies have shown that the value of an employee depends more on knowledge of the business than on know-
ledge of a programming language.

108 A+ + : Using HLASM's Macro Facility

Macro Techniques Case Studies
We now examine some sample case studies that illustrate aspects of the macro language, and
provide various types of useful functions.

1. “Case Study 1: Defining Equated Symbols for Registers” on page 110 generates a set of EQU
statements to define symbols to be used for register references. They illustrate the use of a
global variable symbol to set a “one-time” switch, text parameterization, use of the
&SYSLIST system variable symbol, and created variable symbols. (This case study is a gener-
alization of the macro discussed at “Example 1: Define Equated Symbols for Registers” on
page 71.)

2. Two example macros at “Case Study 2: Generating a Sequence of Byte Values” on page 115
generate a sequence of byte values. They illustrate conditional assembly statements, and some
simple string-handling operations. (This case study is a generalization of the macro discussed
at “Example 2: Generate a Sequence of Byte Values (BYTESEQ1)” on page 78.)

3. The standard MVC instruction derives its implied length from the length attribute of the first
(receiving) operand. The “MVC2” macro in “Case Study 3: ‘MVC2’ Macro Uses Source
Operand Length” on page 118 takes its implied length from the length attribute of its second
(source) operand.

4. The INTCONS macro at “Case Study 4: Generate a List of Named Integer Constants” on
page 120 generates a list of constants from a varying-length list of arguments, using
&SYSLIST to refer to each argument and construct a name for each constant using its value.

5. “Case Study 5: Using the AREAD Statement” on page 123 illustrates two uses of the
AREAD statement:

a. Three macros at “Case Study 5a: Creating Length-Prefixed Message Texts” on page 124
show how to generate a length-prefixed string. The first and second examples illustrate
familiar techniques, while the third uses the AREAD statement and a full scan of a
“human-format” message to generate an insertion-text character string for the final DC
statement containing the message.

b. “Case Study 5b: Block Comments” on page 130 shows how to use the AREAD statement
to write free-form or “block” comments in your program.

6. Three macros at “Case Study 6: Macro Recursion” on page 132 illustrate recursive macro
calls. The first two illustrate the use of global variable symbols and recursive macro calls to
generate factorials and Fibonacci numbers. The third implements a form of indirect
addressing.

7. Two styles of macros illustrate techniques that define a private “bit” data type that let you
address bits by name, and do type checking of the bit names. After describing some basic
bit-handling techniques, simple and optimized macros are created:

a. “Case Study 7a: Bit-Handling Macros -- Simple Forms” on page 142 describes basic forms
of declaring and using a bit data type.

b. “Case Study 7b: Bit-Handling Macros -- Advanced Forms” on page 151 shows how to
improve the basic forms for safety and efficiency, and to generate optimized code.

8. The macros illustrated at “Case Study 8: Utilizing The Assembler's Data Types” on page 173
describe techniques that can be used to implement type-sensitive operations
(“polymorphism”), and to declare user-defined data types and user-defined operations on
them, with type checking and information hiding.

a. “Case Study 8a: Type Sensitivity with Simple Polymorphism” on page 174 shows how the
assembler's type attributes can be used to generate tailored code sequences to the types of
operands.

b. “Case Study 8b: Instruction-Operand Type Checking” on page 179 shows how user-
assigned type attributes can be used to perform type checking “conformance” between
instructions, operands, and registers.

Part 3: Macro Techniques 109

c. “Case Study 8c: Encapsulated Abstract Data Types” on page 191 describes a simple
application-specific language to show how user-defined data types and operations can
“encapsulate” the details of data definitions and low-level operations on the data objects.

9. This case study shows how you can use Program Attributes to assign application-specific
extended attributes to symbols, and how to use those attributes to check for consistent use
and to generate code sequences with greater flexibility than high-level language provide.

10. Sometimes it is useful to be able to capture and analyze the arguments passed to another
macro and post-process its results, while still using the original macro definition for its
intended purposes. This is called “front-ending” or “wrapping” a macro. “Case Study 10:
“Front-Ending” a Library Macro” on page 231 illustrates a way to do this.

99Case Study 1: EQUated Symbols for Registers

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Write a GREGS macro to define “symbol equates” for GPRs

• Basic form: simply generate the 16 EQU statements

• Variation 1: ensure that “symbol equates” are generated only once

• Variation 2: generate equates once for up to four register types

− General Purpose, Floating Point, Control, Access

Case Study 1: Defining Equated Symbols for Registers
The technique illustrated in “Example 1: Define Equated Symbols for Registers” on page 71 is
quite acceptable unless we need to combine multiple code segments, each of which may contain a
call to GREGS (as needed for its own modular development). How can we avoid generating mul-
tiple copies of the EQU statements, with their accompanying diagnostics for multiply-defined
symbols?

110 A+ + : Using HLASM's Macro Facility

100Define General Register Equates (Simply)

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Define “symbol equates” for GPRs with this macro (see slide 67)

MACRO
GREGS

GR0 Equ 0
GR1 Equ 1
.* ─ ─ ─ etc.
GR15 Equ 15

MEND

• Problem: what if two code segments using the GREGS macro are
combined?

− If each calls GREGS, could have duplicate definitions
− How can we preserve modularity, and define symbols only once?

• Answer: use a global variable symbol &GRegs

− Value is available across all macro calls

101Define General Register Equates (Safely)

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Initialize &GRegs to “false”; set to “true” when EQUs are generated

MACRO
GREGS
GBLB &GRegs &GRegs initially 0 (false)

┌──────── AIF (&GRegs).Done Check if &GRegs already true
│ LCLA &N &N initially 0
│ .X ANOP , �────────┐
│ GR&N Equ &N │
│ &N SETA &N+1 │ Increment &N by 1
│ AIF (&N LE 15).X Test for completion
│ &GRegs SetB (1) &GRegs true (definitions have been done)
│ MEXIT
└� .Done MNOTE 0,'GREGS previously called, this call ignored.'

MEND

• If &GRegs is true, no statements are generated

GREGS
GREGS , This,Call,Is,Ignored

The solution is simple: use a global variable symbol whose value will indicate that the GREGS
macro has been called already, as illustrated in Figure 32 on page 112.

Part 3: Macro Techniques 111

MACRO
GREGS
GBLB &GRegs &GRegs initially 0 (false)
AIF (&GRegs).Done Check if &GRegs already true
LCLA &N &N initially 0

.X ANOP ,
GR&N Equ &N
&N SETA &N+1 Increment &N by 1

AIF (&N LE 15).X Test for completion
&GRegs SetB (1) Indicate definitions have been done

MEXIT
.Done MNOTE 0,'GREGS previously called, this call ignored.'

MEND

AAA GREGS
GREGS What?,Again,Eh?

Figure 32. Macro to define general purpose registers once only

102Defining Register Equates Safely: Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Allow declaration of multiple register types on one call:
Example: REGS type1[,type2]... as in REGS G,F

• Pseudo-code:

IF (number of arguments is zero) EXIT
FOR each argument:

Verify valid register type &T (values A, C, F, or G):
IF invalid, ERROR EXIT with message

IF (that type already done) Give message and ITERATE
Generate equates
Set appropriate 'Type_Done' flag and ITERATE

• 'Type_Done' flags are global Boolean variable symbols

− Use created variable symbols &(&T.Regs_Done)

• If &(&T.Regs_Done) is true, no statements are generated

REGS G,F,A,G G registers will not be defined twice!

Now we define a macro which will create equates for all register types we might use in our
program: General Purpose, Floating Point, Control, and Access. Rather than write separate
macros (one for each type of register), we can write a single REGS macro whose operands specify
the types of register desired: “G” for GPRs, “F” for FPRs, “C” for CRs, and “A” for ARs. Its
syntax is:

REGS type1[,type2]... One or more register types

as in

REGS G,F

A pseudo-code sketch of the techniques used is the following:

112 A+ + : Using HLASM's Macro Facility

IF (number of arguments is zero) EXIT
FOR each argument:

Verify valid register type &T (values A, C, F, or G):
IF invalid, ERROR EXIT with message

IF (that type already done) Give message and ITERATE
Generate equates
Set appropriate 'Type_Done' flag and ITERATE

103Define All Register Equates Safely

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Improved REGS macro, to generate EQUates for four register types

− Basic form; error checking not shown in this slide

MACRO
REGS

&J SetA 1 Initialize argument counter
 ┌─� .GetArg ANOP
 │ &T SetC (Upper '&SysList(&J)') Pick up an argument
 │ GBLB &(&T.Regs_Done) Declare global variable symbol
 │┌── AIF (&(&T.Regs_Done)).NewArg Test if true already
 ││ &N SetA 0 Initialize register number
││┌�.Gen ANop , Generate Equ statements

 │││ &T.R&N Equ &N
 │││ &N SetA &N+1
 ││└─ AIf (&N le 15).Gen
 ││ &(&T.Regs_Done) SetB (1) Indicate definitions have been done
 │└� .NewArg ANop , Check next argument
 │ &J SetA &J+1 Count to next argument
 └�─ AIF (&J le N'&SysList).GetArg Get next argument

.Exit MEND

The following example uses the technique illustrated in Figure 32 on page 112 above, and gener-
alizes it by using a “created variable symbol” to select the name of the proper global variable
symbol. It also uses two “built-in” internal functions: UPPER and INDEX.

Part 3: Macro Techniques 113

MACRO
REGS
AIF (N'&SysList eq 0).Exit Quit if no arguments

&J SetA 1 Initialize argument counter
.GetArg ANOP
&T SetC (Upper '&SysList(&J)') Pick up an argument
&N SetA Index('&T','ACFG') Check type

AIF (&N eq 0).Bad Error if not a supported type
GBLB &(&T.Regs_Done) Declare global variable symbol
AIF (&(&T.Regs_Done)).Done Test if true already

&N SetA 0 Initialize register number
.Gen ANop , Generate Equ statements
&T.R&N Equ &N
&N SetA &N+1

AIf (&N le 15).Gen
&(&T.Regs_Done) SetB (1) Indicate definitions have been done
.Next ANOP
&J SetA &J+1 Count to next argument

AIF (&J le N'&SysList).GetArg Get next argument
MEXIT

.Bad MNOTE 8,'&SysMac.: Unknown type ''&T.''.'
MEXIT

.Done MNOTE 0,'&SysMac.: Previously called for type &T..'
AGO .Next

.Exit MEND

Figure 33. Macro to define any sets of registers once only

This REGS macro may be safely used any number of times, so long as no other definitions of the
global variable symbols &ARegs_Done, &FRegs_Done, &CRegs_Done, or &GRegs_Done appear elsewhere
in the program.

You may be interested in modifying the REGS macro to use the Defined Attribute described on
page 82 to determine whether a given type of symbol has been generated.

104Case Study 2: Generate Sequence of Byte Values

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Generate a sequence of bytes containing values 1,2,...,N

− An alternative to l iterals

• Basic form: simple loop generating one byte at a time (as on slide 73)

• Variation: check input, generate a single DC with all values

114 A+ + : Using HLASM's Macro Facility

Case Study 2: Generating a Sequence of Byte Values

105Generating a Byte Sequence: BYTESEQ1 Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• BYTESEQ1 generates a separate DC statement for each value
(compare slides 46 and 73)

MACRO
&L BYTESEQ1 &N

 .* BYTESEQ1 ── generate a sequence of byte values, one per statement.
 .* No checking or validation is done.

LclA &K
AIF ('&L' EQ '').Loop Don't define the label if absent

 &L DS 0AL1 Define the label
 .Loop ANOP
 &K SetA &K+1 Increment &K

AIF (&K GT &N).Done Check for termination condition
DC AL1(&K)
AGO .Loop Continue

 .Done MEND

BSeq1a BYTESEQ1 3
+BSeq1a DC AL1(1)
+ DC AL1(2)
+ DC AL1(3)

The sample BYTESEQ2 macro illustrated in Figure 34 on page 117 uses the same techniques as
the conditional-assembly examples given in Figure 9 on page 49 and Figure 10 on page 50. and
the corresponding BYTESEQ1 macro illustrated in Figure 25 on page 78.

106Generating a Byte Sequence: BYTESEQ2 Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Generate a single DC statement, creating a string of bytes with binary
values from 1 to N

− N has been previously defined as an absolute symbol

IF (N not self─defining) ERROR EXIT with message

IF (N > 255) ERROR EXIT with too─big message

IF (N ≤ 0) EXIT with notification

Set local string variable S = '1'
DO for K = 2 to N

S = S ││ ',K' (append comma and next value)
GEN (label DC AL1(S))

• Compare to slide 47

A pseudo-code sketch of the macro implementation is:

Part 3: Macro Techniques 115

IF (N not self-defining) ERROR EXIT with message

IF (N > 255) ERROR EXIT with too-big message

IF (N ≤ 0) EXIT with notification

Set local string variable S = '1'
DO for K = 2 to N

S = S || ','K (append comma and next value)
GEN (label DC AL1(S))

107Generating a Byte Sequence (BYTESEQ2)

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

MACRO
&L BYTESEQ2 &N Generates a single DC statement
&K SetA 1 Initialize generated value counter
&S SetC '1' Initialize output string

AIF (T'&N EQ 'N').Num Validate type of argument
MNOTE 8,'BYTESEQ2 ── &&N=&N not self─defining.'
MEXIT

.Num AIF (&N LE 255).NotBig Check size of argument
MNOTE 8,'BYTESEQ2 ── &&N=&N is too large.'
MEXIT

.NotBig AIF (&N GT 0).OK Check for small argument
MNOTE *,'BYTESEQ2 ── &&N=&N too small, no data generated.'
MEXIT

.OK AIF (&K GE &N).DoDC If done, generate DC statement
&K SetA &K+1 Increment &K
&S SetC '&S.'.',&K' Add comma and new value of &K to &S

AGO .OK Continue
.DoDC ANOP
&L DC AL1(&S)

MEND

BSeq2b BYTESEQ2 1
BSeq2c BYTESEQ2 5

The BYTESEQ2 macro shown in Figure 34 on page 117 performs several validations of its argu-
ment, including a type attribute reference to verify that the argument is a self-defining term. As
its output, the macro generates a single DC statement for the byte values, but it has a limitation:
can you tell what it is?

116 A+ + : Using HLASM's Macro Facility

MACRO
&L BYTESEQ2 &N
.* BYTESEQ2 -- generate a sequence of byte values, one per statement.
.* The argument is checked and validated, and the entire constant is
.* generated in a single DC statement.

LclA &K
LclC &S

&K SetA 1 Initialize generated value counter
&S SetC '1' Initialize output string

AIF (T'&N EQ 'N').Num Validate type of argument
MNOTE 8,'BYTESEQ2 -- &&N=&N not self-defining.'
MEXIT

.Num AIF (&N LE 255).NotBig Check size of argument
MNOTE 8,'BYTESEQ2 -- &&N=&N is too large.'
MEXIT

.NotBig AIF (&N GT 0).OK Check for small argument
MNOTE *,'BYTESEQ2 -- &&N=&N too small, no data generated.'
MEXIT

.OK AIF (&K GE &N).DoDC If done, generate DC statement
&K SetA &K+1 Increment &K
&S SetC '&S.'.',&K' Add comma and new value of &K to &S

AGO .OK Continue
.DoDC ANOP
&L DC AL1(&S)

MEND
* Test cases
BSeq2a BYTESEQ2 0
BSeq2b BYTESEQ2 1
BSeq2c BYTESEQ2 5
BSeq2d BYTESEQ2 X'58'
BSeq2e BYTESEQ2 256

Figure 34. Macro to define a sequence of byte values as a single string

The argument to BYTESEQ2 may not exceed 255; otherwise the DC values are truncated at 8
bits and start at 0 again! (In earlier assemblers, the macro would fail if &S exceeds 255 characters,
which limited the argument to a maximum value 88.)

Part 3: Macro Techniques 117

108Case Study 3: MVC2 Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Want to do an MVC, but with the source operand's length:
MVC2 Buffer,=C'Message Text' Want to move only 12 characters...
─ ─ ─

 Buffer DS CL133 ...even though buffer is longer
− MVC would move 133 bytes!

• MVC2 macro uses ORG statements, forces literal definitions
Macro

&Lab MVC2 &Target,&Source
AIf (N'&Syslist eq 2).ArgsOK
MNote 8,'MVC2: Wrong number of operands?'
MExit ,

 .ArgsOK Push Print,NoPrint Save current PRINT status
Print Nogen,NoPrint Suppress the expansion

 &Lab MVC &Target.,&Source X'D2nn',S(&Target),S(&Source)
Org *─5 Back up to first byte of instruction
DC AL1(L'&Source─1) Length of second operand, &Source
Org *+4 Move to end of instruction
AIF (L'&Target ge L'&Source).Done
MNote *,'MVC2: Source operand may be longer than Target?'

.Done Pop Print,NoPrint Restore PRINT status
MEnd

• A flaw: explicit disp(,base) &Target fails length check

Case Study 3: ‘MVC2’ Macro Uses Source Operand Length
Sometimes it is useful to determine the length byte of an MVC instruction from the length attri-
bute of the second operand, rather than of the first. That is, rather than write clumsy and error-
prone statements like

MVC Buffer(L'=C'Message Text'),=C'Message Text'

you would rather write something like

MVC2 Buffer,=C'Message Text'

and get the same result. This can be done with an MVC2 macro with prototype

MVC2 &Target,&Source

where the macro effectively generates

MVC &Target(L'&Source),&Source

This might not work as simply as it is written: the most difficult situation (and often the most
useful!) occurs when a literal is used as the source operand.

118 A+ + : Using HLASM's Macro Facility

Macro
&Lab MVC2 &Target,&Source

AIf (N'&Syslist eq 2).ArgsOK
MNote 8,'MVC2: Wrong number of operands?'
MExit ,

 .ArgsOK Push Print,NoPrint Save current PRINT status
Print Nogen,NoPrint Suppress the expansion

 &Lab MVC &Target.,&Source X'D2nn',S(&Target),S(&Source)
Org *-5 Back up to first byte of instruction
DC AL1(L'&Source-1) Length of second operand, &Source
Org *+4 Move to end of instruction
AIF (L'&Target ge L'&Source).Done
MNote *,'MVC2: Source operand may be longer than Target?'

.Done Pop Print,NoPrint Restore PRINT status
MEnd

Figure 35. MVC2 macro definition

This macro is useful in many situations, but it has one flaw: if you write the first (target) operand
as an explicit address, such as displacement(,base) the second AIF test for possibly moving too
much data will cause an error, because the displacement operand is unlikely to provide a usable
length attribute.

An example of the instruction generated by the MVC2 macro is:

0004C8 D278 F031 F0C6 ... MVC2 Buff,=C'Error: '
...

000765 ... Buff DS CL133
...

0008AD 60C5999996997A40 =C'-Error: '

109Case Study 4: Generate Named Integer Constants

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Intent: generate a l ist of “intuitively” named halfword or fullword
integer constants

− An alternative to using literals

• For example:

− Fullword constant “1” is named F1

− Halfword constant “ −1” is named HM1

Part 3: Macro Techniques 119

Case Study 4: Generate a List of Named Integer Constants
To illustrate a typical use of the &SYSLIST system variable symbol, we suppose we wish to write
a macro named INTCONS that will generate named halfword or fullword integer-valued con-
stants that might be preferable to using literals. Their names are formed by prefixing their value to
a letter designating their type: F if the value is nonnegative, or FM if the value is negative. We
also provide a keyword parameter to specify their type, either F or H, with default F. Negative
halfword constants will then start with the letters HM.

110Generate a List of Named Integer Constants

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Syntax: INTCONS n1[,n2]...[,Type=F]

− Default constant type is F

• Examples:

 C1b INTCONS 0,─1 Type F: names F0, FM1
+C1b DC 0F'0' Define the label
+F0 DC F'0'
+FM1 DC F'─1'

 C1c INTCONS 99,─99,Type=H Type H: names H99, HM99
+C1c DC 0H'0' Define the label
+H99 DC H'99'
+HM99 DC H'─99'

The macro syntax might look like this:

INTCONS n1[,n2]...[,Type=F]

If we write

INTCONS 1,-1

the macro generates these statements:

F1 DC F'1'
FM1 DC F'-1'

Similarly, if we write

INTCONS 2,-2,Type=H

then the macro generates

H2 DC H'2'
HM2 DC H'-2'

120 A+ + : Using HLASM's Macro Facility

111Generate a List of Named Integer Constants ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• INTCONS Macro definition (with validity checking omitted)

MACRO
 &Lab INTCONS &Type=F Default type is F
 .* .TypOK AIF ('&Lab' eq '').ArgsOK Skip if no label

AIF ('&Lab' eq '').ArgsOK Skip if no label
 &Lab DC 0&Type.'0' Define the label
 .ArgsOK ANOP Argument─checking loop
 &J SetA &J+1 Increment argument counter

AIF (&J GT N'&SysList).End Exit if all done
&Name SetC '&Type.&SysList(&J)' Assume non─negative arg

AIF ('&SysList(&J)'(1,1) ne '─').NotNeg Check arg sign
&Name SetC '&Type.M'.'&SysList(&J)'(2,*) Negative argument, drop ─

 .NotNeg ANOP
 &Name DC &Type.'&SysList(&J)'

AGO .ArgsOK Repeat for further arguments
 .End MEND

• Exercise: generalize to support + signs on operands

This macro is in two parts: the first part (through the second MEXIT statement, following the MNOTE
statement for null arguments) checks the values and validity of the arguments, issuing messages
for cases that do not satisfy the constraints of the definition.

Then, beginning at sequence symbol .ArgsOK, the &SYSLIST system variable symbol steps
through the positional arguments in turn, using subscript &J to indicate which positional argu-
ment is selected. The argument is checked for being not null, and then to see if its first character
is a minus sign. If the minus sign is present, it is removed for constructing the constant's name;
finally, the constant is generated with the required name.

MACRO
&Lab INTCONS &Type=F Default type is F
.* INTCONS -- assumes a varying number of positional arguments
.* to be generated as integer constants, with created names.
.* Type will be F (default) or H if specified.

LclA &J Count of arguments
LclC &Name Name of the constant

.* Validate the Type argument
AIF ('&Type' eq 'F' OR '&Type' eq 'H').TypOK Check Type
MNOTE 8,'INTCONS -- Invalid Type=''&Type''.'
MEXIT

.* Generate the name-field symbol &Lab if provided

.TypOK AIF ('&Lab' eq '').NoLab Skip if no label
&Lab DC 0&Type.'0' Define the label
.* Verify that arguments are present; no harm if none.
.NoLab AIF (N'&SysList gt 0).ArgsOK Check presence of args

MNOTE *,'INTCONS -- No arguments provided.'
MEXIT

.* end of first part... (continued...)

Figure 36 (Part 1 of 2). Macro parameter-argument association example: create a list of constants

Part 3: Macro Techniques 121

.* Second part: argument-checking loop, code generation

.ArgsOK ANOP
&J SetA &J+1 Increment argument counter

AIF (&J GT N'&SysList).End Exit if all done
AIF (K'&SysList(&J) gt 0).DoArg
MNOTE 4,'INTCONS -- Argument No. &J. is empty.'
AGO .ArgsOK Go for next argument

.DoArg ANOP
&Name SetC '&Type.&SysList(&J)' Assume nonnegative arg

AIF ('&SysList(&J)'(1,1) ne '-').NotNeg Check arg sign
&Name SetC '&Type.M'.'&SysList(&J)'(2,*) Negative argument, drop -
.NotNeg ANOP
&Name DC &Type.'&SysList(&J)'

AGO .ArgsOK Repeat for further arguments
.End MEND

Figure 36 (Part 2 of 2). Macro parameter-argument association example: create a list of constants

Some test cases for the INTCONS macro are shown in the following figure. The last two sets test
unusual conditions, and the others show statements generated by the macro.

 C1b INTCONS 0,-1 Type F: names F0, FM1
+C1b DC 0F'0' Define the label
+F0 DC F'0'
+FM1 DC F'-1'

 C1c INTCONS 99,-99,Type=H Type H: names H99, HM99
+C1c DC 0H'0' Define the label
+H99 DC H'99'
+HM99 DC H'-99'

 * Test cases -- first has no label, no arguments; second has no arguments
INTCONS

 C1a INTCONS

 C1d INTCONS -000000000,2147483647
 C1e INTCONS 1,2,3,4,Type=D Invalid type

INTCONS 1,2,3,4,,5,6,7,8,9,10E7 Null 5th argument

Figure 37. Macro example: List-of-constants test cases

As an exercise: how would you add a test to verify that each argument is a valid self-defining
term? Are negative arguments then valid? Would the argument 10E7 be valid? (It's acceptable as a
nominal value in an F-type constant.) Another exercise is to modify the macro to handle plus
(+) signs on the numeric values.

Note: on modern processors, it's much better to use instructions with immediate operands than to
use constants in storage with the same values.

122 A+ + : Using HLASM's Macro Facility

112Case Study 5: Using the AREAD Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

1. Case Study 5a: Generate strings of message text

• Prefix the string with an “effective length” byte (length-1)

• Basic form: count characters

• Variation 1: create an extra symbol, use its length attribute

• Variation 2: use the AREAD statement and conditional-assembly functions to
support “readable” input

2. Case Study 5b: Block comments

• Write free-form text comments (without * in column 1)

• Lets you include the documentation with the source program, so
you can update both at the same time

Case Study 5: Using the AREAD Statement
This case study illustrates the power of the AREAD statement. The first set of examples shows
how to create strings (such as messages) prefixed by an effective-length field, and the second
example illustrates a technique for entering “block comments” into your source program.

113Case Study 5a: Create Length-Prefixed Message Texts

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Problem: want messages prefixed with “effective length” field

┌─────┬──┐
│ L─1 │�────────────── L Characters ──────────────�│
└─────┴──┘

• Nobody should ever have to count characters!

− Let the assembler do it for you!

• How such prefixed strings might be used:

 HWMsg PFMSG 'Hello World' Define a sample message text
+HWMsg DC AL1(10),C'Hello World' Length─prefixed message text

─ ─ ─
─ ─ ─
LA 2,HWMsg Prepare to move message to buffer
IC 1,0(,2) Effective length of message text
EX 1,MsgMove Move message to output buffer
─ ─ ─

 MsgMove MVC Buffer(*─*),1(2) Executed to move message texts

Part 3: Macro Techniques 123

Case Study 5a: Creating Length-Prefixed Message Texts

A common need in applications is to produce messages. The length of the message must be
reduced by 1 prior to executing a move instruction, so it is helpful to store the message text and
its “effective length” (its true length minus one), as shown:

┌─────┬──┐
│ L─1 │�────────────── L Characters ──────────────�│
└─────┴──┘

Such a length-prefixed message text could be used in code sequences like the following. The
message is declared using a PFMSG macro, which generates a length byte followed by the
message text:

 HWMsg PFMSG 'Hello World' Define a sample message text
+HWMsg DC AL1(10),C'Hello World' Length-prefixed message text

Then, this small “data structure” could be used by instructions like these to move the message
text to a buffer:

LA 2,HWMsg Prepare to move message to buffer
- - -
IC 1,0(,2) Effective length of message text
EX 1,MsgMove Move message to output buffer
- - -

 MsgMove MVC Buffer(*-*),1(2) Executed to move message texts

We will illustrate three macros to create message texts with an effective-length prefix, each using
progressively more powerful techniques.

114Create Length-Prefixed Messages (1)

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• PFMSG1: length-prefixed message texts

MACRO
&Lab PFMSG1 &Txt

 .* PFMSG1 ── requires that the quoted text of the message, &Txt,
 .* contain no embedded apostrophes (quotes) or ampersands.

LclA &Len Effective Length
 &Len SetA K'&Txt─3 (# text chars)─3 (2 quotes, eff. length)
 &Lab DC AL1(&Len),C&Txt

MEND

• Limited to messages with no quotes or ampersands

 M1a PFMSG1 'This is a test of message text 1.'
+M1a DC AL1(32),C'This is a test of message text 1.'

 M1b PFMSG1 'Hello'
+M1b DC AL1(4),C'Hello'

124 A+ + : Using HLASM's Macro Facility

Simplest Prefixed Message Text

In this first example, the text of the message may not contain any apostrophes (quotes) or amper-
sands. A Count attribute reference is used to determine the number of characters in the message
argument.

MACRO
&Lab PFMSG1 &Txt
 .* PFMSG1 -- requires that the quoted text of the message, &Txt,
 .* contain no embedded apostrophes (quotes) or ampersands.

LclA &Len Effective Length
 &Len SetA K'&Txt-3 (# text chars)-3 (2 quotes, eff. length)
 &Lab DC AL1(&Len),C&Txt

MEND

 M1a PFMSG1 'This is a test of message text 1.'
+M1a DC AL1(32),C'This is a test of message text 1.'

 M1b PFMSG1 'Hello'
+M1b DC AL1(4),C'Hello'

Figure 38. Macro to define a length-prefixed message

115Create General Length-Prefixed Messages (2)

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• PFMSG2: Allow all characters in text (but: may require pairing)

MACRO
&Lab PFMSG2 &Txt

 .* PFMSG2 ── the text of the message, &Txt, may contain embedded
 .* apostrophes (quotes) or ampersands, if they are properly paired.
&T SetC 'TXT&SYSNDX.M' Create TXTnnnM symbol to name the text
&Lab DC AL1(L'&T.─1) Effective length
&T DC C&Txt

MEND

 M2a PFMSG2 'Test of ''This'' && ''That''.'
+M2a DC AL1(L'TXT0001M─1) Effective length
+TXT0001M DC C'Test of ''This'' && ''That''.'

 M2b PFMSG2 'Hello, World'
+M2b DC AL1(L'TXT0002M─1) Effective length
+TXT0002M DC C'Hello, World'

• Quotes/ampersands in message are harder to write, read, translate
• Extra (uninteresting) labels are generated

More General Prefixed Message Text

Requiring no ampersands or quotes in the message text defined by PFMSG1 may not be acceptable
in some situations. Thus, in Figure 39 on page 126 we define a second macro PFMSG2 that allows
such characters in the message, but requires that they be properly paired in the argument string.
By generating an ordinary symbol, a length attribute reference can be used.

Part 3: Macro Techniques 125

MACRO
&Lab PFMSG2 &Txt
 .* PFMSG2 -- the text of the message, &Txt, may contain embedded
 .* apostrophes (quotes) or ampersands, if they are
 .* properly paired. The macro expansion generates a symbol
 .* using the &SYSNDX system variable symbol, and uses a Length
 .* attribute reference for the effective length.
&T SetC 'TXT&SYSNDX.M' Create symbol to name the text string
&Lab DC AL1(L'&T.-1) Effective length
&T DC C&Txt

MEND

Figure 39. Macro to define a length-prefixed message with paired characters

Some sample calls to the PFMSG2 macro are shown in the following figure:

 M2a PFMSG2 'Test of ''This'' && ''That''.'
+M2a DC AL1(L'TXT0001M-1)
+TXT0001M DC C'Test of ''This'' && ''That''.'

 M2b PFMSG2 'Hello, World'
+M2b DC AL1(L'TXT0002M-1)
+TXT0002M DC C'Hello, World'

The generated symbol is of the form TXTnnnnM, where the characters nnnn are the value of the
system variable symbol &SYSNDX. The assembler increments &SYSNDX by one each time a
macro expansion begins, and its value is constant within that macro. (Inner macro calls have
their own, different value of &SYSNDX.) Thus, &SYSNDX can be used to generate unique
symbols or other values for every macro expansion. (See the description of &SYSNDX on page
259 in System (&SYS) Variable Symbols.)

While the PFMSG2 macro defined in this example allows any characters in the message text, it is
much more difficult to read and understand the macro argument. (Consider, for example, how to
explain the odd rules about pairing quotes and ampersands to someone who wants to translate
the message text into a different language!) Also, the generated TXTnnnnM symbols are used only
for a length attribute reference, and are otherwise uninteresting.

This limitation can be removed by using the powerful AREAD statement.

126 A+ + : Using HLASM's Macro Facility

116Readable Length-Prefixed Messages (3): Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• User writes “plain text” messages (single line, ≤ 72 characters)

• PFMSG3: AREAD statement within the macro “reads” the next source
record in the input stream (following the macro call, usually) into a
character variable symbol

• Allow all characters in message text without pairing

• Pseudo-code:

IF (any positional arguments) ERROR EXIT with message

[1] AREAD a message from the following source record

[2] Trim off sequence field (73─80) and trailing blanks, note length

[3] Create paired quotes and ampersands (for nominal value in DC)

[4] GEN (label DC AL1(Text_Length─1),C'MessageText')

117Create Readable Length-Prefixed Messages

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

MACRO
 &Lab PFMSG3 &Null Comments OK after comma
 .* PFMSG3 ── the text of the message may contain any characters.
 .* The message is on a single record following the call to PFMSG3.

LclA &L Local arithmetic variables
LclC &T,&C,&M Local character variables
AIF ('&Null' eq '').OK Null argument OK
AIF (N'&SYSLIST EQ 0).OK No arguments allowed
MNote 4,'PFMSG3 ── no operands should be provided.'
MEXIT Terminate macro processing

 .OK ANOP
 .* Read the record following the PFMSG3 call into &M
 &M ARead , Read the message text [1]
 &M SetC '&M'(1,72) Trim off sequence field [2...]
 &L SetA 72 Point to end of initial text string
 .* Trim off trailing blanks from message text
 .Trim AIF ('&M'(&L,1) NE ' ').C Check last character
 &L SetA &L─1 Deduct blanks from length

AGO .Trim Repeat trimming loop
 .* ─ ─ ─ (continued)

Part 3: Macro Techniques 127

118Create Readable Length-Prefixed Messages ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

.* ─ ─ ─ (continuation)

.C ANOP
&T SetC DOUBLE('&M'(1,&L)) Pair─up quotes, ampersands [3]
&L SetA &L─1 Set to effective length
&Lab DC AL1(&L),C'&T' [4]

MEnd

• Messages are written as they are expected to appear!
• Easier to read and translate to other national languages

 M4a PFMSG3 , Test with mixed apostrophes/ampersands
─Test of 'This' & 'That'.
+M4a DC AL1(27),C'Test of ''This'' && ''That''.'

M4c PFMSG3
─This is the text of a long message & says nothin' very much.
+M4c DC AL1(63),C'This is the text of a long message && saysX
+ nothin'' very much.'

• '+' prefix in listing for generated statements, '-' for records digested
by AREAD

Prefixed Message Text with the AREAD Statement

The AREAD statement can be used in a macro to read lines from the source program into a
character variable symbol. If we write

&CVar AREAD ,

then the first statement in the main program following the macro containing the AREAD state-
ment (or the outermost macro call that eventually resulted in interpreting the AREAD statement)
will be “read” by the assembler, and the contents of that record will be assigned to the variable
symbol &CVar.

We use AREAD in the PFMSG3 macro to read the text of a message written in its natural final
form from the line following the macro call. The operation of the PFMSG3 macro is summarized in
this pseudo-code:

IF (any positional arguments) ERROR EXIT with message
AREAD a message from following record
Trim off sequence field (73-80) and trailing blanks
Create paired quoted and ampersands (for nominal value in DC)
GEN (label DC AL1(Text_Length-1),C'MessageText')

The macro illustrated in Figure 40 on page 129 uses the DOUBLE internal function to create
pairs of quotes and ampersands wherever needed; thus, the of the message writer need not be
aware of the peculiar rules of the Assembler Language.

To allow users of the PFMSG3 macro to add comments on the macro-call line, the &Null parameter
is provided on the prototype statement. If the corresponding argument is null (that is, any com-
ments are preceded by a stand-alone comma), the rest of the statement — the comments — are
ignored.

128 A+ + : Using HLASM's Macro Facility

MACRO
&Lab PFMSG3 &Null Comments OK after comma
.* PFMSG3 -- the text of the message may contain any characters.
.* The message is on a single line following the call to PFMSG3.

LclA &L Local arithmetic variables
LclC &T,&C,&M Local character variables
AIF ('&Null' eq '').OK Null argument OK
AIF (N'&SYSLIST EQ 0).OK No arguments allowed
MNote 4,'PFMSG3 -- no operands should be provided.'
MEXIT Terminate macro processing

.OK ANOP

.* Read the record following the PFMSG3 call into &M
&M ARead , Read the message text
&M SetC '&M'(1,72) Trim off sequence field
&L SetA 72 Point to end of initial text string
.* Trim off trailing blanks from message text
.Trim AIF ('&M'(&L,1) NE ' ').C Check last character
&L SetA &L-1 Deduct blanks from length

AGO .Trim Repeat trimming loop
.C ANOP
&T SetC DOUBLE('&M'(1,&L)) Pair-up quotes, ampersands
&L SetA &L-1 Set to effective length
&Lab DC AL1(&L),C'&T'

MEnd

Figure 40. Macro to define a length-prefixed message with “true text”

Some tests of the PFMSG3 macro are shown in the following figure.

 M4a PFMSG3 , Test with mixed apostrophes/ampersands
-Test of 'This' & 'That'.
+M4a DC AL1(27),C'Test of ''This'' && ''That''.'

M4c PFMSG3
-This is the text of a long message & says nothin' very much.
+M4c DC AL1(63),C'This is the text of a long message && saysX
+ nothin'' very much.'

Figure 41. Test cases for macro with “true text” messages

The '+' characters in the left margin denote statements generated by the assembler; the '-' char-
acters denote records read from the source stream by AREAD instructions.

Note also that the loop that removes trailing blanks from the string accepted by the AREAD
statement could be replaced by a call to an external conditional-assembly function TRIM; again,
writing such a character-valued function is a useful exercise. Another exercise: generalize the
above macro to accept multi-line messages, with no limitations on total length.

Part 3: Macro Techniques 129

119Case Study 5b: Block Comments

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Sometimes want to write “free-form” comments in a program:

This is some text
for a block of

free─form comments.

• We must tell HLASM where the block of comments begins and ends:

COMMENT
This is some text

for a block of
free─form comments.

 TNEMMOC (or 'ENDCOMMENT' or whatever you prefer...)

• Restriction: block-end statement (TNEMMOC) can't appear in the text

Case Study 5b: Block Comments

Occasionally it is helpful to be able to insert “blocks” of comments into a program, but without
having to put an asterisk in the first position of each line. For example, you might want to write
something like

This is some text
 for a block of
comments.

Naturally, we will need some way to tell the assembler that the comment “lines” should not be
scanned as normal input statements. Thus, we need something that indicates the start (and end)
of a “block comment”.

Suppose we create a macro named COMMENT that indicates the start of a block comment, and that
the end of the block is indicated by a TNEMMOC (“COMMENT” spelled backward) statement. You could
of course choose any terminator you like, such as ENDCOMMENT.

In the above example, the lines would be entered as follows:

Comment
This is some text
 for a block of
comments.

Tnemmoc

You can include program documentation with your source code, and keep them “in sync”.

130 A+ + : Using HLASM's Macro Facility

120Block Comments Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• The COMMENT macro initiates block comments:

Macro
&L Comment &Arg

LclC &C
AIf ('&L' eq '' and '&Arg' eq '').Read
MNote *,'Comment macro: Label and/or argument ignored.'

.Read ANop
&C ARead ,
&C SetC Upper('&C') Force upper case
&A SetA Index('&C'(1,72),' TNEMMOC ') Note blanks!

AIf (&A eq 0).Read
MEnd

• Lets you include your documentation with the source code!

A simple macro using the AREAD statement can do the job:

Macro
&L Comment &Arg

LclC &C
AIf ('&L' eq '' and '&Arg' eq '').Read
MNote *,'Comment macro: Label and/or argument ignored.'

.Read ANop
&C ARead ,
&C SetC Upper('&C') Force upper case
&A SetA Index('&C'(1,72),' TNEMMOC ') Note blanks!

AIf (&A eq 0).Read
MEnd

Figure 42. Macro for block comments

The macro first checks for the presence of a label or operand on the COMMENT statement, and if
either is present, it emits an MNOTE comment saying they were ignored. The macro then reads
each line of the comment block (using the AREAD statement) until a line containing the end-of-
comment marker (in any mixture of upper and lower case, with preceding and following blanks
and without quotes) is encountered. The UPPER function internally converts each line of the block
comment text to upper case to simplify the INDEX function's checking for the presence of the
TNEMMOC terminator.

The only restriction on this technique is that the end-of-block terminator cannot appear in the
text of the comments with blanks on either side. A test case with the comment terminator
embedded in the text is:

Comment
Note that the block-comment terminator can't appear in the
comments! That's because the embedded terminator string on
this line causes an error when this TNEMMOC is found:

Tnemmoc

The presence of the string ' TNEMMOC ' in an input line (in any mix of upper and lower case)
causes the macro to terminate its AREAD loop too early, leaving one or more statements to be
scanned by the assembler as normal input:

Part 3: Macro Techniques 131

27 Comment
28-Note that the block-comment terminator can't appear in the
29-comments! That's because the embedded terminator string on
30-this line causes an error when this TNEMMOC is encountered:
31 Tnemmoc

 ** ASMA057E Undefined operation code - TNEMMOC

Suppose you want to use the terminating string TNEMMOC in a record, as in this example. As an
exercise, you can modify the COMMENT macro to remove leading and trailing blanks before checking
that the terminator record contains only the string 'TNEMMOC'.

121Case Study 6: Macro Recursion

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macro recursion il lustrated with:

1. Integer factorial values: Fac(N) = N × Fac(N−1)

2. Integer Fibonacci numbers: Fib(N) = Fib(N−1) + Fib(N−2)

3. “Indirect addressing” via “Load Indirect”

Case Study 6: Macro Recursion
Macros that call themselves either directly or indirectly are recursive. Here are three examples:

• a “Factorial” macro FACTORAL (see “Recursion Example 1: Binary Factorial-Function Values”
on page 133)

• a FIBONACI macro to calculate Fibonacci numbers (see “Recursion Example 2: Fibonacci
Numbers” on page 135)

• a “Load Indirect” macro LI (see “Recursion Example 3: Indirect Addressing” on page 137)

132 A+ + : Using HLASM's Macro Facility

122Generate Binary Factorial Values Recursively

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Factorial: defined by Fac(N) = N × Fac(N − 1), Fac(0) = Fac(1) = 1

Macro
&Lab FACTORAL &N

GBLA &Ret For returning values of inner calls
&L SetA &N Convert from external form
 AIF (&L GE 2).Calc Calculate via recursion if N > 1
&Ret SetA 1 Fac(0) = Fac(1) = 1
 AGO .Test Return to caller
.Calc ANOP
&K SetA &L─1
 FACTORAL &K Recursive call!
&Ret SetA &Ret*&L
.Test AIF (&SysNest GT 1).Exit Check nesting level
.* MNote 0,'Factorial(&L.) = &Ret.' Intermediate result
&Lab DC F'&Ret'
.Exit MEnd

• Error checking omitted...

Recursion Example 1: Binary Factorial-Function Values

Probably the best-known recursive function is the Factorial function, defined by the relations

Factorial(0) = Factorial(1) = 1
Factorial(N) = N × Factorial(N-1)

In a macro, it can be defined and implemented iteratively (and more simply), but its familiarity
makes it useful as a recursion example.

In the macro in Figure 43 on page 134, the macro FACTORAL uses the global arithmetic variable
symbol &Ret to return calculated values.

There are many ways to test for the end of a recursive calculation. In this example, the
&SYSNEST variable symbol is used to check the nesting level at which the macro was called.
The assembler increments &SYSNEST by one each time a macro expansion begins, and decreases
it by one each time a macro expansion terminates. Thus, for nested macro calls, &SYSNEST
indicates the current nesting level or “depth” of the call. A macro called from open code is at
level 1.

Part 3: Macro Techniques 133

Macro
&Lab FACTORAL &N
.* Factorials defined by Fac(N) = N * Fac(N-1), Fac(0) = Fac(1) = 1

GBLA &Ret For returning values of inner calls
LCLA &Temp,&K,&L Local variables

 AIF (T'&N NE 'N').Error N must be numeric
&L SetA &N Convert from external form
.* MNote 0,'Evaluating FACTORAL(&L.)' For debugging
 AIF (&L LT 0).Error Can't handle N < 0
 AIF (&L GE 2).Calc Calculate via recursion if N > 1
&Ret SetA 1 Fac(0) = Fac(1) = 1
 AGO .Test Return to caller
.Calc ANOP
&K SetA &L-1
 FACTORAL &K Recursive call!
&Ret SetA &Ret*&L
.Test AIF (&SysNest GT 1).Exit Check nesting level
.* MNote 0,'Factorial(&L.) = &Ret.' Intermediate result
&Lab DC F'&Ret'
.Cont MExit Return to caller
.Error MNote 11,'Invalid Factorial argument &N..'

MEnd

Figure 43. Macro to calculate factorials recursively

Some test cases for the FACTORAL macro are shown in the following figure:

FACTORAL 0
+ DC F'1'

FACTORAL 1
+ DC F'1'

FACTORAL B'11' Valid self-defining term
+ DC F'6'

FACTORAL X'4' Also valid
+ DC F'24'

FACTORAL 10
+ DC F'3628800'

Figure 44. Macro to calculate factorials recursively: examples

As an exercise, make modifications to allow FACTORAL to be called from other macros. A more
challenging exercise is a macro to generate 64-bit integer factorial values. Also, you could revise
the macro to generate a table of factorials from 0 to &N.

134 A+ + : Using HLASM's Macro Facility

123Generate Fibonacci Numbers: Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Defined by Fib(0) = Fib(1) = 1, Fib(n) = Fib(n − 1) + Fib(n − 2)

− Sequence is 1, 1, 2, 3, 5, 8, 13, 21, ...

• Use a global arithmetic variable &Ret for returned values

• Pseudo-code:

IF (argument N < 0) ERROR EXIT with message

IF (N < 2) Set &Ret = 1 and EXIT

CALL myself recursively with argument N─1
Save evaluation in local temporary &Temp

CALL myself recursively with argument N─2
Set &Ret = &Ret + &Temp, and EXIT

Recursion Example 2: Fibonacci Numbers

The Fibonacci numbers are generated by starting with 1 and 1, and generating the next number in
the sequence by adding the previous two. The recursion relations are

Fib(N) = Fib(N-1) + Fib(N-2)
with Fib(0) = 1 and Fib(1) = 1

Calculating them recursively is quite inefficient (but educational!) because many values are calcu-
lated more than once. The global arithmetic variable symbol &Ret is used to return values calcu-
lated at deeper levels of the recursion.

A pseudo-code description follows:

IF (argument N < 0) ERROR EXIT with message
IF (N < 2) Set &Ret = 1 and EXIT
CALL myself recursively with argument N-1
Save evaluation in local temporary &Temp
CALL myself recursively with argument N-2
Set &Ret = &Ret + &Temp, and EXIT

Part 3: Macro Techniques 135

124Generate Fibonacci Numbers Recursively

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Macro
&Lab FIBONACI &N

GBLA &Ret For returning values of inner calls
MNote 0,'Evaluating FIBONACI(&N.), Level &SysNest.' for testing

 AIF (&N LT 0).Error Negative values not allowed
 AIF (&N GE 2).Calc If &N > 1, use recursion
&Ret SETA 1 Return Fib(0) or Fib(1)
 AGO .Test Return to caller
.Calc ANOP Do computation
&K SetA &N─1 First value 'K' = N─1
&L SetA &N─2 Second value 'L' = N─2

FIBONACI &K Evaluate Fib(K) = Fib(N─1) (Recursive call)
&Temp SetA &Ret Hold computed value

FIBONACI &L Evaluate Fib(L) = Fib(N─2) (Recursive call)
&Ret SetA &Ret+&Temp Evaluate Fib(N) = Fib(K) + Fib(L)
.Test AIF (&SysNest GT 1).Cont Check nesting level

MNote 0,'Fibonacci(&N.) = &Ret..' Display result
&Lab DC F'&Ret'
.Cont MExit Return to caller
.Error MNote 11,'Invalid FIBONACI argument &N..'

MEnd

The FIBONACI macro is illustrated in Figure 45. The global variable &Ret is used to return the
value of a call to FIBONACI, because macros do not have any other method to return function
values. The local variable &Temp holds the value returned by the first recursive call, so that the
second can be made without destroying the value returned by the first.

Macro
&Lab FIBONACI &N

GBLA &Ret For returning values of inner calls
LCLA &Temp,&K,&L Local variables
MNote 0,'Evaluating FIBONACI(&N.), Level &SysNest.' for testing

 AIF (&N LT 0).Error Negative values not allowed
 AIF (&N GE 2).Calc If &N > 1, use recursion
&Ret SETA 1 Return Fib(0) or Fib(1)
 AGO .Test Return to caller
.Calc ANOP Do computation
&K SetA &N-1 First value 'K' = N-1
&L SetA &N-2 Second value 'L' = N-2

FIBONACI &K Evaluate Fib(K) = Fib(N-1) (Recursive call)
&Temp SetA &Ret Hold computed value

FIBONACI &L Evaluate Fib(L) = Fib(N-2) (Recursive call)
&Ret SetA &Ret+&Temp Evaluate Fib(N) = Fib(K) + Fib(L)
.Test AIF (&SysNest GT 1).Cont Check nesting level

MNote 0,'Fibonacci(&N.) = &Ret..' Display result
&Lab DC F'&Ret'
.Cont MExit Return to caller
.Error MNote 11,'Invalid FIBONACI argument &N..'

MEnd

Figure 45. Macro to calculate Fibonacci numbers recursively

An example of executing this macro is:

136 A+ + : Using HLASM's Macro Facility

24 FIBONACI 4
 ** ASMA254I *** MNOTE *** 25+ 0,Evaluating FIBONACI(4), Level 1
 ** ASMA254I *** MNOTE *** 27+ 0,Evaluating FIBONACI(3), Level 2
 ** ASMA254I *** MNOTE *** 29+ 0,Evaluating FIBONACI(2), Level 3
 ** ASMA254I *** MNOTE *** 31+ 0,Evaluating FIBONACI(1), Level 4
 ** ASMA254I *** MNOTE *** 33+ 0,Evaluating FIBONACI(0), Level 4
 ** ASMA254I *** MNOTE *** 35+ 0,Evaluating FIBONACI(1), Level 3
 ** ASMA254I *** MNOTE *** 37+ 0,Evaluating FIBONACI(2), Level 2
 ** ASMA254I *** MNOTE *** 39+ 0,Evaluating FIBONACI(1), Level 3
 ** ASMA254I *** MNOTE *** 41+ 0,Evaluating FIBONACI(0), Level 3
 ** ASMA254I *** MNOTE *** 42+ 0,Fibonacci(4) = 5.

Figure 46. Example showing evaluation of Fibonacci numbers

If you want to have some fun, write a macro to calculate the Ackermann function, defined by

Ack(0,y) = y + 1
Ack(x,0) = Ack(x-1,1)
Ack(x,y) = Ack(x-1,Ack(x,y-1))

But be careful: going beyond Ack(3,3) can consume very large amounts of time and storage! (As
a check: Ack(1,1)=3 and Ack(2,2)=7.)

125Indirect Addressing via Recursion

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• “Load Indirect” macro for mult i- level “pointer fol lowing”

• Syntax: each prefixed asterisk adds one level of indirection

LI 3,0(4) Load from 0(4)
LI 3,*0(,4) Load from what 0(,4) points to
LI 3,**0(,7) Two levels of indirection
LI 3,***X Three levels of indirection

• LI macro calls itself for each level of indirection

Macro
&Lab LI &Reg,&X Load &Reg with indirection

Aif ('&X'(1,1) eq '*').Ind Branch if indirect
.* Generate top─level (direct) reference
&Lab L &Reg,&X

MExit Exit from bottom level of recursion
.Ind ANop
&XI SetC '&X'(2,*) Remove leading asterisk
.* Generate indirect reference

LI &Reg,&XI Call myself recursively
L &Reg,0(,&Reg)
MEnd

Recursion Example 3: Indirect Addressing

In Figure 47 on page 138, the LI macro implements a form of indirect addressing: if the storage
operand is preceded by an asterisk, the assembler interprets this as meaning that the operand to be
loaded into the register is not at the operand, but is at the address specified by the operand
without the asterisk.12 Thus, if an instruction was written as

12 Indirect addressing was a popular hardware feature in many second-generation computers, such as the IBM
709-7090-7094 series. The hardware supported only a single level of indirect addressing, and the instruction syntax
was slightly different on those machines: a single asterisk could be appended to the mnemonic (as in TRA*), and the
statement's operand field was not modified.

Part 3: Macro Techniques 137

LI 8,*XXX Indirect reference via XXX

then the item to be loaded into R8 is not at XXX, but at the location whose address is found at
XXX. Thus, the asterisk can be thought of as a “de-referencing” operator.

A macro to implement this form of indirect addressing is shown in Figure 47.

Macro
&Lab LI &Reg,&X Load &Reg with indirection

Aif ('&X'(1,1) eq '*').Ind Branch if indirect
.* Generate top-level (direct) reference
&Lab L &Reg,&X

MExit Exit from bottom level of recursion
.Ind ANop
&XI SetC '&X'(2,K'&X-1) Remove leading asterisk
.* Generate indirect reference

LI &Reg,&XI Call myself recursively
L &Reg,0(,&Reg)
MEnd

Figure 47. Recursive macro to implement indirect addressing

126Indirect Addressing via Recursion ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Examples of code generated by calls to LI macro:

LI 3,0(4) Load from 0(4)
+ L 3,0(4)

LI 3,*0(,4) Load from what 0(,4) points to
+ L 3,0(,4)
+ L 3,0(,3)

LI 3,**0(,7) Two levels of indirection
+ L 3,0(,7)
+ L 3,0(,3)
+ L 3,0(,3)

LI 3,***X Three levels of indirection
+ L 3,X
+ L 3,0(,3)
+ L 3,0(,3)
+ L 3,0(,3)

Examples of calls to the LI macro are shown in Figure 48 on page 139.

138 A+ + : Using HLASM's Macro Facility

LI 3,0(4) Load from 0(4)
+ L 3,0(4)

LI 3,*0(,4) Load from what 0(,4) points to
+ L 3,0(,4)
+ L 3,0(,3)

LI 3,**0(,7) Two levels of indirection
+ L 3,0(,7)
+ L 3,0(,3)
+ L 3,0(,3)

LI 3,***X Three levels of indirection
+ L 3,X
+ L 3,0(,3)
+ L 3,0(,3)
+ L 3,0(,3)

Figure 48. Recursive macro to implement indirect addressing: examples

This definition is recursive, because an operand preceded by an asterisk may itself be preceded by
an asterisk: this provides multiple levels of indirection.

Note that R0 cannot be used for &Reg if any levels of indirection are indicated. As an exercise,
modify the macro to check for the register operand being 0 if the second operand indicates indi-
rection.

127Case Study 7: Bit-Handling Operations

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• We solve a basic problem: addressing individual bits by name

− Investigate safe bit-manipulation techniques

− Create a “mini-language” for bit-manipulation operations

• Basic forms: macros to

− Allocate storage to named bits

− Set bits on and off, and invert their values

− Test bit values and branch if on or off

• Enhanced forms: macros to

− Ensure bit names were properly declared

− Bit names can't be referenced “accidentally” without the macros

− Generate optimized code for bit manipulation and testing

Part 3: Macro Techniques 139

Case Study 7: Macros for Bit-Handling Operations
We now examine some macros that show how you can build a language to suit your needs. Our
examples will be based on a typical Assembler Language requirement to manipulate bit values,
and we will illustrate two levels of possible implementation:

1. The first set of macros (Case Study 7a) illustrates simple techniques for declaring bit names,
assigning them to storage, performing operations on them, and testing bit values and making
conditional branches.

2. The second set (Case Study 7b) does the same functions, but in addition validates that only
declared names are used, and generates optimized code for storage allocation, bit operations,
and bit testing.

One purpose of these examples is to show how macros can be made as simple or as complex as
are needed for a specific application: if bit operations need not be efficient, the simple macros can
be used; if safety is important (so that named bits can't be manipulated without macro vali-
dation), and storage requirements and/or execution time must be minimized, the second set can
be used.

128Basic Bit Declaration and Manipulation Techniques

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Frequently need to set, test, manipulate “bit flags”:

Flag1 DS X Define 1st byte of bit flags
BitA Equ X'01' Define a bit flag

Flag2 DS X Define 2nd byte of bit flags
BitB Equ X'10' Define a bit flag

• Serious defect: no correlation between bit name and byte name!

OI Flag1,BitB Set Bit B ON ??
NI Flag2,255─BitA Set Bit A OFF ??

• A simpler technique: define a length attribute

− Then use just one name for all references

− Advantage: less chance to confuse or misuse bit names and byte names!

Basic Bit Handling Techniques

Applications frequently require status flags with binary values: ON or OFF, YES or NO,
STARTED or NOT_STARTED, etc. Such flags are usually represented by individual bits.
However, few machines provide individually addressable bits; the bits are parts of larger data ele-
ments such as bytes or words. This means that special programming is needed to “address” and
manipulate bits by name.

A common Assembler Language technique defines bits using statements like these:

Flag1 DS X Define 1st byte of bit flags
BitA Equ X'01' Define a bit flag
Flag2 DS X Define 2nd byte of bit flags
BitB Equ X'10' Define a bit flag

Then we do bit operations like

OI Flag1,BitA Set bit A 'on'

140 A+ + : Using HLASM's Macro Facility

There is a problem: the names of the bytes holding the flag bits, and the names given to the bits,
are totally unrelated. This means that it is easy to make mistakes like these:

OI Flag1,BitB Set Bit B ON ??
NI Flag2,255-BitA Set Bit A OFF ??

Because there is no strict association between the byte and the bit it contains, there is no way for
the assembler (and often, the programmer) to detect such misuses.

129Simple Bit-Declaring Macro: Design Considerations

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Several ways to generate bit-name definitions

1. Allocate storage byte and bit name together:

Flag1 DC X'0',X'80' Byte with bit value = length attribute

2. Allocate unnamed storage byte first, define bits following:

DC X'0' Unnamed byte
Bit_A Equ *─1,X'80' Bit_A defined as bit 0

3. Define bits first, allocate unnamed storage byte following:

Bit_B DS 0XL(X'40') Bit_B defined as bit 1
DC X'0' Unnamed byte

• Length Attribute used for named bits and unnamed bytes

TM Bit_Name,L'Bit_Name Refer to byte and bit using bit name

TM Flag1,L'Flag1 Test setting of Flag1 bit
NI BitA,255─L'BitA Set BitA OFF (uses name 'BitA' only)
OI BitB,L'BitB Set BitB ON (uses name 'BitB' only)

One solution to this “association” problem is to use length attribute references to designate bit
values. This allows us to “name” a bit, as follows:

Flag1 DS X,X'80' Named byte and associated bit
Flag2 Equ Flag1,X'40 Same byte, another bit

DS X Unnamed byte
BitA Equ *-1,X'01' Length Attribute = bit value

DS X Unnamed byte
BitB Equ *-1,X'10' Length Attribute = bit value

Another way to achieve the same result is to associate the length attribute with the storage
location:

BitA DS 0XL(X'01') Length Attribute = bit value
DS X Unnamed byte

BitB DS 0XL(X'10') Length Attribute = bit value
DS X Unnamed byte

In each case, the bit name is the same as the name of the byte that contains it, and the byte itself
has no name. Then, bit references are made only with the bit names:

XI Flag1,L'Flag1 Invert Flag1
OI BitA,L'BitA Set Bit A 'on'
TM BitB,L'BitB Test Bit B

and (if you are careful) the bits will never be associated with the wrong byte! There is, of course,
no guarantee that someone might not write something like

OI BitA,L'BitB ???

Part 3: Macro Techniques 141

There is something peculiar about this statement. A quick scan of the symbol cross-reference will
show that there are unpaired references to the symbols BitA and BitB in this statement; correct
references will occur in pairs.

130Simple Bit-Declaring Macro: Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Generates a bit-name EQUate for each argument, allocates storage

• Syntax: SBitDef bitname[,bitname]...

• Examples:

SBitDef b1,b2,b3,b4,b5,b6,b7,b8 Eight bits in one byte

SBitDef c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v Many bits+bytes

• Pseudo-code:

Set Lengths to bit─position weights (128,64,32,16,8,4,2,1)

DO for M = 1 to Number_of_Arguments
IF (Mod(M,8)=1) GEN (DC B'0') (Generate unnamed byte)
GEN (Arg(M) EQU *─1,Lengths(Mod(M─1,8)+1)) (Define bit name)

Case Study 7a: Bit-Handling Macros -- Simple Forms

The simplest way to ensure correct matching of bit names and byte names is to make all bit refer-
ences with macros. Here is a simple set of macros to do this.

First, we define bit names and allocate storage for them, with a macro that accepts a list of bit
names and defines bit values in successive bytes, up to eight bits per byte. A pseudo-code
description of the macro's operation is:

Set Lengths to bit-position weights (128,64,32,16,8,4,2,1)

DO for M = 1 to Number_of_Arguments
IF (Mod(M,8)=1) GEN (DC B'0') (Generate unnamed byte)
GEN (Arg(M) EQU *-1,Lengths(Mod(M-1,8)+1)) (Define bit name)

142 A+ + : Using HLASM's Macro Facility

131Simple Bit-Declaring Macro: SBITDEF

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Macro , Error checking omitted
SBitDef , No declared parameters

&L(1) SetA 128,64,32,16,8,4,2,1 Define bit position values
 &NN SetA N'&SysList Number of bit names provided
 &M SetA 1 Name counter
┌─� .NB Aif (&M gt &NN).Done Check if names exhausted
│ &C SetA 1 Start new byte at leftmost bit
│ DC B'0' Allocate a bit─flag byte
│┌� .NewN ANop , Get a new bit name
││ &B SetC '&SysList(&M)' Get M─th name from argument list
││ &B Equ *─1,&L(&C) Define bit via length attribute
││ &M SetA &M+1 Step to next name
││ Aif (&M gt &NN).Done Exit if names exhausted
││ &C SetA &C+1 │ Count bits in a byte
│└─────── Aif (&C le 8).NewN │ Get new name if byte not full
└──────── Ago .NB │ Byte is filled, start a new byte

.Done MEnd �──────────────┘

SBitDef b1,b2 Define bits b1, b2
+ DC B'0' Allocate a bit─flag byte
+b1 Equ *─1,128 Define bit via length attribute
+b2 Equ *─1,64 Define bit via length attribute

The SBitDef macro in Figure 49 takes the names in the argument list and allocates a single bit to
each. Each call to the SBitDef macro starts a new byte. The &SYSLIST system variable symbol
accesses the arguments, and a Number attribute reference, N'&SYSLIST, determines the number of
arguments.

Macro
SBitDef , No declared parameters

&L(1) SetA 128,64,32,16,8,4,2,1 Define bit position values
&NN SetA N'&SysList Number of bit names provided
&M SetA 1 Name counter

Aif (&NN eq 0).Null Check for null argument list
.NB Aif (&M gt &NN).Done Check if names exhausted
&C SetA 1 Start new byte at leftmost bit

DC B'0' Allocate a bit-flag byte
.NewN ANop , Get a new bit name
&B SetC '&SysList(&M)' Get M-th name from argument list

Aif ('&B' eq '').Null Note null argument
&B Equ *-1,&L(&C) Define bit via length attribute
&M SetA &M+1 Step to next name

Aif (&M gt &NN).Done Exit if names exhausted
&C SetA &C+1 Count bits in a byte

Aif (&C le 8).NewN Get new name if not done
Ago .NB Byte is filled, start a new byte

.Null MNote 4,'SBitDef: Missing name at arglist position &M'
&M SetA &M+1 Step to next name

Aif (&M le &NN).NewN Go get new name if not done
.Done MEnd

Figure 49. Simple bit-handling macros: bit declarations

Some examples of calls to the SBitDef macro are shown in the following figure:

Part 3: Macro Techniques 143

SBitDef c,d,e,f,g,h,i,j,k,l,m Many bits and bytes
+ DC B'0' Allocate a bit-flag byte
+c Equ *-1,128 Define bit via length attribute
+d Equ *-1,64 Define bit via length attribute
+e Equ *-1,32 Define bit via length attribute
+f Equ *-1,16 Define bit via length attribute
+g Equ *-1,8 Define bit via length attribute
+h Equ *-1,4 Define bit via length attribute
+i Equ *-1,2 Define bit via length attribute
+j Equ *-1,1 Define bit via length attribute
+ DC B'0' Allocate a bit-flag byte
+k Equ *-1,128 Define bit via length attribute
+l Equ *-1,64 Define bit via length attribute
+m Equ *-1,32 Define bit via length attribute

Figure 50. Simple bit-handling macros: example of bit declarations

This simple macro has several limitations:

• Bits cannot be “grouped” so that related bits are certain to reside in the same byte, except by
writing a statement with a new SBitDef macro call.

• This means that we cannot plan to use the machine's bit-manipulation instructions (which can
handle up to 8 bits simultaneously) without manually arranging the assignments of bits and
bytes.

• If a bit name is declared twice, the macro cannot detect the error; HLASM will issue
ASMA043E message for a previously defined symbol.

In Case Study 7b we will explore some techniques that overcome these limitations.

132Simple Bit-Manipulation Macros: Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Operations on “named” bits

• Setting bits on: one OI instruction per named bit

IF (Label =/ null) GEN (Label DC 0H'0')

DO for M = 1 to Number_of_Arguments
GEN (OI Arg(M),L'Arg(M)) to set bits on

• Length Attribute reference specifies the bit

− As il lustrated in the simple bit-defining macro

• Similar macros for setting bits off, or inverting bits

IF (Label =/ null) GEN (Label DC 0H'0')
GEN (NI Arg(M),255─L'Arg(M)) to set bits off

GEN (XI Arg(M),L'Arg(M)) to invert bits

• Warning: these simple macros are very trusting!

− Any name can be used (see slide 138)

144 A+ + : Using HLASM's Macro Facility

Simple Bit-Manipulation Macros

Now, we illustrate some simple macros that use the bit declarations just described. While the
macros are useful, they do very little checking; improvements will be discussed later, at “Case
Study 7b: Bit-Handling Macros -- Advanced Forms” on page 151.

133Simple Bit-Handling Macros: Setting Bits ON

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macro SBitOn to set one or more bits ON

− Generates one OI instruction per bitname

• Syntax: SBitOn bitname[,bitname]...

Macro , Error Checking omitted
 &Lab SBitOn

&NN SetA N'&SysList Number of Names
&M SetA 1

Aif ('&Lab' eq '').Next Skip if no name field
 &Lab DC 0H'0' Define label
┌� .Next ANop , Get a bit name
│ &B SetC '&SysList(&M)' Extract name (&M─th positional argument)
│ .Go OI &B,L'&B Set bit on
│ &M SetA &M+1 Step to next bit name
└─────── Aif (&M le &NN).Next Go get another name

MEnd

Simple Bit-Manipulation Macros: Setting Bits ON

Having created the SBitDef macro to define bit names, we now write macros to manipulate them
by setting bits on and off, and by inverting their state. First, we write a macro SBitOn that will set
a bit to 1.

A pseudo-code description of the SBitOn macro:

IF (Label =/ null) GEN (Label DC 0H'0')

DO for M = 1 to Number_of_Arguments
GEN (OI EQU Arg(M),L'Arg(M))

The SBitOn macro is defined in Figure 51 on page 146.

Part 3: Macro Techniques 145

Macro
&Lab SBitOn
&NN SetA N'&SysList Number of Names
&M SetA 1

Aif (&NN gt 0).OK Should not have empty name list
MNote 4,'SBitOn: No bit names?'
MExit

.OK ANop , Names exist in the list
Aif ('&Lab' eq '').Next Skip if no name field

&Lab DC 0H'0' Define label
.Next ANop , Get a bit name
&B SetC '&SysList(&M)' Extract name (&M'th positional arg)

Aif ('&B' ne '').Go Check for missing argument
MNote 4,'SBitOn: Missing argument at position &M'
Ago .Step Go look for more names

.Go OI &B,L'&B Set bit on

.Step ANop ,
&M SetA &M+1 Step to next bit name

Aif (&M le &NN).Next Go get another name
MEnd

Figure 51. Simple bit-handling macros: bit setting

134Simple Bit-Handling Macros: Setting Bits ON ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Examples:

AA1 SBitOn b1,b3,b8,c1,c2
+AA1 DC 0H'0' Define label
+ OI b1,L'b1 Set bit on
+ OI b3,L'b3 Set bit on
+ OI b8,L'b8 Set bit on
+ OI c1,L'c1 Set bit on
+ OI c2,L'c2 Set bit on

SBitOn b1,b8
+ OI b1,L'b1 Set bit on
+ OI b8,L'b8 Set bit on

• Observe: one OI instruction per bit!

− We will consider optimizations in Case Study 7b

The following figure illustrates some calls to this macro:

AA1 SBitOn b1,b3,b8,c1,c2
+AA1 DC 0H'0' Define label
+ OI b1,L'b1 Set bit on
+ OI b3,L'b3 Set bit on
+ OI b8,L'b8 Set bit on
+ OI c1,L'c1 Set bit on
+ OI c2,L'c2 Set bit on

Figure 52. Simple bit-handling macros: examples of bit setting

146 A+ + : Using HLASM's Macro Facility

Each bit operation is performed by a separate instruction, even when two or more bits have been
allocated in the same byte. We will see in “Case Study 7b: Bit-Handling Macros -- Advanced
Forms” on page 151 how we might remedy this defect.

135Simple Bit-Handling Macros: Set OFF and Invert Bits

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macros SBitOff and SBitInv are defined like SBitOn:

− SBitOff uses NI to set bits off

Macro
&Lab SBitOff
.* ─ ─ ─ etc., as for SBitOn
.Go NI &B,255─L'&B Set bit off
.* ─ ─ ─ etc.

MEnd

− SBitInv uses XI to invert bits

Macro
&Lab SBitInv
.* ─ ─ ─ etc., as for SBitOn
.Go XI &B,L'&B Invert bit
.* ─ ─ ─ etc.

MEnd

Simple Bit-Manipulation Macros: Inverting and Setting Bits OFF

The SBitOff macro is exactly like the SBitOn macro, except that the generated statement to set the
bit “off” (i.e., to 0) is changed from OI to NI, and the bit-testing mask field is inverted:

Macro
&Lab SBitOff
.* - - - etc., as for SBitOn
.Go NI &B,255-L'&B Set bit off
.* - - - etc., as for SBitOn

MEnd

Figure 53. Simple bit-handling macros: bit resetting

Similarly, the SBitInv macro inverts the designated bits, using XI instructions:

Macro
&Lab SBitInv
.* - - - etc., as for SBitOn
.Go XI &B,L'&B Invert bit
.* - - - etc., as for SBitOn

MEnd

Figure 54. Simple bit-handling macros: bit inversion

Part 3: Macro Techniques 147

136Simple Bit-Handling Macros: Set OFF and Invert Bits ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Examples:

bb1 SBitOff b1,b3,b8,c1,c2
+bb1 DC 0H'0' Define label
+ NI b1,255─L'b1 Set bit off
+ NI b3,255─L'b3 Set bit off
+ NI b8,255─L'b8 Set bit off
+ NI c1,255─L'c1 Set bit off
+ NI c2,255─L'c2 Set bit off

 cc1 SBitInv b1,b3,b8,c1,c2
+cc1 DC 0H'0' Define label
+ XI b1,L'b1 Invert bit
+ XI b3,L'b3 Invert bit
+ XI b8,L'b8 Invert bit
+ XI c1,L'c1 Invert bit
+ XI c2,L'c2 Invert bit

• One NI or XI instruction per bit

Some macro calls that illustrate the operation of the SBitOff macro are shown in the following
figure:

bb1 SBitOff b1,b3,b8,c1,c2
+bb1 DC 0H'0' Define label
+ NI b1,255-L'b1 Set bit off
+ NI b3,255-L'b3 Set bit off
+ NI b8,255-L'b8 Set bit off
+ NI c1,255-L'c1 Set bit off
+ NI c2,255-L'c2 Set bit off

Figure 55. Simple bit-handling macros: examples of bit resetting

Some calls to SBitInv illustrate its operation:

cc1 SBitInv b1,b3,b8,c1,c2
+cc1 DC 0H'0' Define label
+ XI b1,L'b1 Invert bit
+ XI b3,L'b3 Invert bit
+ XI b8,L'b8 Invert bit
+ XI c1,L'c1 Invert bit
+ XI c2,L'c2 Invert bit

Figure 56. Simple bit-handling macros: examples of bit inversion

148 A+ + : Using HLASM's Macro Facility

137Simple Bit-Handling Macros: Branch on Bit Values

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Simple bit-testing macros: branch to target if bitname is on/off

• Syntax: SBBitxxx bitname,target where xxx = ON or OFF

Macro
 &Lab SBBitOn &B,&T Bitname and branch label
 &Lab TM &B,L'&B Test specified bit

BO &T Branch if ON
MEnd

Macro
 &Lab SBBitOff &B,&T Bitname and branch label
 &Lab TM &B,L'&B Test specified bit

BNO &T Branch if OFF
MEnd

 * Examples
 dd1 SBBitOn b1,aa1
+dd1 TM b1,L'b1 Test specified bit
+ BO aa1 Branch if ON

SBBitOff b2,bb1
+ TM b2,L'b2 Test specified bit
+ BNO bb1 Branch if OFF

Simple Bit-Testing Macros

To complete our set of simple bit-handling macros, suppose we need macros to test the setting of
a bit, and to branch to a designated label specified by &T if the bit named by &B is on or off. We
can write two macros named SBBitOn and SBBitOff to do this; each has two arguments, a bit
name and a label name.

The syntax of the two macros is the same:

SBBitOn bitname,target
SBBitOff bitname,target

tests the bit named bitname, and if on or off as specified by the name of the macro, branches to
the statement with label target.

Macro
&Lab SBBitOn &B,&T Bitname and branch label

Aif (N'&SysList eq 2).OK Should have exactly 2 arguments
MNote 4,'SBBitOn: Incorrect argument list?'
MExit

.OK Aif ('&B' eq '' or '&T' eq '').Bad
&Lab TM &B,L'&B Test specified bit

BO &T Branch if ON
MExit

.Bad MNote 8,'SBBitOn: Bit Name or Target Name missing'
MEnd

Figure 57. Simple bit-testing macros: branch if bit is on

Some examples of calls to the SBBitOn macro are shown in the following figure:

Part 3: Macro Techniques 149

dd1 SBBitOn b1,aa1
+dd1 TM b1,L'b1 Test specified bit
+ BO aa1 Branch if ON

SBBitOn b2,bb1
+ TM b2,L'b2 Test specified bit
+ BO bb1 Branch if ON

Figure 58. Simple bit-handling macros: examples of “branch if bit on”

A similar macro can be written to branch to a specified label if a bit is off:

Macro
&Lab SBBitOff &B,&T Bitname and branch label
.* - - - etc., as for SBBitOn macro
&Lab TM &B,L'&B Test specified bit

BNO &T Branch if OFF
.* - - - etc., as for SBBitOn macro

MEnd

Figure 59. Simple bit-handling macros: branch if bit is off

Calls to the SBBitOff macro might appear as follows:

 ee1 SBBitOff b1,dd1 Branch to dd1 if b1 is off
+ee1 TM b1,L'b1 Test specified bit
+ BNO dd1 Branch if OFF

SBBitOff b2,dd1 Branch to dd1 if b2 is off
+ TM b2,L'b2 Test specified bit
+ BNO dd1 Branch if OFF

Figure 60. Simple bit-handling macros: examples of “branch if bit off”

This completes our first, simple set of bit-handling macros. We see that we can write a fairly
helpful set of capabilities with a very small effort, and put them to immediate use.

150 A+ + : Using HLASM's Macro Facility

138Bit-Handling Macros: Enhancements

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• The previous macros work, and will be enhanced in two ways:

1. Ensure that “bit names” do name bits! The simple macros don't:

X DC F'23' Define a constant
Flag Equ X'08' Define a flag bit (?) 'somewhere'

SBitOn Flag,X Set bits ON 'somewhere' ???

2. Handle multiple bits within one byte with one instruction (optimization!)

• More enhancements are possible (but not il lustrated here):

− Pack all bits (storage optimization), but may not gain much

− “Hide” declared bit names so they don't appear as ordinary symbols!

− Provide a “run-time symbol table” for debugging, such as

— ADATA instruction to put info into SYSADATA fi le

— Create a separate CSECT with names, locations, bit values

Case Study 7b: Bit-Handling Macros -- Advanced Forms

There are two problems with the preceding “simple set” of bit-handling macros:

1. It is common to operate on more than one bit within a byte. For example, suppose two bits
are defined within the same byte:

DS X
BitJ Equ *-1,X'40'
BitK Equ *-1,X'20'

We prefer to set both bits on with a single OI instruction. Two possibilities are:

OI BitJ,L'BitJ+L'BitK
OI BitK,L'BitJ+L'BitK

While these generated instructions are correct, they do not completely satisfy our intent to
name only the bits we wish to manipulate, and not the bytes in which they are defined. Thus,
we need some optimization in our bit-handling macros.

2. The previous simple macros are very trusting (and therefore you must be very careful). There
is no checking that the bit names presented as arguments in the bit-manipulation macros were
indeed declared as bits in a bit-definition macro. For example, one might have written
through some oversight (probably not as drastic as this!)

Flag Equ X'08' Define a flag bit
- - -
SBitOn Flag Set 'something, somewhere' on ???

and the result would not have been what was expected or desired.

Similarly, if you had defined a variable X as the name of a fullword integer:

X DC F'23'

then you could use X as a “bit name” with no warnings:

SBitOn X

This would generate the instruction

OI X,L'X

Part 3: Macro Techniques 151

which is unlikely to give the result you intended!

Thus, we need stronger types and type checking in our bit-handling macros.

139Bit-Handling “Micro-Compiler”

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Goal: a “Micro-compiler” for bit operations

− Micro: Limit scope of actions to specific data types and operations

− Compiler: Syntax/semantic scans, code generation

— Each macro checks syntax of definit ions and uses

— Build symbol tables using created global variable symbols

• Bit Language: same as for the simple bit-handling macros:

− Data type: named bits

− Operations: define; set on/off, invert; test-and-branch

• Can incrementally add to and improve each language element

− As these enhancements i l lustrate

Bit-Handling “Micro Language” and “Micro-Compiler”

Solving these problems lets us create a “micro-compiler” for bit declarations and operations.
Because we have limited our concerns to bit operations, the macros can be fairly simple, while
illustrating some of the functions needed in a typical compiler for a high-level language.

We start with a BitDef macro that declares bit flags and keeps track of which ones have been
declared. We add an extra feature to help improve program efficiency: if a group of bits should be
kept in a single byte, so that they can be set and tested in combinations, then their names may be
specified as a parenthesized operand sublist. The macro will ensure that (if at most eight are
specified) they will fit in a single byte. Thus, in

BitDef a,b,c,(d,e,f,g,h,i),j,k

the bits named a,b,c will be allocated in one byte, and bits d,e,f,g,h,i will be allocated in a new
byte because there is not enough room left for all of them in the byte containing a,b,c. However,
bits j,k will share the same byte as d,e,f,g,h,i because there are two bits remaining for them.

One decision influencing the design of these macros is that we wish to optimize execution per-
formance more than we wish to minimize storage utilization; because bits are small, wasting a few
shouldn't be a major concern. Each instruction saved represents many bits! (Storage optimization
is left as an exercise for the reader.)

152 A+ + : Using HLASM's Macro Facility

140General Bit-Handling Macros: Data Structures

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Declaring a bitname requires three “global” i tems:

1. A Byte_Number to count bytes in which bits are declared

2. A BitCount for the next unallocated bit in the current byte

3. An associatively addressed Symbol Table using created variable symbols

− Each declared bit name creates a global arithmetic variable

− I ts name &(BitDef_bitname_ByteNo) is constructed from

— a prefix BitDef_ (whatever you l ike, to avoid global-name coll isions)

— the declared bitname (the “associative” feature)

— a suffix _ByteNo (whatever you l ike, to avoid global-name coll isions)

− Its value is the Byte_Number in which this bit was allocated

• Remember: the storage bytes themselves are unnamed!

The data structures (which may be thought of as our “micro-compiler's” symbol table) used for
these macros include a Byte_Number to enumerate the bytes in which the named bits have been
allocated, a Bit_Count to count how many bits have been allocated in the current byte, and a
created global arithmetic variable symbol for each bit. The value of the created variable symbol is
the Byte_Number in which the named bit resides. We use the fact that a declared arithmetic variable
symbol is initialized to zero to detect undeclared bit names.

The created variable symbol's name is arbitrary, and need only contain the bit name somewhere;
we construct the name from a prefix BitDef_, the bit name, and a suffix _ByteNo. If such names
collide with global variable symbol names used by other macros, it is easy to change the prefix or
suffix.

141General Bit-Declaring Macro: Design

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Bits may be “packed”; sublisted names are kept in one byte

• Example: BitDef a,(b,c),d keeps b and c together

• High-level pseudo-code:

DO for all arguments

IF argument is not a sublist

THEN assign the named bit to a byte (start another byte if needed)

ELSE IF sublist has more than 8 items, ERROR STOP, can't assign

ELSE if not enough room in current byte, start another

Assign sublist bit names to a byte

Part 3: Macro Techniques 153

142General Bit-Declaring Macro: Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Set Lengths = 128,64,32,16,8,4,2,1 (Bit values, indexed by Bit_Count)
DO for M = 1 to Number_of_Arguments

Set B = Arg_List(M)
IF (Substr(B,1,1) =/ '(') PERFORM SetBit(B) (not a sublist)

ELSE (Handle sublist)

IF (N_SubList_Items > 8) ERROR Sublist too long
IF (BitCount+N_Sublist_Items > 8) PERFORM NewByte
DO for CS = 1 to N_Sublist_Items (Handle sublist)

PERFORM SetBit(Arg_List(M,CS))

SetBit(B): (Save bit name and Byte_Number in which the bit resides:)
IF (Mod(BitCount,8) = 0) PERFORM NewByte
Declare created global variable &(BitDef_&B._Byte_Number)
Set created variable (Symbol Table entry) to Byte_Number
GEN (B EQU *─1,Lengths(BitCount))
Set BitCount = BitCount+1 (Step to next bit in this byte)

NewByte: GEN(DC B'0'); Increment Byte_Number; BitCount = 1

• Created symbol contains bit name; its value is the byte number

This bit-defining macro starts a new byte in storage for each macro call. It would be easy to
“pack” all bits (not just those in sublists) to improve storage utilization by providing a global
arithmetic variable to remember the current unallocated bit position across calls to the BitDef
macro.

A pseudo-code description of the macro is shown in the following figure:

Set Lengths = 128,64,32,16,8,4,2,1 (Bit values, indexed by Bit_Count)
DO for M = 1 to Number_of_Arguments

Set B = Arg_List(M)
IF (Substr(B,1,1) =/ '(') PERFORM SetBit(B) (not a sublist)

ELSE (Handle sublist)

IF (N_SubList_Items > 8) ERROR Sublist too long
IF (BitCount+N_Sublist_Items > 8) PERFORM NewByte
DO for CS = 1 to N_Sublist_Items (Handle sublist)

PERFORM SetBit(Arg_List(M,CS))

SetBit(B): (Save bit name and Byte_Number in which the bit resides:)
IF (Mod(BitCount,8) = 0) PERFORM NewByte
Declare created global variable &(BitDef_&B._Byte_Number)
Set created variable (Symbol Table entry) to Byte_Number
GEN (B EQU *-1,Lengths(BitCount))
Set BitCount = BitCount+1 (Step to next bit in this byte)

NewByte: GEN(DC B'0'); Increment Byte_Number; BitCount = 1

Figure 61. Bit-handling macros: define bit names: pseudo-code

In the SetBit(B): portion of the pseudo-code, we use created variable symbols as entries in the
“BitDef” symbol table. Each such entry is set to the nonzero value of the Byte_Number in which
the bit was allocated. (This “Byte_Number” is simply a counter of the number of bytes allocated
by the BitDef macro.)

154 A+ + : Using HLASM's Macro Facility

143General Bit-Handling Macros: Bit Declaration

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Macro , Some error checks omitted
BitDef
GblA &BitDef_ByteNo Used to count defined bytes

&L(1) SetA 128,64,32,16,8,4,2,1 Define bit position values
&NN SetA N'&SysList Number of bit names provided
&M SetA 1 Name counter
.NB Aif (&M gt &NN).Done Check if names exhausted
&C SetA 1 Start new byte at leftmost bit

DC B'0' Define a bit─flag byte
&BitDef_ByteNo SetA &BitDef_ByteNo+1 Increment byte number
.NewN ANop , Get a new bit name
&B SetC '&SysList(&M)' Get M─th name from argument list

Aif ('&B'(1,1) ne '(').NoL Branch if not a sublist
&NS SetA N'&SysList(&M) Number of sublist elements
&CS SetA 1 Initialize count of sublist items

Aif (&C+&NS le 9).SubT Skip if room left in current byte
&C SetA 1 Start a new byte

DC B'0' Define a bit─flag byte
&BitDef_ByteNo SetA &BitDef_ByteNo+1 Increment byte number
.* ─ ─ ─ (continued)

144General Bit-Handling Macros: Bit Declaration ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

.* ─ ─ ─ (continuation) Name is in a sublist

.SubT ANop , Generate sublist equates
&B SetC '&SysList(&M,&CS)' Extract sublist element

GblA &(BitDef_&B._ByteNo) Created var sym with ByteNo for this bit
&B Equ *─1,&L(&C) Define bit via length attribute
&(BitDef_&B._ByteNo) SetA &BitDef_ByteNo Byte no. for this bit
&CS SetA &CS+1 Step to next sublist item

Aif (&CS gt &NS).NewA Skip if end of sublist
&C SetA &C+1 Count bits in a byte

Ago .SubT And go do more list elements
.NoL ANop , Not a sublist

GblA &(BitDef_&B._ByteNo) Declare byte number for this bit
&B Equ *─1,&L(&C) Define bit via length attribute
&(BitDef_&B._ByteNo) SetA &BitDef_ByteNo Byte no. for this bit
.NewA ANop , Ready for next argument
&M SetA &M+1 Step to next name

Aif (&M gt &NN).Done Exit if names exhausted
&C SetA &C+1 Count bits in a byte

Aif (&C le 8).NewN Get new name if not done
Ago .NB Bit filled, start a new byte

.Done MEnd

Declaring Bit Names

In the BitDef macro illustrated in Figure 62 on page 156, several techniques are used. The global
arithmetic variable &BitDef_ByteNo is incremented by 1 each time a new byte is allocated. The
first SETA statement initializes the local arithmetic array variables &L(1) through &L(8) to values
corresponding to the binary weights of the bits in a byte.

After each bit name &B has been extracted from the argument list, a global arithmetic variable
&(BitDef_&B._ByteNo) is constructed (and declared) using the supplied bit name, and is assigned
the value of the byte number to which that bit will be assigned. This has two effects:

1. a unique global variable symbol is generated for every bit name;

2. the value of that symbol identifies the byte it “belongs to” (remember that the bytes have no
names themselves; references in actual instructions will be made using bit names and length
attribute references).

Part 3: Macro Techniques 155

An additional benefit is that later references to a bit can be checked against this global variable: if
its value is zero (meaning the variable was declared but not initialized) we will know that the bit
was not declared, and therefore not allocated to a byte in storage.

Another new feature introduced in this macro definition is the ability to handle sublists of bit
names that are to be allocated within the same byte. The pseudo-code doesn't test for missing or
duplicate bit names, but the full macro definition checks them, as in the following figure.

Macro
BitDef
GblA &BitDef_ByteNo Used to count defined bytes

&L(1) SetA 128,64,32,16,8,4,2,1 Define bit position values
&NN SetA N'&SysList Number of bit names provided
&M SetA 1 Name counter

Aif (&NN eq 0).Null Check for null argument list
.NB Aif (&M gt &NN).Done Check if names exhausted
&C SetA 1 Start new byte at leftmost bit

DC B'0' Define a bit-flag byte
&BitDef_ByteNo SetA &BitDef_ByteNo+1 Increment byte number
.NewN ANop , Get a new bit name
&B SetC '&SysList(&M)' Get M-th name from argument list

Aif ('&B' eq '').Null Note null argument
Aif ('&B'(1,1) ne '(').NoL Branch if not a sublist

&NS SetA N'&SysList(&M) Number of sublist elements
Aif (&NS gt 8).ErrS Error if more than 8

&CS SetA 1 Initialize count of sublist items
Aif (&C+&NS le 9).SubT Skip if room left in current byte

&C SetA 1 Start a new byte
DC B'0' Define a bit-flag byte

&BitDef_ByteNo SetA &BitDef_ByteNo+1 Increment byte number
.SubT ANop , Generate sublist equates
&B SetC '&SysList(&M,&CS)' Extract sublist element

Aif ('&B' eq '').Null Check for null item
GblA &(BitDef_&B._ByteNo) Created var sym with ByteNo for this bit
Aif (&(BitDef_&B._ByteNo) gt 0).DupDef Branch if declared

&B Equ *-1,&L(&C) Define bit via length attribute
&(BitDef_&B._ByteNo) SetA &BitDef_ByteNo Byte no. for this bit
&CS SetA &CS+1 Step to next sublist item

Aif (&CS gt &NS).NewA Skip if end of sublist
&C SetA &C+1 Count bits in a byte

Ago .SubT And go do more list elements

Figure 62 (Part 1 of 2). Bit-handling macros: define bit names

156 A+ + : Using HLASM's Macro Facility

.NoL ANop , Not a sublist
GblA &(BitDef_&B._ByteNo) Declare byte number for this bit
Aif (&(BitDef_&B._ByteNo) gt 0).DupDef Branch if declared

&B Equ *-1,&L(&C) Define bit via length attribute
&(BitDef_&B._ByteNo) SetA &BitDef_ByteNo Byte no. for this bit
.NewA ANop , Ready for next argument
&M SetA &M+1 Step to next name

Aif (&M gt &NN).Done Exit if names exhausted
&C SetA &C+1 Count bits in a byte

Aif (&C le 8).NewN Get new name if not done
Ago .NB Bit filled, start a new byte

.DupDef MNote 8,'BitDef: Bit name ''&B'' was previously declared.'
MExit

.ErrS MNote 8,'BitDef: Sublist Group has more than 8 members'
MExit

.Null MNote 8,'BitDef: Missing name at argument &M'

.Done MEnd

Figure 62 (Part 2 of 2). Bit-handling macros: define bit names

145Examples of Bit Declaration

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Example: Define ten bit names (with macro-generated code)

• Bits named d4-d9 are allocated in a single byte

− Causes some bits to remain unused in the first byte

 a4 BitDef d1,d2,d3,(d4,d5,d6,d7,d8,d9),d10 d4 starts new byte

+ DC B'0' Define a bit─flag byte
+d1 Equ *─1,128 Define bit via length attribute
+d2 Equ *─1,64 Define bit via length attribute
+d3 Equ *─1,32 Define bit via length attribute
+ DC B'0' Define a bit─flag byte
+d4 Equ *─1,128 Define bit via length attribute
+d5 Equ *─1,64 Define bit via length attribute
+d6 Equ *─1,32 Define bit via length attribute
+d7 Equ *─1,16 Define bit via length attribute
+d8 Equ *─1,8 Define bit via length attribute
+d9 Equ *─1,4 Define bit via length attribute
+d10 Equ *─1,2 Define bit via length attribute

Some examples of calls to this BitDef macro are shown in the following figure:

Part 3: Macro Techniques 157

 a4 BitDef d1,d2,d3,(d4,d5,d6,d7,d8,d9),d10 d4 starts new byte
+ DC B'0' Define a bit-flag byte
+d1 Equ *-1,128 Define bit via length attribute
+d2 Equ *-1,64 Define bit via length attribute
+d3 Equ *-1,32 Define bit via length attribute
+ DC B'0' Define a bit-flag byte
+d4 Equ *-1,128 Define bit via length attribute
+d5 Equ *-1,64 Define bit via length attribute
+d6 Equ *-1,32 Define bit via length attribute
+d7 Equ *-1,16 Define bit via length attribute
+d8 Equ *-1,8 Define bit via length attribute
+d9 Equ *-1,4 Define bit via length attribute
+d10 Equ *-1,2 Define bit via length attribute

 a6 BitDef g1,(g2,g3,g4,g5,g6,g7,g8,g9) g2 starts new byte

a7 BitDef (h2,h3,h4,h5,h6,h7,h8,h9,h10),h11 error, 9 in a byte?

a9 BitDef (k1,k2,k3,k4),(k5,k6,k7,k8),k9,k10 two sublists
+ DC B'0' Define a bit-flag byte
+k1 Equ *-1,128 Define bit via length attribute
+k2 Equ *-1,64 Define bit via length attribute
+k3 Equ *-1,32 Define bit via length attribute
+k4 Equ *-1,16 Define bit via length attribute
+k5 Equ *-1,8 Define bit via length attribute
+k6 Equ *-1,4 Define bit via length attribute
+k7 Equ *-1,2 Define bit via length attribute
+k8 Equ *-1,1 Define bit via length attribute
+ DC B'0' Define a bit-flag byte
+k9 Equ *-1,128 Define bit via length attribute
+k10 Equ *-1,64 Define bit via length attribute

Figure 63. Bit-handling macros: examples of defining bit names

We will now utilize the information created by this BitDef macro to generate efficient instruction
sequences.

158 A+ + : Using HLASM's Macro Facility

146General Bit-Setting Macro: Data Structure Details

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Two “phases” used to generate bit-operation instructions:

1. Check that bit names are declared (“strong typing”), and
collect information about bits to be set:

a. Number of distinct Byte_Numbers (which bytes “own” the bit names?)

b. For each byte, the number of instances of bit names in that byte

c. An associat ively addressed variable-symbol “name table”

• Name prefix is BitDef_Nm_ (whatever, to avoid global-name coll isions)

• Suff ix is a “double subscript” , &ByteNumber._&InstanceNumber

• Value of the symbol is the bit name

2. Use the information to generate optimal instructions

• Names and number of name instances needed to build operands

147General Bit-Setting Macro: Design Details

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Optimize generated code for setting bits on

• Syntax: BitOn bitname[,bitname]...
Example: BitOn a,b,c,d

• High-level pseudo-code:

DO for all arguments (Pass 1)

Verify that the argument bit name was declared (check global symbol)
IF not declared, STOP with error message for undeclared bit name

Save argument bit names and their associated byte numbers

DO for all saved distinct byte numbers (Pass 2)

GEN Instructions to handle argument bits belonging to each byte

• Pass 1 captures bit names & byte numbers, pass 2 generates code

Part 3: Macro Techniques 159

148General Bit-Setting Macro: Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Save macro─call label
Set NBN (Number of known Byte Numbers) = 0
DO for M = 1 to Number_of_Arguments [phase 1]

Set B = Arg(M)
Declare created global variable &(BitDef_&B._Byte_Number)
IF (Its value is zero) ERROR EXIT 'Undeclared Bitname &B' �── Key!
DO for K = 1 to NBN (Check byte number from the global variable)

IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)

Save B in bitname list for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)

DO for M = 1 to number of distinct Byte Numbers [phase 2]
Set Operand = 'First_Bitname,L''First_Bitname' (local character string)
DO for K = 2 to Number of bitnames in this Byte

Operand = Operand ││ '+L''Bitname(K)'
GEN (label OI Operand); set label = ''

• Easy generalization to BitOff (NI) and BitInv (XI) macros

Improved Bit-Manipulation Macros

We now explore some improved techniques for managing bit variables, including verifying that
they were declared properly, and optimizing the instructions that manipulate and test them.

The macros use created variable symbols as an associatively-addressed symbol table, reducing the
effort needed for table searches.

Using Declared Bit Names in a BitOn Macro

The BitOn macro accepts a list of bit names, and generates the minimum number of instructions
needed to set them on, as illustrated in Figure 65 on page 163. The macro makes two “passes”
over the supplied bit names:

• In the first pass, the bit names are read, and a global arithmetic variable
&(BitDef_&B._&ByteNo) (where the value of &B is the bit name) is declared and its value is
checked. If the value is zero, we know that the name was not declared in a call to a BitDef
macro (which would have assigned a nonzero byte number value to the variable).

• If the bit name was defined, the value of that constructed name is the byte number of the byte
to which the bit was assigned. The array &BN() is searched to see if other bits with the same
byte number have been supplied as arguments to this BitOn macro; if not, a new entry is made
in the &BN() array.

• A second array &IBN() (paralleling the &BN() array) is used to count the number of Instances
of the Byte Number that have occurred thus far.

• Finally, the bit name is saved in a created local character variable symbol
&(BitDef_Nm_&bn._&in), where &bn is the byte number for this bit name, and &in is the
“instance number” of this bit within this byte. (By checking the current bit name from the
argument list against these names, the macro can also determine that a bit name has been
“duplicated” in the argument list.)

Once all the names in the argument list have been handled, the macro uses the information in the
two arrays and the created local character variable symbols:

• In the second pass, one instruction is generated for each distinct byte number that was entered
in the &BN() array during the first pass.

160 A+ + : Using HLASM's Macro Facility

• The outer loop is executed once per byte number, and the inner loop is executed as many
times as there are instances of names belonging to the current byte number, as determined
from the elements of the &IBN() array. It constructs the operand field in the local character
variable &Op, using the created local character variable symbols to retrieve the names of the
bits.

• At the end of the inner loop, the OI instruction is generated using the created operand field
string in &Op, and then the outer loop is repeated until all instructions have been generated.

A pseudo-code description of the macro's operation is illustrated in Figure 64.

Save macro-call label
Set NBN (Number of known Byte Numbers) = 0
DO for M = 1 to Number_of_Arguments [phase 1]

Set B = Arg(M)
Declare created global variable &(BitDef_&B._Byte_Number)
IF (Its value is zero) ERROR EXIT 'Undeclared bit name &B'
DO for K = 1 to NBN (Check byte number from the global variable)

IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)

Save B in bit name list for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)

DO for M = 1 to NBN [phase 2]
Set Operand = 'First_Bitname,L''First_Bitname'
DO for K = 2 to Number of bitnames in this Byte

Operand = Operand || '+L''Bitname(K)'
GEN (label OI Operand); set label = ''

Figure 64. Bit-handling macros: set bits on: pseudo-code

149General Bit-Setting Macros: Set Bits ON

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• BitOn optimizes generated instructions (most error checks omitted)

Macro
&Lab BitOn
&L SetC '&Lab' Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&SysList Number of names provided
.NmLp Aif (&M ge &NN).Pass2 Check if all names scanned
&M SetA &M+1 Step to next name
&B SetC '&SysList(&M)' Pick off a name

Aif ('&B' eq '').Null Check for null item
GblA &(BitDef_&B._ByteNo) Declare GBLA for Byte No.
Aif (&(BitDef_&B._ByteNo) eq 0).UnDef Exit if undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN).NewBN Not in list, a new Byte No
&K SetA &K+1 Search next known Byte No

Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match
.* ─ ─ ─ continued

Part 3: Macro Techniques 161

150General Bit-Setting Macros: Set Bits ON ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

.* ─ ─ ─ (continuation)
&J SetA 1 Check if name already specified
.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if name is unique

Aif ('&B' eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated
&J SetA &J+1 Search next name in this byte

Ago .CkDup Check further for duplicates
.DupNm MNote 8,'BitOn: Name ''&B'' duplicated in operand list'

MExit
.NmOK ANop , No match, enter name in list
&IBN(&K) SetA &IBN(&K)+1 Matching BN, bump count of bits in this byte

LclC &(BitDef_Nm_&BN(&K)._&IBN(&K)) Slot for bit name
&(BitDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte

Ago .NMLp Go get next name
.NewBN ANop , New Byte No
&NBN SetA &NBN+1 Increment Byte No count
&BN(&NBN) SetA &(BitDef_&B._ByteNo) Save new Byte No
&IBN(&NBN) SetA 1 Set count of this Byte No to 1

LclC &(BitDef_Nm_&BN(&NBN)._1) Slot for first bit name
&(BitDef_Nm_&BN(&NBN)._1) SetC '&B' Save 1st Bit Name, this byte

Ago .NMLp Go get next name
.* ─ ─ ─ continued

151General Bit-Setting Macros: Set Bits ON ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

.* ─ ─ ─ (continuation)

.Pass2 ANop , Pass 2: scan Byte No list
&M SetA 0 Byte No counter

┌─� .BLp Aif (&M ge &NBN).Done Check if all Byte Nos done
│ &M SetA &M+1 Increment outer─loop counter
│ &X SetA &BN(&M) Get M─th Byte No
│ &K SetA 1 Set up inner loop
│ &Op SetC '&(BitDef_Nm_&X._&K).,L''&(BitDef_Nm_&X._&K)' 1st operand
│┌� .OpLp Aif (&K ge &IBN(&M)).GenOI Operand loop, check for done
││ &K SetA &K+1 � Step to next bit in this byte
││ &Op SetC '&Op.+L''&(BitDef_Nm_&X._&K)' Add ″+L'bitname″ to operand
│└───────── Ago .OpLp │ Loop (inner) for next operand
│ .GenOI ANop , �─────────────┘ Generate instruction for Byte No
│ &L OI &Op Turn bits ON
│ &L SetC '' Nullify label string
└────────── Ago .BLp Loop (outer) for next Byte No

.UnDef MNote 8,'BitOn: Name ''&B'' not defined by BitDef'
MExit

 .Null MNote 8,'BitOn: Null argument at position &M.'
 .Done MEnd

The definition of the BitOn macro is shown in Figure 65 on page 163.

162 A+ + : Using HLASM's Macro Facility

Macro
&Lab BitOn
&L SetC '&Lab' Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&SysList Number of names provided
.NmLp Aif (&M ge &NN).Pass2 Check if all names scanned
&M SetA &M+1 Step to next name
&B SetC '&SysList(&M)' Pick off a name

Aif ('&B' eq '').Null Check for null item
GblA &(BitDef_&B._ByteNo) Declare GBLA with Byte No.
Aif (&(BitDef_&B._ByteNo) eq 0).UnDef Exit if undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN).NewBN Not in list, a new Byte No
&K SetA &K+1 Search next known Byte No

Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match
&J SetA 1 Check if name already specified
.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if name is unique

Aif ('&B' eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated
&J SetA &J+1 Search next name in this byte

Ago .CkDup Check further for duplicates
.DupNm MNote 8,'BitOn: Name ''&B'' duplicated in operand list'

MExit
.NmOK ANop , No match, enter name in list
&IBN(&K) SetA &IBN(&K)+1 Matching BN, bump count of bits in this byte

LclC &(BitDef_Nm_&BN(&K)._&IBN(&K)) Slot for bit name
&(BitDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte

Ago .NMLp Go get next name
.NewBN ANop , New Byte No
&NBN SetA &NBN+1 Increment Byte No count
&BN(&NBN) SetA &(BitDef_&B._ByteNo) Save new Byte No
&IBN(&NBN) SetA 1 Set count of this Byte No to 1

LclC &(BitDef_Nm_&BN(&NBN)._1) Slot for first bit name
&(BitDef_Nm_&BN(&NBN)._1) SetC '&B' Save 1st Bit Name, this byte

Ago .NMLp Go get next name
.Pass2 ANop , Pass 2: scan Byte No list
&M SetA 0 Byte No counter
.BLp Aif (&M ge &NBN).Done Check if all Byte Nos done
&M SetA &M+1 Increment outer-loop counter
&X SetA &BN(&M) Get M-th Byte No
&K SetA 1 Set up inner loop
&Op SetC '&(BitDef_Nm_&X._&K).,L''&(BitDef_Nm_&X._&K)' 1st operand
.OpLp Aif (&K ge &IBN(&M)).GenOI Operand loop, check for done
&K SetA &K+1 Step to next bit in this byte
&Op SetC '&Op.+L''&(BitDef_Nm_&X._&K)' Add +L'bitname to operand

Ago .OpLp Loop (inner) for next operand
.GenOI ANop , Generate instruction for Byte No
&L OI &Op Turn bits ON
&L SetC '' Nullify label string

Ago .BLp Loop (outer) for next Byte No
.UnDef MNote 8,'BitOn: Name ''&B'' not defined by BitDef'

MExit
.Null MNote 8,'BitOn: Null argument at position &M.'
.Done MEnd

Figure 65. Bit-handling macros: set bits on

Part 3: Macro Techniques 163

152Optimized Bit Operations

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Bits sharing a byte need only one instruction:

ABCD BitOn b1,b2
+ABCD OI b1,L'b1+L'b2 Turn bits ON

Fbg BitOn b1,c1,d1,e1,b2,c2,d2,c3,b3,m2,c4,c5,m5,d6,c6,d7,b4,c7
+Fbg OI b1,L'b1+L'b2+L'b3+L'b4 Turn bits ON
+ OI c1,L'c1+L'c2+L'c3+L'c4+L'c5+L'c6+L'c7 Turn bits ON
+ OI d1,L'd1+L'd2 Turn bits ON
+ OI e1,L'e1 Turn bits ON
+ OI m2,L'm2 Turn bits ON
+ OI m5,L'm5 Turn bits ON
+ OI d6,L'd6+L'd7 Turn bits ON

• BitOn macro detects duplicates:

DupB1 BitOn b1,c2,c3,c4,c9,c10,b1 Duplicate bit name 'b1'
* 8,BitOn: Name 'b1' duplicated in operand list'

Some examples of calls to the BitOn macro are illustrated in the figure below. In each case, the
macro generates the minimum number of instructions necessary.

ABCD BitOn b1,b2
+ABCD OI b1,L'b1+L'b2 Turn bits ON

Fbg BitOn b1,c1,d1,e1,b2,c2,d2,c3,b3,m2,c4,c5,m5,d6,c6,d7,b4,c7
+Fbg OI b1,L'b1+L'b2+L'b3+L'b4 Turn bits ON
+ OI c1,L'c1+L'c2+L'c3+L'c4+L'c5+L'c6+L'c7 Turn bits ON
+ OI d1,L'd1+L'd2 Turn bits ON
+ OI e1,L'e1 Turn bits ON
+ OI m2,L'm2 Turn bits ON
+ OI m5,L'm5 Turn bits ON
+ OI d6,L'd6+L'd7 Turn bits ON

Figure 66. Bit-handling macros: examples of setting bits on

Extending this macro to create BitOff and BitInv macros is straightforward (we can use the
schemes illustrated in Figure 53 on page 147 and Figure 54 on page 147), and is left as an exer-
cise for the reader.

164 A+ + : Using HLASM's Macro Facility

153General “Branch if Bits On” Macro: Design

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Function: branch to target if all named bits are on

• Syntax: BBitOn (bitlist),target
Example: BBitOn (a,b,c,d),Label

• Optimize generated code using data created by BitDef

• If more than one byte is involved, need “skip-if-false” branches

┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐
 │ Test a ├───�│ Test b ├───�│ Test c ├───�│ Test d ├───�Target_Label
 └──┬─────┘ T └──┬─────┘ T └──┬─────┘ T └──┬─────┘ T

� False � False � False � False
│�────────────┴─────────────┴─────────────┘
�

 Next Statement (tagged by a macro─created “Skip Label”)

• Need only one test instruction for multiple bits in a byte!

Using Declared Bit Names in a BBitOn Macro

The BBitOn macro branches to a target label if all the specified bit names are on, using the
minimum number of instructions. The calling syntax is:

BBitOn (Bit_Name_List),Branch_Target

It also accepts a single non-parenthesized bit name for the first argument.

This macro requires a slightly different approach from the one used in the BitOn macro: if any of
the bits have been allocated in different bytes, we must invert the “sense” of all generated branch
instructions except the last. To see why this is so, suppose we wish to branch to XX if both BitA
and BitB are “true”, and the two bits have been allocated in the same byte:

DC B'0'
BitA Equ *-1,X'01' Allocate BitA
BitB Equ *-1,X'20' Allocate BitB
*

TM BitA,L'BitA+L'BitB Test BitA and BitB
BO XX Branch if both are ON

and only a single test instruction is needed. Now, suppose the two bits have been allocated to
distinct bytes:

DC B'0'
BitA Equ *-1,X'01' Allocate BitA

DC B'0'
BitB Equ *-1,X'20' Allocate BitB

Then, to branch if both are true, we must use two test instructions:

TM BitA,L'BitA Check BitA
BNO Not_True Skip-Branch if not true
TM BitB,L'BitB BitA is 1; check BitB
BO XX Branch to XX if both are true

Not_True DC 0H'0' Label holder for 'skip target'
BitB Equ *-1,X'20' Allocate BitB

This situation is illustrated in the following figure:

Part 3: Macro Techniques 165

┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐
 │ Test a ├───�│ Test b ├───�│ Test c ├───�│ Test d ├───�Target_Label
 └──┬─────┘ T └──┬─────┘ T └──┬─────┘ T └──┬─────┘ T

� False � False � False � False
│�────────────┴─────────────┴─────────────┘
�

 Next Statement (tagged by a macro-created “Skip Label”)

Figure 67. Bit-handling macros: branch if bits are on (flow diagram)

The implementation of the BBitOn macro uses a scheme similar to that in the BitOn macro: the
list of bit names in the first argument is extracted, and the same list of variables is constructed.
The second “pass” is different:

• If more than one pair of test and branch instructions will be generated, a “not true” or “skip”
label must be used for all branches except the last, and that label must be defined following
the final test and branch.

• The sense of all branches except the last must be “inverted” so that a branch will be taken to
the target label only if all the bits tested have been determined to be true.

154General “Branch if Bits On” Macro: Pseudo-Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Save macro─call label; Set NBN (Number of known Byte Numbers) = 0
DO for M = 1 to Number_of_1st─Arg_Items [phase 1]

Set B = Arg(M)
Declare created global variable &(BitDef_&B._Byte_Number)
IF (Its value is zero) ERROR EXIT, undeclared bitname
DO for K = 1 to NBN (Check byte number from the global variable)

IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)

Save B in bit name list for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)

Create Skip_Label (using &SYSNDX)
DO for M = 1 to NBN [phase 2]

Set Operand = 'First_Bitname,L''First_Bitname' (first operand)
DO for K = 2 to Number of bitnames in this Byte

Operand = Operand ││ '+L''Bitname(K)'
IF (M < NBN) GEN (label TM Operand ; BNO Skip_Label); set label = ''
ELSE GEN (label TM Operand ; BO Target_label)

IF (NBN > 1) GEN (Skip_Label DS 0H)

A pseudo-code description of the BBitOn macro is shown in Figure 68 on page 167.

166 A+ + : Using HLASM's Macro Facility

Save macro-call label; Set NBN (Number of known Byte Numbers) = 0
DO for M = 1 to Number_of_1st-Arg_Items

Set B = Arg(M)
Declare created global variable &(BitDef_&B._Byte_Number)
IF (Its value is zero) ERROR EXIT, undeclared bit name
DO for K = 1 to NBN (Check byte number from the global variable)

IF (This Byte Number is known) Increment its count
ELSE Increment NBN (this Byte Number is new: set its count = 1)

Save B in bit name list for this Byte Number

(End Arg scan: have all byte numbers and their associated bit names)

Create Skip_Label (using &SYSNDX)
DO for M = 1 to NBN

Set Operand = 'First_Bitname,L''First_Bitname'
DO for K = 2 to Number of bitnames in this Byte

Operand = Operand || '+L''Bitname(K)'
IF (M < NBN) GEN (label TM Operand ; BNO Skip_Label); set label = ''
ELSE GEN (label TM Operand ; BO Target_label;Skip_Label DS 0H)

IF (NBN > 1) GEN (Skip_Label DS 0H)

Figure 68. Bit-handling macros: branch if bits are on: pseudo-code

155General Bit-Handling Macros: Branch if Bits On

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• BBitOn macro optimizes generated instructions (most error checks
omitted)

• Two “passes” over bit name list:

1. Scan, check, and save names, determine byte numbers (as in BitOn)

2. Generate optimized tests and branches;
if multiple bytes, generate “skip” tests/branches and label

Macro
&Lab BBitOn &NL,&T Bit Name List, Branch Target

Aif (N'&SysList ne 2 or '&NL' eq '' or '&T' eq '').BadArg
&L SetC '&Lab' Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&NL Number of names provided
.NmLp Aif (&M ge &NN).Pass2 Check if all names scanned
.* ─ ─ ─ (continued)

Part 3: Macro Techniques 167

156General Bit-Handling Macros: Branch if Bits On ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

.* ─ ─ ─ (continuation)
&M SetA &M+1 Step to next name
&B SetC '&NL(&M)' Pick off a name

GblA &(BitDef_&B._ByteNo) Declare GBLA with Byte No.
Aif (&(BitDef_&B._ByteNo) eq 0).UnDef Exit if undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN).NewBN Not in list, a new Byte No
&K SetA &K+1 Search next known Byte No

Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match
&J SetA 1 Check if name already specified
.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if name is unique

Aif ('&B' eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated
&J SetA &J+1 Search next name in this byte

Ago .CkDup Check further for duplicates
.DupNm MNote 8,'BBitOn: Name ''&B'' duplicated in operand list'

MExit
.NmOK ANop , No match, enter name in list
&IBN(&K) SetA &IBN(&K)+1 Have matching BN, count up by 1

LclC &(BitDef_Nm_&BN(&K)._&IBN(&K)) Slot for bit name
&(BitDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte

Ago .NMLp Go get next name
.* ─ ─ ─ (continued)

157General Bit-Handling Macros: Branch if Bits On ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

.* ─ ─ ─ (continuation)

.NewBN ANop , New Byte No
&NBN SetA &NBN+1 Increment Byte No count
&BN(&NBN) SetA &(BitDef_&B._ByteNo) Save new Byte No
&IBN(&NBN) SetA 1 Set count of this Byte No to 1

LclC &(BitDef_Nm_&BN(&NBN)._1) Slot for first bit name
&(BitDef_Nm_&BN(&NBN)._1) SetC '&B' Save 1st Bit Name, this byte

Ago .NMLp Go get next name
.Pass2 ANop , Pass 2: scan Byte No list
&M SetA 0 Byte No counter
&Skip SetC 'Off&SysNdx' False─branch target
.BLp Aif (&M ge &NBN).Done Check if all Byte Nos done
&M SetA &M+1 Increment outer─loop counter
&X SetA &BN(&M) Get M─th Byte No
&K SetA 1 Set up inner loop
&Op SetC '&(BitDef_Nm_&X._&K).,L''&(BitDef_Nm_&X._&K)' Operand
.OpLp Aif (&K ge &IBN(&M)).GenBr Operand loop, check for done
&K SetA &K+1 Step to next bit in this byte
&Op SetC '&Op.+L''&(BitDef_Nm_&X._&K)' Add next bit to operand

Ago .OpLp Loop (inner) for next operand
.* ─ ─ ─ (continued)

168 A+ + : Using HLASM's Macro Facility

158General Bit-Handling Macros: Branch if Bits On ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

.* ─ ─ ─ (continuation)

.GenBr ANop , Generate instruction for Byte No
Aif (&M eq &NBN).Last Check for last test

&L TM &Op Test if bits are ON
BNO &Skip Skip if not all ON

&L SetC '' Nullify label string
Ago .BLp Loop (outer) for next Byte No

.Last ANop , Generate last test and branch
&L TM &Op Test if bits are ON

BO &T Branch if all ON
Aif (&NBN eq 1).Done No skip target if just 1 byte

&Skip DC 0H'0' Skip target
MExit

.UnDef MNote 8,'BBitOn: Name ''&B'' not defined by BitDef'
MExit

.BadArg MNote 8,'BBitOn: Improperly specified argument list'

.Done MEnd

The actual BBitOn macro definition is shown in Figure 69.

Macro
&Lab BBitOn &NL,&T Bit Name List, Branch Target

Aif (N'&SysList ne 2 or '&NL' eq '' or '&T' eq '').BadArg
&L SetC '&Lab' Save label
&NBN SetA 0 No. of distinct Byte Nos.
&M SetA 0 Name counter
&NN SetA N'&NL Number of names provided
.NmLp Aif (&M ge &NN).Pass2 Check if all names scanned
&M SetA &M+1 Step to next name
&B SetC '&NL(&M)' Pick off a name

GblA &(BitDef_&B._ByteNo) Declare GBLA with Byte No.
Aif (&(BitDef_&B._ByteNo) eq 0).UnDef Exit if undefined

&K SetA 0 Loop through known Byte Nos
.BNLp Aif (&K ge &NBN).NewBN Not in list, a new Byte No
&K SetA &K+1 Search next known Byte No

Aif (&BN(&K) ne &(BitDef_&B._ByteNo)).BNLp Check match
&J SetA 1 Check if name already specified
.CkDup Aif (&J gt &IBN(&K)).NmOK Branch if name is unique

Aif ('&B' eq '&(BitDef_Nm_&BN(&K)._&J)').DupNm Duplicated
&J SetA &J+1 Search next name in this byte

Ago .CkDup Check further for duplicates

Figure 69 (Part 1 of 2). Bit-handling macros: macro to branch if bits are on

Part 3: Macro Techniques 169

.DupNm MNote 8,'BBitOn: Name ''&B'' duplicated in operand list'
MExit

.NmOK ANop , No match, enter name in list
&IBN(&K) SetA &IBN(&K)+1 Have matching BN, count up by 1

LclC &(BitDef_Nm_&BN(&K)._&IBN(&K)) Slot for bit name
&(BitDef_Nm_&BN(&K)._&IBN(&K)) SetC '&B' Save K'th Bit Name, this byte

Ago .NMLp Go get next name
.NewBN ANop , New Byte No
&NBN SetA &NBN+1 Increment Byte No count
&BN(&NBN) SetA &(BitDef_&B._ByteNo) Save new Byte No
&IBN(&NBN) SetA 1 Set count of this Byte No to 1

LclC &(BitDef_Nm_&BN(&NBN)._1) Slot for first bit name
&(BitDef_Nm_&BN(&NBN)._1) SetC '&B' Save 1st Bit Name, this byte

Ago .NMLp Go get next name
.Pass2 ANop , Pass 2: scan Byte No list
&M SetA 0 Byte No counter
&Skip SetC 'Off&SysNdx' False-branch target
.BLp Aif (&M ge &NBN).Done Check if all Byte Nos done
&M SetA &M+1 Increment outer-loop counter
&X SetA &BN(&M) Get M-th Byte No
&K SetA 1 Set up inner loop
&Op SetC '&(BitDef_Nm_&X._&K).,L''&(BitDef_Nm_&X._&K)' Operand
.OpLp Aif (&K ge &IBN(&M)).GenBr Operand loop, check for done
&K SetA &K+1 Step to next bit in this byte
&Op SetC '&Op.+L''&(BitDef_Nm_&X._&K)' Add next bit to operand

Ago .OpLp Loop (inner) for next operand
.GenBr ANop , Generate instruction for Byte No

Aif (&M eq &NBN).Last Check for last test
&L TM &Op Test if bits are ON

BNO &Skip Skip if not all ON
&L SetC '' Nullify label string

Ago .BLp Loop (outer) for next Byte No
.Last ANop , Generate last test and branch
&L TM &Op Test if bits are ON

BO &T Branch if all ON
Aif (&NBN eq 1).Done No skip target if just 1 byte

&Skip DC 0H'0' Skip target
MExit

.UnDef MNote 8,'BBitOn: Name ''&B'' not defined by BitDef'
MExit

.BadArg MNote 8,'BBitOn: Improperly specified argument list'

.Done MEnd

Figure 69 (Part 2 of 2). Bit-handling macros: macro to branch if bits are on

170 A+ + : Using HLASM's Macro Facility

159Examples of Optimized Test and Branch

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Minimum number of generated instructions

• All bits in one byte:

BBitOn (c5,c4,c3,c2),tb7
+ TM c5,L'c5+L'c4+L'c3+L'c2 Test if bits are ON
+ BO tb7 Branch if all ON

• Bits in multiple bytes:

BBitOn (b1,c2,b2,c3,d4,e2),tb7
+ TM b1,L'b1+L'b2 Test if bits are ON
+ BNO Off0054 Skip if not all ON
+ TM c2,L'c2+L'c3 Test if bits are ON
+ BNO Off0054 Skip if not all ON
+ TM d4,L'd4 Test if bits are ON
+ BNO Off0054 Skip if not all ON
+ TM e2,L'e2 Test if bits are ON
+ BO tb7 Branch if all ON
+Off0054 DC 0H'0' Skip target

Some examples of calls to the BBitOn macro showing the minimum number of generated
instructions are in the following figure:

TB4 BBitOn b1,TB5
+TB4 TM b1,L'b1 Test if bits are ON
+ BO TB5 Branch if all ON

BBitOn (c5,c4,c3,c2),tb7
+ TM c5,L'c5+L'c4+L'c3+L'c2 Test if bits are ON
+ BO tb7 Branch if all ON

 TB6 BBitOn (b1,c2,b2,c3,b3,b4,c4,b5,c5),tb4
+TB6 TM b1,L'b1+L'b2+L'b3+L'b4+L'b5 Test if bits are ON
+ BNO Off0051 Skip if not all ON
+ TM c2,L'c2+L'c3+L'c4+L'c5 Test if bits are ON
+ BO tb4 Branch if all ON
+Off0051 DC 0H'0' Skip target

BBitOn (b1,c2,b2,c3,d4,e2),tb7
+ TM b1,L'b1+L'b2 Test if bits are ON
+ BNO Off0054 Skip if not all ON
+ TM c2,L'c2+L'c3 Test if bits are ON
+ BNO Off0054 Skip if not all ON
+ TM d4,L'd4 Test if bits are ON
+ BNO Off0054 Skip if not all ON
+ TM e2,L'e2 Test if bits are ON
+ BO tb7 Branch if all ON
+Off0054 DC 0H'0' Skip target

Figure 70. Bit-handling macros: examples of calls to BBitOn macro

The extension of the BBitOn macro to a similar BBitOff macro is simple, and is left as an exercise.
This full set of macros can be used to define, manipulate, and test bit flags with reliability and
efficiency.

An interesting generalization of the BBitOn macro might be a modification causing a branch to the
Target_Label if any bit in the first-argument list is “on”. (Remember that the macro in Figure 69

Part 3: Macro Techniques 171

on page 169 branches to the target only if all bits are on.) Try adding a Type= keyword parameter
to the macro definition, specifying which type of branch is desired. For example, the new keyword
parameter might look like this:

BBitOn (a,b,c,d),Target,Type=All (default)
BBitOn (a,b,c,d),Target,Type=Any

where the default value (Type=All) causes the macro to work as described above. If Type=Any is
specified, the logic of the bit tests in the BBitOn macro must be modified slightly to cause a branch
to the Target_Label if any of the tested bits is on. This situation is illustrated in the following
figure:

┌────────┐ ┌────────┐ ┌────────┐ ┌────────┐
 │ Test a ├───�│ Test b ├───�│ Test c ├───�│ Test d ├───�Next Statement
 └──┬─────┘ F └──┬─────┘ F └──┬─────┘ F └──┬─────┘ F

� True � True � True � True
│�────────────┴─────────────┴─────────────┘
�

 Target_Label

Figure 71. Bit-handling macros: branch if any bits are on (flow diagram)

In this “Type=Any” case, no Skip_Label is needed!

160Case Study 8: Utilizing the Assembler's Data Types

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Overview of data typing

• Case Study 8a: use operand type attribute to generate correct literal
types

− Use base-language assembler-generated type attributes

• Case Study 8b: create macros to check conformance of instructions
and operand types

− Shortcomings of assembler-assigned type attributes

− Extension: instruction vs. operand vs. register consistency checking

• Case Study 8c: declare user data types and “operators” on them

− User-assigned (and assembler-maintained) data types

172 A+ + : Using HLASM's Macro Facility

161Using and Defining Assembler Data Types

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• We're familiar with type sensitivity in higher-level languages:

− Instructions generated from a statement depend on data types:

A = B + C ; '=' and '+' are polymorphic operators

− A, B, C might be integer, float, complex, Boolean, string, ...

• Most named assembler objects have a type attribute

− Usually assigned by the assembler

− Can exploit type attribute references for type-sensitive code sequences and
for operand validity checking

• Extensions to the assembler's “base language” types are possible:

− Assign our own type attributes (avoiding conflicts with Assembler's)

− Util ize created variable symbols to retain type information

Case Study 8: Utilizing The Assembler's Data Types
One of the most useful features of the macro language is that you can write macros whose
behavior depends on the types of its arguments. A macro definition can generate different instruc-
tion sequences, depending on what it can determine about its arguments. This behavior is
common in most higher-level languages; for example, the statement

A = B + C

may generate very different instructions depending on whether the variables A, B, and C have
been declared to be integer, floating, complex, Boolean, or character string (or mixtures of these,
as in PL/I), each possibly having different lengths or precisions. We will see that macros offer the
same flexibility.

These case studies show how macros can be used to provide increasingly powerful levels of
control over generated code.

• Case study 8a uses the assembler's native type attributes to determine the type of literal to use
in an instruction.

• Case study 8b creates macros that check for consistency between instructions and their oper-
ands, utilizing the AINSERT statement to simplify macro creation.

• Case study 8c uses user-defined type attributes for declaring “abstract types” for variables, and
illustrates how to use such abstract types to generate instructions with encapsulation of the
types for use by private methods.

Part 3: Macro Techniques 173

162Base-Language Type Sensitivity: Simple Polymorphism

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Intent: INCR macro increments a numeric var by a constant amt (or 1)

Syntax: INCR var[,amt] (default a m t = 1)
• Usage examples:

Day DS H Type H: Day of the week
Rate DS F Type F: Rate of speed
MyPay DS PL6 Type P: My salary
Dist DS D Type D: A distance
Wt DS E Type E: A weight
WXY DS X Type X: Type not valid for INCR macro
*
CC Incr Day Add 1 to Day
DD Incr Rate,─3 Decrease rate by 3

Incr MyPay,150.50 Add 150.50 to my salary
JJ Incr Dist,─3.16227766 Decrease distance by sqrt(10)
KK Incr Wt,─2E4,Reg=6 Decrement weight by 10 tons

Incr WXY,2 Test with unsupported type

• Use var's assembler type attribute to create compatible l iterals

− type of amt guaranteed to match type of var

163Base-Language Type Sensitivity: Simple Polymorphism ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Supported types are numeric: H, F, E, D, P
Macro , Increment &V by amount &A (default 1)

&Lab INCR &V,&A,&Reg=0 Default work register = 0
&T SetC T'&V Type attribute of 1st arg
&Op SetC '&T' Save type of &V for mnemonic suffix
&I SetC '1' Default increment

Aif ('&A' eq '').IncOK Increment now set OK
&I SetC '&A' Supplied increment (N.B. Not SETA!)
.IncOK Aif ('&T' eq 'F').F,('&T' eq 'P').P, (check base language types) X

('&T' eq 'H' or '&T' eq 'D' or '&T' eq 'E').T Valid types
MNote 8,'&SysMac.: Cannot use type ''&T'' with ''&V''.'
MExit

.F ANOP , Type of &V is F
&Op SetC '' Null opcode suffix for F (no LF opcode)
.T ANOP , Register─types D, E, H (and F)
&Lab L&Op &Reg,&V Fetch variable to be incremented

A&Op &Reg,=&T.'&I' Add requested increment as typed literal
ST&Op &Reg,&V Store incremented value
MExit

.P ANOP , Type of &V is P
&Lab AP &V,=P'&I' Incr packed variable with P─type literal

MEnd

reference the TYPECHEK macros?

Case Study 8a: Type Sensitivity with Simple Polymorphism

The assembler's assignment of type attributes to most forms of declared data lets us write macros
that utilize that type information to make decisions about instructions to be generated.

Suppose we want to write a macro INCR to add a constant value to a variable, with default
increment 1 if no value is specified in the macro call. Because we know the assembler type
assigned to the variable, we can use that same type for the constant increment.

174 A+ + : Using HLASM's Macro Facility

Macro
&Lab INCR &V,&A,&Reg=0
&T SetC T'&V Type attribute of 1st arg
&Op SetC '&T' Save type of &V for mnemonic suffix
&I SetC '1' Default increment

Aif ('&A' eq '').IncOK Increment now set OK
&I SetC '&A' Supplied increment (N.B. Not SETA!)
.IncOK Aif ('&T' eq 'F').F,('&T' eq 'P').P, (check base language types) X

('&T' eq 'H' or '&T' eq 'D' or '&T' eq 'E').T Valid types
MNote 8,'&SysMac.: Cannot use type ''&T'' with ''&V''.'
MExit

.F ANOP , Type of &V is F
&Op SetC '' Null opcode suffix for F (no LF opcode)
.T ANOP , Register-types D, E, H (and F)
&Lab L&Op &Reg,&V Fetch variable to be incremented

A&Op &Reg,=&T.'&I' Add requested increment
ST&Op &Reg,&V Store incremented value
MExit

.P ANOP , Type of &V is P
&Lab AP &V,=P'&I' Increment variable

MEnd

Figure 72. Macro type sensitivity to base language types

The macro first determines the type attribute of the variable &V, and sets the increment value &I.
The type attribute is checked for one of the five allowed types: D, E, F, H, and P. Finally, an
instruction sequence appropriate to the variable's type is generated to perform the requested
incrementation. This macro works because we can use the type attribute information about the
variable &V to create a literal of the same type.

If the symbol naming the data to be incremented, a MNOTE message is issued, using the &SysMac
system variable symbol to capture the name of the issuing macro.

This macro illustrates a form of polymorphism: the operation it performs depends on the type(s)
of its argument(s).

Some examples of calls to the INCR macro are shown in the following figure.

Day DS H Type H: Day of the week
Rate DS F Type F: Rate of speed
MyPay DS PL6 Type P: My salary
Dist DS D Type D: A distance
Wt DS E Type E: A weight
WXY DS X Type X: Type not valid for INCR macro
*
CC Incr Day Add 1 to Day
DD Incr Rate,-3 Decrease rate by 3

Incr MyPay,150.50 Add 150.50 to my salary
JJ Incr Dist,-3.16227766 Decrease distance by sqrt(10)
KK Incr Wt,-2E4,Reg=6 Decrement weight by 10 tons

Incr WXY,2 Test with unsupported type
+ *** MNOTE *** 8,INCR: Cannot use type 'X' with 'WXY'.

MEnd

Figure 73. Examples: macro type sensitivity to base language types

Part 3: Macro Techniques 175

164Base-Language Type Sensitivity: Generated Code

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Code generated by INCR macro (see slide 162)
 CC Incr Day Add 1 to Day
+CC LH 0,Day Fetch variable to be increment
+ AH 0,=H'1' Add requested increment
+ STH 0,Day Store incremented value
 DD Incr Rate,─3,Reg=15 Decrease rate by 3
+DD L 15,Rate Fetch variable to be increment
+ A 15,=F'─3' Add requested increment
+ ST 15,Rate Store incremented value

Incr MyPay,150.50 Add 150.50 to my salary
+ AP MyPay,=P'150.50' Increment variable
 JJ Incr Dist,─3.16227766 Decrease distance by SQRT(10)
+JJ LD 0,Dist Fetch variable to be increment
+ AD 0,=D'─3.16227766' Add requested increment
+ STD 0,Dist Store incremented value
 KK Incr Wt,─2E4,Reg=6 Decrement weight by 10 tons
+KK LE 6,Wt Fetch variable to be increment
+ AE 6,=E'─2E4' Add requested increment
+ STE 6,Wt Store incremented value

Incr WXY,2 Test with unsupported type
+ *** MNOTE *** 8,INCR: Cannot use type 'X' with 'WXY'.

Examples of the code generated by the INCR macro are shown in Figure 74.

 CC Incr Day Add 1 to Day
+CC LH 0,Day Fetch variable to be increment
+ AH 0,=H'1' Add requested increment
+ STH 0,Day Store incremented value

 DD Incr Rate,-3,Reg=15 Decrease rate by 3
+DD L 15,Rate Fetch variable to be increment
+ A 15,=F'-3' Add requested increment
+ ST 15,Rate Store incremented value

Incr MyPay,150.50 Add 150.50 to my salary
+ AP MyPay,=P'150.50' Increment variable

 JJ Incr Dist,-3.16227766 Decrease distance by sqrt(10)
+JJ LD 0,Dist Fetch variable to be increment
+ AD 0,=D'-3.16227766' Add requested increment
+ STD 0,Dist Store incremented value

 KK Incr Wt,-2E4,Reg=6 Decrement weight by 10 tons
+KK LE 6,Wt Fetch variable to be increment
+ AE 6,=E'-2E4' Add requested increment
+ STE 6,Wt Store incremented value

Incr WXY,2 Test with unsupported type
+ *** MNOTE *** 8,INCR: Cannot use type 'X' with 'WXY'.

Figure 74. Examples: macro type sensitivity: incr macro generated code

Type sensitivity of this form can be used in many applications, and can help simplify program
logic and structure.

A useful exercise is to modify the INCR macro to use instructions with immediate operands wher-
ever possible.

176 A+ + : Using HLASM's Macro Facility

165Shortcomings of Assembler-Assigned Types

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Suppose amt is a variable, not a constant...

− Need an ADD2 macro: syntax like ADD2 var,amt

• What if the assembler types of var and amt don't conform?

− Mismatch? Might data type conversions be required? How will we know?

Rate DS F Rate of speed
MyPay DS PL6 My salary

ADD2 MyPay,Rate Add (binary) Rate to (packed) MyPay ??

• Assembler data types know nothing about “meaning” of variables,
only their hardware representation; so, typing is very weak!

Day DS H Day of the week
Rate DS F Rate of speed
Dist DS D A distance
Wt DS E A weight

* Following assembler types conform numerically, but not logically!

ADD2 Rate,Day Add binary Day to Rate (??)
ADD2 Dist,Wt Add floating Distance to Weight (??)

• Case Study 9 shows how to fix this

Shortcomings of Assembler-Assigned Types

While many benefits are achievable from utilizing assembler type attributes, they do not provide
as reliable a checking mechanism as we might need. If we wish to add two variables using a macro
named ADD2 that works like the INCR macro just described, two problems arise:

1. The types of the variables to be added may not conform: they don't have the same assembler-
assigned type attribute. For example, let some variables be defined as in Figure 72 on
page 175:

Rate DS F Rate of speed
MyPay DS PL6 My salary

Then, if we write a macro call like

ADD2 MyPay,Rate Add binary Rate to packed MyPay

some additional conversion work is needed because the types of the two variables do not allow
direct addition. Such conversions are sometimes easy to program, either with in-line code or
with a call to a conversion subroutine. However, as the number of allowed types grows, the
number of needed conversions can grow almost as the square of the number of types.

2. The more serious problem is that the assembler-assigned types may conform, but the pro-
grammer's “intended” or “logical” types may have no sensible relationship to one another!
Consider the same set of definitions:

Day DS H Day of the week
Rate DS F Rate of speed
Dist DS D A distance
Wt DS E A weight

Then, it is clear that we can write simple macros to implement these additions:

ADD2 Rate,Day Add binary Halfword to Fullword
ADD2 Dist,WT Add floating Distance to Weight

Wt DS E A weight

because the data types conform: halfword and fullword binary additions and short and long
floating additions are supported by hardware instructions.

Part 3: Macro Techniques 177

But what is being added? In the first example, we are adding a “day” to a “rate” and in the
second we are adding a “distance” to a “weight”. Neither of these operations makes sense in
the real world, even though a computer will blindly add the numbers representing these quan-
tities.

This lack of programmer-defined meaning (sometimes called “strong typing”) can be a serious
shortcoming of the Assembler Language, but it is easily overcome by defining and using macros,
and by use of Program Attributes, as described in “Case Study 9: Using Program Attributes” on
page 203.

166Symbol Attributes and Lookahead Mode

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Attributes entered in the symbol table when symbol is defined

• Attribute references are resolved during conditional assembly by

1. Finding them in the symbol table, or

2. Forward-scanning source f i le (“Lookahead Mode”) for symbol's definit ion

− No macro definit ion/generation, no substitution, no AGO/AIF
− Symbol attr ibutes may change during f inal assembly
− Scanned records are saved (SYSIN is read only once!)

• Symbols generated by macros can't be found in Lookahead Mode

− Unknown or partially-defined symbols assigned type attribute 'U'

• Symbol attributes needed for desired conditional assembly results
must usually be defined before they are referenced

• Use LOCTR instruction to “group” code and data separately

− Data declarations can precede code in source, but follow it in storage

Symbol Attributes and Lookahead Mode

There is a potential problem in utilizing attribute information in conditional assembly: the attri-
butes might not be available at the time they are needed. A statement defining a symbol might
occur later in the source file than a macro that references the symbol's attributes. When the
assembler notes that the symbol's attributes are currently unknown, it begins a forward scan of
the primary source file called “Lookahead Mode”.

In Lookahead mode, all scanned statements are saved (so that the primary input file is read only
once). No macros are encoded or expanded, and no AIF or AGO statements are obeyed. Symbol
definitions are entered in the symbol table with a flag indicating that their attributes are “partially
defined”. When the assembly completes, the attributes of a symbol might be different from the
attributes assigned during Lookahead mode.

The usual solution is to expand all macros that generate necessary symbol definitions before any
other macros that reference their attributes. While this might seem to force data to be generated in
a module ahead of (or mixed with) the code, the assembler's LOCTR statement helps you group
and rearrange related segments of the object code.

The LOCTR Statement

The LOCTR statement lets you define named groups of statements in such a way that all object
code generated from statements in each named group will eventually be combined with other
statements from groups with the same name, even though the various groups with other names
are scattered among one another in the source file. The following figure illustrates how LOCTR
works:

178 A+ + : Using HLASM's Macro Facility

 Source File Generated Code
┌──────────────────────┐ ┌──────────────────────┐
│CODE CSECT │ │CODE CSECT │
│ Code segment 1 │────────�│ Code segment 1 │
│ ─ ─ ─ │ │ ─ ─ ─ │
│DATA LOCTR │ ┌──�│ Code segment 2 │
│ Data segment 1 │──┐ │ │ ─ ─ ─ │
│ ─ ─ ─ │ │ │ │ │
│CODE LOCTR │ │ │ │ │
│ Code segment 2 │──┼──┘ │ │
│ ─ ─ ─ │ └─────�│ Data segment 1 │
│DATA LOCTR │ │ ─ ─ ─ │
│ Data segment 2 │────────�│ Data segment 2 │
│ ─ ─ ─ │ │ ─ ─ ─ │
│ END │ │ END │
└──────────────────────┘ └──────────────────────┘

Figure 75. Using the LOCTR statement to “group” code and data

LOCTR groups can help your macros derive correct type attribute information when needed.

167Case Study 8b: Simple Instruction-Operand Type Checking

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Check the second operand of the A instruction

− Accept type attributes type F, A, or Q; note others and proceed

• First, save the assembler's definition of instruction “A”

− OPSYN copies or nullifies a mnemonic definition

My_A OpSyn A Save definition of A as My_A
A OpSyn , Nullify assembler's definition of A

• Second, define a macro named “A” that eventually calls My_A
• Macro “A” checks the second operand for type F, A, or Q

Macro
&L A &R,&X

AIF (T'&X eq 'F' or T'&X eq 'A' or T'&X eq 'Q').OK
MNote 1,'Note! Second operand type not F, A, or Q.'

.OK ANop
&L My_A &R,&X

MEnd

• Allowed types are “hard coded” in this macro

Case Study 8b: Instruction-Operand Type Checking

The Assembler's type attribute values can be used to check for consistency between data types
and instruction types, as the following example will show. You may want to ensure that an
instruction in your application references only operands that are likely to be natural for that
instruction.

Suppose we wish to check the second operand of the Add (A) instruction to verify that its type is
only F, A, or Q. First, we use OPSYN to preserve the original definition of the A opcode as My_A:

My_A OpSyn A Save assembler's definition of A
A OpSyn , Nullify assembler's definition of A

Then, we can write a macro like this:

Part 3: Macro Techniques 179

Macro
&L A &R,&X

AIF (T'&X eq 'F' or T'&X eq 'A' or T'&X eq 'Q').OK
MNote 1,'Note! Second operand type not F, A, or Q.'

.OK ANop
&L My_A &R,&X

MEnd

We used the OPSYN statement to preserve the assembler's definition of the A instruction, and
then to remove A from the assembler's opcode table, where it will later be replaced by the macro
definition of A. The generated machine language instruction will be the same as it would be for
the assembler's “native” A instruction. The result of using this macro might look like the fol-
lowing:

A 1,D2
*** MNOTE *** 1,Note! Second operand type not F, A, or Q.

+ My_A 1,D2
 *
 D2 DC D'2'

To extend this example, we might choose to permit type attributes F and D (fullword and
doubleword constants), A, Q, and V (fullword address constants), and X (“almost anything”), and
flag uses of other types with a low-level message.

We will examine some generalizations of this simple example to show how the assembler can
provide very useful forms of consistency checking of instructions, operands, and registers.

168Base-Language Type Sensitivity: General Type Checking

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Intent: compatibil ity checking between instruction and operand types

• Define TypeChek macro to request type checking

Syntax: TypeChek mnemonic,valid_types
• Call TypeChek with mnemonic to check, and its allowed types

TypeChek L,'ADFQVX' Allowed types: AQV (adcons), D, F, X

• Sketch of a general macro to initiate type checking for one mnemonic:

Macro
TypeChek &Op,&Valid Mnemonic, set of valid types
GblC &(TypeCheck_&Op._Valid),&(TypeCheck_&Op)

&(TypeCheck_&Op._Valid) SetC '&Valid' Save valid types for this opcode
TypeCheck_&Op. OpSyn &Op. Save original opcode definition
&Op OpSyn , Disable previous definition of &Op
.* MNote *,'Mnemonic ''&Op.'' valid types are ''&(TypeCheck_&Op._Valid).''.'

MEnd

• Can be generalized to multiple mnemonics

− But: requires creating macros for each mnemonic...

180 A+ + : Using HLASM's Macro Facility

169Base-Language Type Sensitivity: General Type Checking ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• First, install L macro in the macro library:
Macro

&Lab L &Reg,&Operand
GblC &(TypeCheck_L_Valid) List of valid types for L

&TypOp SetC T'&Operand Type attribute of &Operand
&Test SetA Find('&(TypeCheck_L_Valid)','&TypOp') Check validity

AIf (&Test ne 0).OK Skip if valid
MNote 1,'Possible type incompatibility between L and ''&Operand.''?'

.OK ANop Now, do the original L instruction
&Lab TypeCheck_L &Reg,&Operand
.* TypeCheck_L was OPSYN'd to the L instruction by the TypeChek macro

MEnd

• Now, use L “ instruction” as usual:
 000084 5 A DS F A has type attribute F
 000088 6 B DS H B has type attribute H

─ ─ ─
 0001E4 5810F084 23 L 1,A Load from fullword
 0001E8 5820F088 24 L 2,B Load from halfword

*** MNOTE *** + 1,Possible type incompatibility between L and 'B'?

• Inconvenient: we must write a macro for each checked mnemonic

Instruction-Operand Type Checking

First, we will define a TypeChek macro whose arguments are an instruction mnemonic and a set of
allowed types. (This approach is more general than strictly needed, but it will allow easy gener-
alization to multiple mnemonics with the same set of permitted operand types.) This macro will
define two created variable symbols, &(TypeCheck_&Op._Valid) with the types, and
&(TypeCheck_&Op) with a substituted name TypeCheck_&Op for saving the meaning of the mne-
monic to be checked.

Macro
TypeChek &Op,&Valid Mnemonic, set of valid types
GblC &(TypeCheck_&Op._Valid),&(TypeCheck_&Op)

&(TypeCheck_&Op._Valid) SetC '&Valid' Save valid types for this opcode
TypeCheck_&Op. OpSyn &Op. Save original opcode definition
&Op OpSyn , Disable previous definition of &Op
.* MNote *,'Mnemonic ''&Op.'' valid types are ''&(TypeCheck_&Op._Valid).'''

MEnd

Figure 76. Instruction-operand type checking: typechek macro

This definition of the TypeChek macro may be called to define checked types for other mne-
monics, also. When the TypeChek macro is called:

TypeChek L,'ADFQVX' Allowed types: AQV (adcons), DF, X

it will nullify the Assembler's definition of the L mnemonic.

Thus, the second step is to define an L macro which will be added to the macro library used
before the type-checked application is assembled.

Part 3: Macro Techniques 181

Macro
&Lab L &Reg,&Operand

GblC &(TypeCheck_L_Valid) List of valid types for L
&TypOp SetC T'&Operand Type attribute of &Operand
&Test SetA Find('&(TypeCheck_L_Valid)','&TypOp') Check validity

AIf (&Test ne 0).OK Skip if valid
MNote 1,'Possible type incompatibility between L and ''&Operand.''?'

.OK ANop Now, do the original L instruction
&Lab TypeCheck_L &Reg,&Operand

MEnd

Figure 77. Instruction-operand type checking: “instruction” macro

Now, when the L “instruction” is used, it will actually invoke the L macro, which then checks the
type of the operand and issues an MNOTE message in case of a mismatch. Finally, the correct
instruction (whose true definition was saved by the TypeChek macro as TypeCheck_L) is generated,
with the same operands as the call to the L macro.

 000084 5 A DS F A has type attribute F
 000088 6 B DS H B has type attribute H

- - -
 0001E4 5810F084 23 L 1,A Load from fullword
 0001E8 5820F088 24 L 2,B Load from halfword

*** MNOTE *** + 1,Possible type incompatibility between L and 'B'?

Figure 78. Instruction-operand type checking: examples

As the above example illustrates, using an operand of a “non-approved” type will be flagged.

While useful, this scheme requires writing a separate macro for each instruction to be type-
checked. Installing the macros in a library needs to be done only once, but their presence could
cause problems if other users accidentally reference the macros when no type checking was
intended. These difficulties can be overcome by generalizing the TypeChek macro, and by finding a
way for the instruction-replacement macros to be generated automatically.

170Base-Language Type Checking: Extensions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Previous technique requires a macro for each checked instruction

− Not difficult to write, just a lot of repetitive work

− Macros must be available in a l ibrary

— If not using TypeChek, don't use the instruction-replacement macros!

• Better:

− Specify a list of instructions to be checked and their allowed operand types:

TypeChek (L,ST,A,AL,S,SL,N,X,O),'ADFQVX'

− The TypeChek macro generates the replacement macros as needed

− Using AINSERT!

182 A+ + : Using HLASM's Macro Facility

Instruction-Operand Type Checking (Generalized)

Obviously, we could define the list of allowed types in the L macro itself, and eliminate the
TypeChek macro; but we will still need statements like

TypeChek_L Opsyn L Save original definition of L
L OpSyn , Null operand eliminates 'L' mnemonic

to “nullify” the assembler's built-in definition, for each mnemonic to be checked.

The scheme illustrated here can be generalized in many ways. For example, the TypeChek macro
could accept a list of mnemonics that share the same set of valid types:

TypeChek (L,ST,A,AL,S,SL,N,X,O),'ADFQVX'

which allows handling mnemonics in related groups.

One possibility is to have the TypeChek macro generate a macro for each instruction to be
checked; each macro has the same pattern for a given class of mnemonics. Unfortunately, one key
capability of the original macro and conditional assembly language was missing: when a macro is
defined inside another macro (so that expanding the first causes the second to become defined),
values cannot be substituted from the scope of the enclosing “outer” macro definition into the
statements of the enclosed “inner” macro definition. (See “Nested Macro Definitions” on
page 100.) The ability to parameterize generated macros would make it much easier to create the
“mnemonic” macros directly.

This shortcoming is eliminated by the AINSERT statement.

171The AINSERT Statement

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• AINSERT allows generation of fully parameterized records

AINSERT 'string',[FRONT│BACK]

• Placed at front or back of assembler's internal buffer queue

− String padded or truncated to form 80-byte record

• HLASM reads from the FRONT of the buffer before reading from SYSIN

− Input from SYSIN resumes when the buffer is empty

• Operand string may contain “almost anything”

AInsert '* comment about &SysAsm. &SysVer.',BACK
>* comment about HIGH LEVEL ASSEMBLER 9.7.72

− The '>' character in “column 0” indicates an AINSERTed statement

• Use AINSERT to generate tailored, parameterized macro definitions

The AINSERT Statement

Sometimes it is useful to exercise greater control over the order in which generated statements will
be processed. The AINSERT statement lets you generate complete statements in almost any
order, and removes many of the restrictions associated with encoding.

The syntax of AINSERT is

AINSERT 'string',[FRONT|BACK]

The first operand may contain points of substitution.

Part 3: Macro Techniques 183

The assembler maintains an internal buffer queue into which AINSERT strings are placed,
padded or truncated to an 80-byte record. Each record is placed either at the front or back end of
the buffer, depending on the second AINSERT operand. When the assembler is ready to read
records from the primary input (SYSIN) file, it first checks the AINSERT buffer: if it's not
empty, records are taken from the buffer until it is empty, and input then resumes from the
primary input stream.

AINSERT removes many limitations on substitutable fields:

AInsert '* comment about &SysAsm. &SysVer.',BACK
>* comment about HIGH LEVEL ASSEMBLER 9.7.72

AInsert '* Assembled &SYSDatC.',BACK
+ AInsert '* Assembled 20350705',BACK
>* Assembled 20350705

where the “>” character in the listing is the assembler's indication of a statement inserted into the
statement stream via AINSERT. (Remember that AINSERTed statements are treated as part of
the primary input stream, and are not within the body of any existing macro.)

We will now use AINSERT to generate the desired instruction-replacement macros.

172Base-Language Type Checking: Generated Macros

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Generate each type-checking macro using AINSERT
TypeChek (L,ST,A,AL,S,SL,N,X,O),'ADFQVX' Desired style

• Sketch of revised inner loop of TypeChek macro:
&Op SetC '&Ops(&K)' Pick off K─th mnemonic
&Op OpSyn , Disable previous definition of &Op
.* Generate macro to redefine &Op for type checking (note paired ', &)
 AInsert ' Macro ',BACK
 AInsert '&&Lab &Op. &&Reg,&&Opd',BACK
 AInsert ' GblC &&(TypeCheck_&Op._Valid)',BACK
 AInsert '&&TO SetC T''&&Opd ',BACK
 AInsert '&&T SetA Find(''&&(TypeCheck_&Op._Valid)'',''&&TO'')',BACK
 AInsert ' AIf (&&T ne 0).OK ',BACK
 AInsert ' MNote 1,''Possible type conflict between &Op and &&Opd?''',B*

ACK
 AInsert '.OK ANop ',BACK
 AInsert '&&Lab TypeCheck_&Op &&Reg,&&Opd ',BACK Assumes previous OPSYN
 AInsert ' MEnd ',BACK
.* End of macro generation

• Compare to “hand-coded” L macro (slide 169)

In Figure 77 on page 182 we saw how the “instruction” macro was created for a single mne-
monic (L). We can use the AINSERT statement in the TypeChek macro to create macros for
each mnemonic.

These examples have used RX-type instructions to show how to set up a type-checking macro.
Assuming that we may want to generalize to other instruction types, we first write a TypChkRX
macro (based on the TypeChek macro illustrated above). The same techniques are used, and gen-
erate the needed macros for each mnemonic:

184 A+ + : Using HLASM's Macro Facility

Macro
TypChkRX &Ops,&Valid

&K SetA 1 Count of mnemonics
.Prcss ANop Process each opcode in &Ops
&Op SetC '&Ops(&K)' Pick off K-th mnemonic

GblC &(TypeCheck_&Op._Valid),&(TypeCheck_&Op.)
&(TypeCheck_&Op._Valid) SetC '&Valid' Save valid types
&(TypeCheck_&Op.) SetC 'TypeCheck_&Op.' Create new mnemonic
&(TypeCheck_&Op.) OpSyn &Op Save original mnemonic
&Op OpSyn , Disable previous definition of &Op
MNote *,'Mnemonic &Op. valid types are &(TypeCheck_&Op._Valid)'

.* Generate macro to redefine &Op for type checking
 AInsert ' Macro ',BACK
 AInsert '&&Lab &Op. &&Reg,&&Opd',BACK
 AInsert ' GblC &&(TypeCheck_&Op._Valid)',BACK
 AInsert '&&TO SetC T''&&Opd ',BACK
 AInsert '&&T SetA Find(''&&(TypeCheck_&Op._Valid)'',''&&TO'')',BACK
 AInsert ' AIf (&&T ne 0).OK ',BACK
 AInsert ' MNote 1,''Possible type conflict between &Op and &&Opd?''',B*

ACK
 AInsert '.OK ANop ',BACK
 AInsert '&&Lab TypeCheck_&Op &&Reg,&&Opd ',BACK Assumes previous OPSYN
 AInsert ' MEnd ',BACK
.* End of macro generation
&K SetA &K+1 Increment &K

AIf (&K le N'&Ops).Prcss If not finished get next opcode
MEnd

Figure 79 (Part 1 of 2). Instruction-operand type checking: generated macro definitions

A call to the TypChkRX macro causes a “mnemonic” macro to be created for each mnemonic in
the first operand:

TypChkRX (L,A,ST),'ADFQVX' Allowed types: AQV (adcons), D, F, X

will generate macros for mnemonics L, A, and ST, each of which validates that its operand type is
one of the allowed types.

A minor detail worth noting: the second operand of the macro is enclosed in apostrophes, in case
we may want to include user-defined (lower-case or special-character) types in the &Valid
operand. If the user specifies the COMPAT(MACROCASE) option, unquoted lower-case letters
would be converted internally to upper case before being made available to the expansion of the
macro.

Part 3: Macro Techniques 185

173Example of Generated Type-Checking Macros

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

1. The AINSERT statements for the “L” macro:
> MACRO
>&LAB L ®,&OPD
> GBLC &(TYPECHECK_L_VALID)
>&TO SETC T'&OPD
>&T SETA ('&(TYPECHECK_L_VALID)' FIND '&TO')
> AIF (&T NE 0).OK
> MNOTE 1,'POSSIBLE TYPE CONFLICT BETWEEN L AND &OPD?'
>.OK ANOP
>&LAB TYPECHECK_L ®,&OPD
> MEND
> MACRO
>&LAB ST ®,&OPD

2. The generated macro “in action”
L 1,A

+ TYPECHECK_L 1,A
ST 1,B

 *** MNOTE *** 1,POSSIBLE TYPE CONFLICT BETWEEN ST AND B?
+ TYPECHECK_ST 1,B

A 1,B
 *** MNOTE *** 1,POSSIBLE TYPE CONFLICT BETWEEN A AND B?

─ ─ ─
 A DS F
 B DS H

The following figure illustrates the operation of the TypChkRX macro. (Many repetitive lines
were removed; if you don't want all the AINSERT statements and AINSERTed records to
appear in your listing, you could modify the macro to generate PRINT OFF and PRINT ON
statements in appropriate places.)

TypChkRX (L,ST,A,AL,S,SL,N,X,O),ADFQVX
+TypeCheck_L OpSyn L Save original opcode
+L OpSyn , Disable previous definition of &Op
+*,Mnemonic L valid types are ADFQVX
+ AInsert ' Macro ',BACK
+ AInsert '&&Lab L &&Reg,&&Opd',BACK
+ AInsert ' GblC &&(TypeCheck_L_Valid)',BACK
+ AInsert '&&TO SetC T''&&Opd ',BACK
+ AInsert '&&T SetA (''&&(TypeCheck_L_Valid)'' Find ''&&TO'')',BACK
+ AInsert ' AIf (&&T ne 0).OK ',BACK
+ AInsert ' MNote 1,''Possible type conflict between L and &&Opd?''',BACX
+ K
+ AInsert '.OK ANop ',BACK
+ AInsert '&&Lab TypeCheck_L &&Reg,&&Opd ',BACK
+ AInsert ' MEnd ',BACK
+TypeCheck_ST OpSyn ST Save original opcode
+ST OpSyn , Disable previous definition of &Op
+*,Mnemonic ST valid types are ADFQVX

 ... etc. etc.
 ... many AINSERT statements later, the assembler reads the buffer:

Figure 80. Generated statements from TYPCHKRX macro

186 A+ + : Using HLASM's Macro Facility

 ... etc. etc.
 ... many macro definitions later, the assembler reads the input file:

L 1,A
+ TypeCheck_L 1,A

ST 1,B
 *** MNOTE *** 1,Possible type conflict between ST and B?
+ TypeCheck_ST 1,B

A 1,B
 *** MNOTE *** 1,Possible type conflict between A and B?

- - -
 A DS F
 B DS H

Figure 80. Generated statements from TYPCHKRX macro

174User-Assigned Assembler Type Attributes

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• We can utilize third operand of EQU for special types:

symbol EQU expression,length,type

− Assembler's “native” types are upper case letters, $, and '@'

− We can use lower case letters for user-assigned types
(actually, any term < 256)

• Example (extend the REGS macro, slide 103) to create a TYPEREGS
macro:

GR&N EQU &N,,C'g' Assign value and type attribute 'g' for GPR
FR&N EQU &N,,C'f' Assign value and type attribute 'f' for FPR

• GRnn symbols have type attribute 'g', FRnn have 'f'

• Can use type attribute to check symbols used in register operands

• Extension of instruction/operand type checking

User-Defined Assembler Type Attributes

One can obtain some relief from the limitations of the Assembler's assignment of type attributes
by using the third operand of an EQU statement to assign user-defined type attributes to program
objects. As a reminder, the full syntax of the EQU statement is

symbol Equ expression[,[length] [,type_expression]]

The type_expression in the third operand must evaluate to an absolute quantity in the range from
0 to 255. The “native” type attributes assigned by the assembler are all upper-case letters, the '$'
character, or the '@' character. Thus, the other values can be used for user-assigned attributes.

We will see in “Case Study 9: Using Program Attributes” on page 203 that Program Attributes
provide a more powerful, flexible, and generalized symbol-attribute facility than the assembler's
“native” type attribute.

A simple generalization of two previous examples will show how we could do further assembly-
time checking of instruction usage. First, consider the previously defined REGS macro (see
Figure 33 on page 114) that generates symbolic names to refer to various types of registers. If we

Part 3: Macro Techniques 187

modify the EQU statements in those macros to include a user-assigned type attribute, we could
(for example) assign type 'g' to general purpose registers, 'f' to floating point registers, and so
forth. Then, a simple extension of the TypeChek macro (or the L macro) can be used to verify
that a symbolic name used to designate a register is of the correct type.

First, in the TYPEREGS macro, the EQU statements are modified:

GR&N EQU &N,,C'g' Assign value and type attribute 'g' for GPRs
FR&N EQU &N,,C'f' Assign value and type attribute 'f' for FPRs

- - - etc.

Suppose we extend the REGS macro described in “Case Study 1: Defining Equated Symbols for
Registers” on page 110 to create a TYPEREGS macro that assigns a special type attribute to the
symbols naming each register. Figure 81 shows how to do this.

MACRO
TypeRegs
AIF (N'&SysList eq 0).Exit

&J SetA 1 Initialize argument counter
.GetArg ANOP
&T SetC Upper('&SysList(&J)') Pick up an argument
&N SetA ('ACFG' Index '&T') Check type

AIF (&N eq 0).Bad Error if not a supported type
GBLB &(&T.Regs_Done) Declare global variable symbol
AIF (&(&T.Regs_Done)).Done Test if true already

&L SetC Lower('&T') Lower case for type attribute
&N SetA 0
.Gen ANop , Generate Equ statements
&T.R&N Equ &N,,C'&L'
&N SetA &N+1

AIf (&N le 15).Gen
&(&T.Regs_Done) SetB (1) Indicate definitions have been done
.Next ANOP
&J SetA &J+1 Count to next argument

AIF (&J le N'&SysList).GetArg Get next argument
MEXIT

.Bad MNOTE 8,'&SysMac. -- Unknown type ''&T.''.'
MEXIT

.Done MNOTE 0,'&sysMac. -- Previously called for type &T..'
AGO .Next

.Exit MEND

Figure 81. Instruction-operand type checking: assigning register types

This macro assigns the same symbolic names to register symbols as before, but also assigns
special type attributes that specify the type of register. These types can be used in the macros
generated for each instruction type to verify correct usage.

A sample of TypeRegs generated statements is shown in the following figure.

188 A+ + : Using HLASM's Macro Facility

TYPEREGS F,G
+FR0 Equ 0,,C'f'
+FR1 Equ 1,,C'f'
+FR2 Equ 2,,C'f'

... etc.
+FR15 Equ 15,,C'f'

+GR0 Equ 0,,C'g'
+GR1 Equ 1,,C'g'
+GR2 Equ 2,,C'g'

... etc.
+GR15 Equ 15,,C'g'

175Instruction-Operand-Register Type Checking

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Intent: check “typed” register names in type-checking macros
• Example: extend L macro (see slides 168 and 169)

Macro
&Lab L &Reg,&Operand

GblC &(TypeCheck_L_Valid),&(TypeCheck_L_RegType)
&TypOp SetC T'&Operand Type attribute of &Operand
&Test SetA Find('&(TypeCheck_L_Valid)','&TypOp') Check validity

AIf (&Test ne 0).OK_Op Skip if valid
MNote 1,'Possible type incompatibility between L and ''&Operand.''?'

.OK_Op ANop Now, do the original L instruction

.* Added checking for register type:
&TypRg SetC T'&Reg Type attribute of &Reg
&Test SetA Find('&(TypeCheck_L_RegType)','&TypRg') Check validity

AIf (&Test ne 0).OKReg Skip if valid
MNote 1,'Possible register incompatibility between L and ''&Reg.''?'

.OKReg ANop Now, do the original L instruction
&Lab TypeCheck_L &Reg,&Operand

MEnd
• Typical output (assuming F names a floating-point constant):

L FR4,F
*** MNOTE *** 1,Possible type incompatibility between L and 'F'?
*** MNOTE *** 1,Possible register incompatibility between L and 'FR4'?

Instruction-Operand-Register Type Checking

After assigning user-defined type attributes to the register symbols generated by the TYPEREGS
macro, the TypeChek macro (see Figure 76 on page 181) can be modified by adding a keyword
parameter &RegType, with a default value that includes 'g':

Macro
TypeChek &Op,&Valid,&RegType='gN' Mnemonic, set of types, RegType
GblC &(TypeCheck_&Op._Valid),&(TypeCheck_&Op)
GblC &(TypeCheck_&Op._RegType)

&(TypeCheck_&Op._Valid) SetC '&Valid' Save valid operand types
&(TypeCheck_&Op._RegType) SetC '&RegType'(2,K'&RegType-2) Save valid reg types

- - - etc.

The default &RegType values allow self-defining terms with type attribute 'N' (that is, self-
defining constants) and declared register types ('g') as register operands. As mentioned before,
the &RegType operand is a quoted string, to avoid the possibility that the
COMPAT(MACROCASE) option might internally convert the argument value to upper case.
(Note: if you want to use the apostrophe character as the value of a user-assigned type attribute,
you will need to add statements to remove the quotes from each end of the &Valid and

Part 3: Macro Techniques 189

&RegType operands before assigning the strings to the global variables
&(TypeCheck_&Op._Valid) and &(TypeCheck_&Op._RegType) respectively.)

An enhanced L macro (see Figure 77 on page 182) can then be used to validate both the register
type and the operand type:

Macro
&Lab L &Reg,&Operand

GblC &(TypeCheck_L_Valid),&(TypeCheck_L_RegType)
&TypOp SetC T'&Operand Type attribute of &Operand
&Test SetA Find('&(TypeCheck_L_Valid)','&TypOp') Check validity

AIf (&Test ne 0).OK_Op Skip if valid
MNote 1,'Possible type incompatibility between L and ''&Operand.''?'

.OK_Op ANop , Now, check register validity
&TypRg SetC T'&Reg Type attribute of &Reg
&Test SetA Find('&(TypeCheck_L_RegType)','&TypRg') Check validity

AIf (&Test ne 0).OKReg Skip if valid
MNote 1,'Possible register incompatibility between L and ''&Reg.''?'

.OKReg ANop , Now, do the original L instruction
&Lab TypeCheck_L &Reg,&Operand

MEnd

Figure 82. Instruction-operand-register type checking: “instruction” macro

This modification checks that all values provided as register operands for the L instruction are
properly defined.

An example of the output of these macros is shown in the following figure:

TYPEREGS F,G Create typed names for registers
TYPCHKRX L,FDEAVQX,RegType='gN' L instruction valid types

L 1,A Register operand self-defining
+ TypeCheck_L 1,A

L GR1,C
 *** MNOTE *** 1,Possible type incompatibility between L and 'C'?

+ TypeCheck_L GR1,C
L FR2,D Floating-point register

 *** MNOTE *** 1,Possible register incompatibility between L and 'FR2'?
+ TypeCheck_L FR2,D

L FR4,F Float register and invalid operand
 *** MNOTE *** 1,Possible type incompatibility between L and 'F'?
 *** MNOTE *** 1,Possible register incompatibility between L and 'FR4'?
+ TypeCheck_L FR4,F

 A DS F
 C DS CL3
 D DS D
 F DS S

These type-checking examples are incomplete, and are intended more as a detailed sketch than a
completed macro package. Feel free to extend and adapt them to suit your needs.

190 A+ + : Using HLASM's Macro Facility

176Case Study 8c: Encapsulated Abstract Data Types

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Want programmers to focus on the application, not machine details

• Goal: complete set of application-oriented macros defining a
specialized “application language”

• Intent: declare two user types, and define operations on them

• Types: Date and Duration (or Interval) between 2 Dates

− Unfortunately, both Date and Duration start with D

− So, we'l l use “Interval” as the safer (if less intuit ive) term for “duration”

— Interval = elapsed t ime in days

− We will use lower case letters 'd' and 'i' for our types!

• DCLDATE and DCLNTVL macros declare variables (abstract data types):

DCLDATE Birth,Graduation,Marry,Hire,Retire,Expire

DCLNTVL Training,Employment,Retirement,LoanPeriod

Case Study 8c: Encapsulated Abstract Data Types

To overcome the limitations of using just assembler-assigned types, we will now examine a set of
macros that declare and operate on data items with just two specific types: calendar dates, and
durations or intervals or periods of elapsed time in days. (Because both “date” and “duration”
begin with the letter “D”, we'll use “interval” as the preferred term. Other application-specific
choices are possible, of course.)

Even though dates and intervals of days can be represented as numbers, some operations on their
representations make no “logical” sense — we don't want, for example, to multiply two dates.

With these two data types, we can limit the allowed operations to perform only certain kinds of
arithmetic and comparisons:

• two dates may be subtracted to yield an interval

• an interval may be added or subtracted from a date to yield a date

• two intervals may be added or subtracted to yield a new interval

• an interval may be multiplied or divided by an integer constant

• dates may be compared with dates, and intervals with intervals

Any other operation involving dates and intervals is invalid.

First, we examine two macros that declare variables of type “date” and “interval”, (DCLDATE and
DCLNTVL, respectively.) Each macro accepts a list of names to be declared with that type, assigns
type attributes 'd' and 'i', and allocates storage for the variables.

Part 3: Macro Techniques 191

177User-Assigned Type Attributes: DCLDATE Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Declaration of DATE types made by DclDate macro

Macro , Args = list of names
DCLDATE &Len=4 Default data length = 4
GblC &DateTyp Type attr of Date variable

 &DateTyp SetC 'd' User type attr is lower case 'd'
 .* Length of a DATE type could also be a global variable
 &NV SetA N'&SysList Number of arguments to declare
 &K SetA 0 Counter
 .Test Aif (&K ge &NV).Done Check for finished
 &K SetA &K+1 Increment argument counter

DC PL&Len.'0' Define storage as packed decimal
 &SysList(&K) Equ *─&Len.,&Len.,C'&DateTyp' Define name, length, type

Ago .Test
 .Done MEnd

DclDate LoanStart,LoanEnd Declare 2 date fields
+ DC PL4'0' Define storage as packed decimal
+LoanStart Equ *─4,4,C'd' Define name, length, type
+ DC PL4'0' Define storage as packed decimal
+LoanEnd Equ *─4,4,C'd' Define name, length, type

First, we illustrate a macro DclDate to declare variables of type “date”. The DclDate macro
accepts a list of names, and allocates a packed decimal variable of 4 bytes for each, which we
assume are represented as Julian dates in the form PL4'yyyyddd'

Macro
DCLDATE &Len=4 Default data length = 4
GblC &DateTyp Type attr of Date variable

 &DateTyp SetC 'd' User type attr is lower case 'd'
 .* Length of a DATE type could also be a global variable
 &NV SetA N'&SysList Number of arguments to declare
 &K SetA 0 Counter
 .Test Aif (&K ge &NV).Done Check for finished
 &K SetA &K+1 Increment argument counter

DC PL&Len.'0' Define storage as packed decimal
 &SysList(&K) Equ *-&Len.,&Len.,C'&DateTyp' Define name, length, type

Ago .Test
 .Done MEnd

Figure 83. Macro to declare “date” data type

Sample calls to the DCLDATE macro are shown in Figure 84 below:

Print NoGen
DclDate Birth,Hire,Degree,Retire,Decease Declare 5 date fields
Print Gen
DclDate LoanStart,LoanEnd Declare 2 date fields

+ DC PL4'0' Define storage as packed decimal
+LoanStart Equ *-4,4,C'd' Define name, length, type
+ DC PL4'0' Define storage as packed decimal
+LoanEnd Equ *-4,4,C'd' Define name, length, type

Figure 84. Examples of declaring variables with “date” data type

192 A+ + : Using HLASM's Macro Facility

178User-Assigned Type Attributes: DCLNTVL Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Declaration of INTERVAL types made by DclNtvl macro
− Initial value can be specified with Init= keyword

Macro , Args = list of names
DCLNTVL &Init=0,&Len=3 Optional initialization value
GblC &NtvlTyp Type attr of Interval variable
LclA &NtvlLen Length of an Interval variable

 &NtvlTyp SetC 'i' User type attr is lower case 'i'
 .* Length of an INTERVAL type could also be a global variable
 &NV SetA N'&SysList Number of arguments to declare
 &K SetA 0 Counter
 .Test Aif (&K ge &NV).Done Check for finish
 &K SetA &K+1 Increment argument count

DC PL&Len.'&Init.' Define storage
 &SysList(&K) Equ *─&Len.,&Len.,C'&NtvlTyp' Declare name, length, type

Ago .Test
 .Done MEnd

DclNtvl Week,Init=7
+ DC PL3'7' Define storage
+Week Equ *─3,3,C'i' Name, length, type

The DCLNTVL macro also accepts a list of names, and allocates a packed decimal field of 3 bytes for
each, which we assume represents an interval of up to 99999 days in the form PL3'ddddd'. In
addition, a keyword variable &Init can be used to supply an initial value for all variables declared
on a macro call.

Macro
DCLNTVL &Init=0,&Len=3 Optional initialization value
GblC &NtvlTyp Type attr of Interval variable
LclA &NtvlLen Storage length of interval variable

 &NtvlTyp SetC 'i' User type attr is lower case 'i'
 .* Length of an INTERVAL type could also be a global variable
 &NV SetA N'&SysList Number of names to declare
 &K SetA 0 Counter
 .Test Aif (&K ge &NV).Done Check for finish
 &K SetA &K+1 Increment argument count

DC PL&Len.'&Init' Declare variable and initial value
 &SysList(&K) Equ *-&Len.,&Len.,C'&NtvlTyp' Declare name, length, type

Ago .Test Check for more arguments
 .Done MEnd

Figure 85. Macro to declare “interval” data type

Sample calls to the DCLNTVL macro are illustrated in Figure 86 on page 194:

Part 3: Macro Techniques 193

Aaa DclNtvl Vacation,Holidays
+ DC PL3'0' Define storage
+Vacation Equ *-3,3,C'i' Name, length, type
+ DC PL3'0' Define storage
+Holidays Equ *-3,3,C'i' Name, length, type

DclNtvl LoanTime
+ DC PL3'0' Define storage
+LoanTime Equ *-3,3,C'i' Name, length, type

DclNtvl Year,Init=365
+ DC PL3'365' Define storage
+Year Equ *-3,3,C'i' Name, length, type

DclNtvl LeapYear,Init=366
+ DC PL3'366' Define storage
+LeapYear Equ *-3,3,C'i' Name, length, type

DclNtvl Week,Init=7
+ DC PL3'7' Define storage
+Week Equ *-3,3,C'i' Name, length, type

Figure 86. Examples of declaring variables with “interval” data type

179Calculating With Date Variables: CalcDat Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Now, define operations on DATEs and INTERVALs

• Callable CalcDat macro calculates dates without user having to know
actual data representations

&AnsDate CalcDat &Arg1,Op,&Arg2 Calculate a Date variable

• Allowed forms are:

ResultDate CalcDat Date,+,Interval Date = Date + Interval
ResultDate CalcDat Date,─,Interval Date = Date ─ Interval
ResultDate CalcDat Interval,+,Date Date = Interval + Date

• CalcDat validates arguments, calls auxiliary macros

DATEADDI Date1,LDat,Interval,LNvl,AnsDate,AnsLen Date = Date+Interval
DATESUBI Date1,LDat,Interval,LNvl,AnsDate,AnsLen Date = Date─Interval

− Auxil iary service macros (“private methods”) understand actual data
representat ions (“encapsulat ion”)

194 A+ + : Using HLASM's Macro Facility

180Calculating With Date Variables: CalcDat Macro ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Calculate Date=Date± Interval or Date=Interval+Date
− DATESUBI and DATEADDI are “private methods” (called subroutines)

Macro , Most error checks omitted!!
&Ans CALCDAT &Arg1,&Op,&Arg2 Calculate a date in &Ans

GblC &NtvlTyp,&DateTyp Type attributes
&T1 SetC T'&Arg1 Save type of &Arg1
&T2 SetC T'&Arg2 And of &Arg2

Aif ('&T1&T2' ne '&DateTyp&NtvlTyp' and X
'&T1&T2' ne '&NtvlTyp&DateTyp').Err4 Validate types

Aif ('&Op' eq '+').Add Check for add operation
DATESUBI &Arg1,L'&Arg1,&Arg2,L'&Arg2,&Ans,L'&Ans D = D─I
MExit

.Add AIF ('&T1' eq '&NtvlTyp').Add2 1st opnd is interval of days
DATEADDI &Arg1,L'&Arg1,&Arg2,L'&Arg2,&Ans,L'&Ans D = D+I
MExit

.Add2 DATEADDI &Arg2,L'&Arg2,&Arg1,L'&Arg1,&Ans,L'&Ans D = I+D
MExit

.Err4 MNote 8,'CALCDAT: Incorrect declaration of Date or Interval?'
MEnd

Calculating with Date Variables

Having written macros to declare the two data types, we can now consider macros for doing cal-
culations with them. First, we will examine a date-calculation macro CALCDAT, with the following
syntax:

&AnsDate CalcDat &Arg1,Op,&Arg2 Calculate a Date variable

where &AnsDate must have been declared a “date” variable, and the allowed operand combina-
tions are:

ResultDate CalcDat Date,+,Interval Date = Date + Interval
ResultDate CalcDat Date,-,Interval Date = Date - Interval
ResultDate CalcDat Interval,+,Date Date = Interval + Date

We are now in a position to write a CalcDat macro that validates the types of all three operands
before setting up the actual computations which will be done by two “service” macros called
DATEADDI (to add an interval to a date) and DATESUBI (to subtract an interval from a date). These
service macros will “understand” the actual representation of “date” and “interval” variables, and
can perform the operations accordingly.

Part 3: Macro Techniques 195

Macro
&Ans CALCDAT &Arg1,&Op,&Arg2 Calculate a date in &Ans
&M SetC 'CALCDAT: ' Macro name for messages

GblC &NtvlTyp,&DateTyp Type attributes
Aif (N'&SysList ne 3).Err1 Check for required arguments
Aif ('&Op' ne '+' and '&Op' ne '-').Err2
Aif (T'&Ans ne '&DateTyp').Err3

&T1 SetC T'&Arg1 Save type of &Arg1
&T2 SetC T'&Arg2 And of &Arg2

Aif ('&T1&T2' ne '&DateTyp&NtvlTyp' and X
'&T1&T2' ne '&NtvlTyp&DateTyp').Err4 Validate types

Aif ('&Op' eq '+').Add Check for add operation
Aif ('&T1&T2' ne '&DateTyp&Ntvltyp').Err5 Bad operand seq?
DATESUBI &Arg1,L'&Arg1,&Arg2,L'&Arg2,&Ans,L'&Ans D = D-I
MExit

.Add AIF ('&T1' eq '&NtvlTyp').Add2 1st opnd an interval of days
DATEADDI &Arg1,L'&Arg1,&Arg2,L'&Arg2,&Ans,L'&Ans D = D+I
MExit

.Add2 DATEADDI &Arg2,L'&Arg2,&Arg1,L'&Arg1,&Ans,L'&Ans D = I+D
MExit

.Err1 MNote 8,'&M.Incorrect number of arguments'
MExit

.Err2 MNote 8,'&M.Operator ''&Op'' not + or -'
MExit

.Err3 Aif (T'&Ans eq 'O').Err3a Check for omitted target variable
MNote 8,'&M.Target variable ''&Ans'' not declared by DCLDATE'
MExit

.Err3A MNote 8,'&M.Target Date variable omitted from name field'
MExit

.Err4 MNote 8,'&M.Incorrect declaration of Date/Interval arguments'
MExit

.Err5 MNote 8,'&M.Subtraction operands in reversed order'
MEnd

Figure 87. Macro to calculate “date” results

Some examples of calls to the CalcDat macro are shown in the following figure.

Hire CalcDat Degree,+,Year
+ DATEADDI Degree,L'Degree,Year,L'Year,Hire,L'Degree D = D+I

 Hire CalcDat Year,+,Degree
+ DATEADDI Degree,L'Degree,Year,L'Year,Hire,L'Degree D = I+D

 Hire CalcDat Degree,-,Year
+ DATESUBI Degree,L'Degree,Year,L'Year,Hire,L'Degree D = D-I

Figure 88. Examples of macro calls to calculate “date” results

The service macros DATEADDI and DATESUBI do the real work: they must handle whatever represen-
tation is chosen for dates (e.g. YYYYDDD for Julian dates, or YYYYMMDD for readable dates),
accounting for things like month lengths and leap years. These two macros would most likely
invoke a general-purpose service subroutine that handles all such details, rather than generating
complex in-line code to handle all possible cases.

196 A+ + : Using HLASM's Macro Facility

181Calculating Interval Variables: CalcNvl Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Define user-called CalcNvl macro to calculate intervals

• Allowed forms are:

ResultInterval CalcNvl Date,─,Date Difference of two date variables
ResultInterval CalcNvl Interval,+,Interval Sum of two interval variables
ResultInterval CalcNvl Interval,─,Interval Difference of two intervals
ResultInterval CalcNvl Interval,*,Number Product of interval, number
ResultInterval CalcNvl Interval,/,Number Quotient of interval, number

• CalcNvl validates declared types of arguments, and calls one of five
auxil iary macros (more “private methods”):

DATESUBD Date1,LDat1,Date2,LDat2,AnsI,AnsLen Nvl = Date─Date
NTVLADDI Nvl1,Len1,Nvl2,Len2,AnsI,AnsLen Nvl = Nvl + Nvl
NTVLSUBI Nvl1,Len1,Nvl2,Len2,AnsI,AnsLen Nvl = Nvl ─ Nvl
NTVLMULI Nvl1,Len1,Nvl2,Len2,AnsI,AnsLen Nvl = Nvl * Num
NTVLDIVI Nvl1,Len1,Nvl2,Len2,AnsI,AnsLen Nvl = Nvl / Num

• Date arithmetic done by called service subroutines

182Calculating Interval Variables: CalcNvl Macro ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Macro , Most error checks omitted!
&Ans CALCNVL &Arg1,&Op,&Arg2

GblC &NtvlTyp,&DateTyp Type attributes
&X(C'+') SetC 'ADD' Name for ADD routine
&X(C'─') SetC 'SUB' Name for SUB routine
&X(C'*') SetC 'MUL' Name for MUL routine
&X(C'/') SetC 'DIV' Name for DIV routine
&Z SetC 'C''&Op''' Convert &Op char to self─def term
&T1 SetC T'&Arg1 Type of Arg1
&T2 SetC T'&Arg2 Type of Arg2

Aif ('&T1&T2&Op' eq '&DateTyp&DateTyp.─').DD Chk date─date
Aif ('&T2' ne 'N').II Second operand nonnumeric
NTVL&X(&Z).I Arg1,L'&Arg1,=PL3'&Arg2',3,&Ans,L'&Ans I op const
MExit

.II NTVL&X(&Z).I &Arg1,L'&Arg1,&Arg2,L'&Arg2,&Ans,L'&Ans I op I
MExit

.DD DATESUBD &Arg1,L'&Arg1,&Arg2,L'&Arg2,&Ans,L'&Ans date─date
MEnd

 Days CALCNVL Days,+,Days Interval + Interval
+ NTVLADDI Days,L'Days,Days,L'Days,Days,L'Days I op I
 Days CALCNVL Hire,─,Degree Date ─ Date
+ DATESUBD Hire,L'Hire,Degree,L'Degree,Days,L'Days date─date

Calculating with Interval Variables

A second macro CalcNvl to calculate intervals of time is similar in concept, but somewhat more
complex because of a greater allowed set of operand combinations:

&AnsNtvl CalcNvl &Arg1,Op,&Arg2 Calculate an Interval variable

where &AnsNtvl must have been declared a “interval” variable, and the allowed operand combina-
tions are:

Part 3: Macro Techniques 197

ResultInterval CalcNvl Date,-,Date Difference of two date variables
ResultInterval CalcNvl Interval,+,Interval Sum of two interval variables
ResultInterval CalcNvl Interval,-,Interval Difference of two intervals
ResultInterval CalcNvl Interval,*,Number Product of interval, number
ResultInterval CalcNvl Interval,/,Number Quotient of interval, number

The CalcNvl macro validates its arguments before generating calls to the operational macros that
do the actual arithmetic.

Macro , Most error checks omitted!
&Ans CALCNVL &Arg1,&Op,&Arg2

GblC &NtvlTyp,&DateTyp Type attributes
&M SetC 'CALCNVL: ' Macro name for messages

Aif (N'&SysList ne 3).Err1 Wrong number of arguments
Aif (T'&Ans ne '&NtvlTyp').Err2 Invalid target type
Aif (T'&Op ne 'U' or K'&Op ne 1).Err5 Invalid operator

&X(C'+') SetC 'ADD' Name for ADD routine
&X(C'-') SetC 'SUB' Name for SUB routine
&X(C'*') SetC 'MUL' Name for MUL routine
&X(C'/') SetC 'DIV' Name for DIV routine
&Z SetC 'C''&Op''' Convert &Op to self-def term
.* &Z used as an index into the &X array
&T1 SetC T'&Arg1 Type of Arg1
&T2 SetC T'&Arg2 Type of Arg2

Aif ('&T1&T2&Op' eq '&DateTyp&DateTyp.-').DD Chk date-date
Aif ('&T1' ne '&NtvlTyp').Err3 Invalid first operand
Aif ('&T2' eq '&NtvlTyp' and X

('&Op' eq '+' or '&Op' eq '-')).II
Aif ('&Op' eq '+' or '&Op' eq '-' or '&Op' eq '*').OpOK, X

('&Op' ne '/').Err5
.OpOK Aif ('&T2' ne 'N').Err4 Second operand nonnumeric
.* Third operand is a constant

NTVL&X(&Z).I Arg1,3,=PL3'&Arg2',3,&Ans,3 interval op const
MExit

.II NTVL&X(&Z).I &Arg1,3,&Arg2,3,&Ans,3 interval op interval
MExit

.DD DATESUBD &Arg1,4,&Arg2,4,&Ans,3 Difference of 2 dates
MExit

.Err1 MNote 8,'&M.Incorrect number of arguments'
MExit

.Err2 Aif (T'&Ans ne 'O').Err2A Check for omitted target variable
MNote 8,'&M.Target variable omitted'
MExit

.Err2A MNote 8,'&M.Target variable ''&Ans'' not declared by DCLNTVL'
MExit

.Err3 MNote 8,'&M.First argument invalid or not declared by DCLNTVL'
MExit

.Err4 MNote 8,'&M.Third argument invalid or not declared by DCLNTVL'
MExit

.Err5 MNote 8,'&M.Invalid (or missing) operator ''&Op'''
MEnd

Figure 89. Macro to calculate “interval” results

This macro also provides a form of encapsulation: the operators (or “methods”) are hidden inter-
nally, and are not expected to be visible to the programmer. Thus, the macro names NTVLADDI,
NTVLSUBI, NTVLMULI, NTVLDIVI, and DATESUBD perform the actual operations, and need not be
visible directly to the user of the CALCNVL macro.

198 A+ + : Using HLASM's Macro Facility

The calls to the “private” NTVLxxxI macros are generated with a form of associative indirect
addressing by using the single-character operator (such as + or −) as an index into a four-entry
array of strings specifying which macro name will be generated.

Examples of calls to CALCNVL are shown in the following figure:

 Days CALCNVL Days,+,Days Interval + Interval
+ NTVLADDI Days,L'Days,Days,L'Days,Days,L'Days I op I

 Days CALCNVL Hire,-,Degree Date - Date
+ DATESUBD Hire,L'Hire,Degree,L'Degree,Days,L'Days date-date

 Days CALCNVL Hire,-,Hire Date - Date
+ DATESUBD Hire,L'Hire,Hire,L'Hire,Days,L'Days date-date

 Days CALCNVL Days,-,Days Interval - Interval
+ NTVLSUBI Days,L'Days,Days,L'Days,Days,L'Days I op I

 Days CALCNVL Days,+,10 Interval + Number
+ NTVLADDI Arg1,L'Days,=PL3'10',3,Days,L'Days I op const

 Days CALCNVL Days,-,10 Interval - Number
+ NTVLSUBI Arg1,L'Days,=PL3'10',3,Days,L'Days I op const

 Days CALCNVL Days,*,10 Interval * Number
+ NTVLMULI Arg1,L'Days,=PL3'10',3,Days,L'Days I op const

 Days CALCNVL Days,/,10 Interval / Number
+ NTVLDIVI Arg1,L'Days,=PL3'10',3,Days,L'Days I op const

Figure 90. Examples of macro calls to calculate “interval” results

These macros provide a fairly strong degree of type checking of their arguments to ensure that
they conform to the sets of operations appropriate to their types. If we had written only machine
instructions, the opportunities for operand-type or operator-operand conflicts would not only
have been larger, but might have gone undetected. Once a set of useful macros has been coded,
you can think in terms of “higher level” operations, and avoid the many details necessary to deal
with the actual machine instructions.

These macros can be extended to avoid using the Assembler's (rather limited) type-attribute
mechanism by using Program Attributes (see “Case Study 9: Using Program Attributes” on
page 203) or by maintaining global data structures containing information such as a programmer-
declared type, length, and so forth.

Part 3: Macro Techniques 199

183Example of an Interval-Calculation Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Macro NTVLADDI adds intervals to intervals

Macro
&L NTVLADDI &Arg1,&L1,&Arg2,&L2,&Ans,&LAns

AIf ('&Arg1' ne '&Ans').T1 Check for Ans being Arg1
AIf (&L1 ne &LAns).Error Same field, different lengths

&L AP &Ans.(&Lans),&Arg2.(&L2) Add Arg2 to Answer
MExit

.T1 AIf ('&Arg2' ne '&Ans').T2 Check for Ans being Arg2
AIf (&L2 ne &LAns).Error Same field, different lengths

&L AP &Ans.(&Lans),&Arg1.(&L1) Add Arg1 to Answer
MEXit

.T2 ANop ,
&L ZAP &Ans.(&Lans),&Arg1.(&L1) Move Arg1 to Answer

AP &Ans.(&Lans),&Arg2.(&L2) Add Arg2 to Arg1
MExit

.Error MNote 8,'NTVLADDI: Target variable ''&Ans'' has same name as,*
but different length than, a source operand'

MEnd

 A NTVLADDI X,3,=P'5',1,X,3
+A AP X(3),=P'5'(1) Add Arg2 to Answer

The “service” macros for handling intervals will probably be simpler than those for dates (except
for DATESUBD, which subtracts two dates to yield an interval, and must also account for the choice
of date representation, leap years, and the like). As an example of an interval-handling macro,
consider an implementation of NTVLADDI shown below.

Macro
&L NTVLADDI &Arg1,&L1,&Arg2,&L2,&Ans,&LAns

AIf ('&Arg1' ne '&Ans').T1 Check for Ans being Arg1
AIf (&L1 ne &LAns).Error Same field, different lengths

&L AP &Ans.(&LAns),&Arg2.(&L2) Add Arg2 to Answer
MExit

.T1 AIf ('&Arg2' ne '&Ans').T2 Check for Ans being Arg2
AIf (&L2 ne &LAns).Error Same field, different lengths

&L AP &Ans.(&LAns),&Arg1.(&L1) Add Arg1 to Answer
MEXit

.T2 ANop ,
&L ZAP &Ans.(&LAns),&Arg1.(&L1) Move Arg1 to Answer

AP &Ans.(&LAns),&Arg2.(&L2) Add Arg2 to Arg1
MExit

.Error MNote 8,'NTVLADDI: Target variable ''&Ans'' has same name as,*
but different length than, a source operand'

MEnd

Figure 91. Macro to add an interval to an interval

The macro checks first to see if the “answer” or “target” operand &Ans is the same as one of the
“source” operands &Arg1 and &Arg2. If one of them matches, the macro then checks to ensure
that the lengths specified are the same, and issues an error message if not. If neither source
operand matches the target, then the first operand is copied to the target field, and the second
operand is then added to it.

Examples of code generated by the macro are shown in the following figure:

200 A+ + : Using HLASM's Macro Facility

A NTVLADDI X,3,=P'5',1,X,3
+A AP X(3),=P'5'(1) Add Arg2 to Answer

 B NTVLADDI X,3,Year,2,Y,3
+B ZAP Y(3),X(3) Move Arg1 to Answer
+ AP Y(3),Year(2) Add Arg2 to Arg1

 C NTVLADDI X,3,Year,2,X,4
 *** MNOTE *** 8,NTVLADDI: Target variable 'X' has same name as, but

different length than, a source operand

 X DS PL3
 Y DS PL3
 Year DC P'365'

The NTVLADDI (and related) macros could be generalized to allow length attribute references to be
used for length operands, by inserting some additional SETA statements before the AIF tests of
the lengths. This is left as an exercise for the reader.

184Comparison Operators for Dates and Intervals

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Define comparison macros CompDate and CompNtvl
&Label CompDate &Date1,&Op,&Date2,&True Compare two dates
&Label CompNtvl &Ntvl1,&Op,&Ntvl2,&True Compare two intervals

− &Op is any useful comparison operator (EQ, NEQ, GT, LE, etc.)
− &True is the branch target for true compares

Macro
&Label CompDate &Date1,&Op,&Date2,&True

GblA &DateLen Length of Date variables
&Mask(1) SetA 8,7,2,13,4,11,10,5,12,3 BC Masks
&T SetC ' EQ NEQ GT NGT LT NLT GE NGE LE NLE ' Operators
&C SetC Upper('&Op') Convert to Upper Case
&N SetA Index('&T','&C') Find operator

AIf (&N eq 0).BadOp
&N SetA (&N+3)/4 Calculate mask index
&Label CP &Date1.(&DateLen),&Date2.(&DateLen)

BC &Mask(&N),&True Branch to 'True Target'
MExit

.BadOp MNote 8,'&SysMac: Bad Comparison Operator ''&Op.'''
MEnd

Comparison Operators for Dates and Intervals

One further set of functions is needed to complete this set of macros, the comparison operators.
Suppose we define two macros CompDate and CompNtvl:

&Label CompDate &Date1,&Op,&Date2,&True Compare two dates
&Label CompNtvl &Ntvl1,&Op,&Ntvl2,&True Compare two intervals

where the allowed operators could include mnemonic terms such as EQ, NE, GT, NGT, LT, NLT,
GE, NGE, LE, NLE, or “graphics” such as =, <, <=, >, >=, <>, and the like. The fourth operand
&True is the name of an instruction to which control should branch if the comparison relation is
true. The CompDate macro could be written as follows:

Part 3: Macro Techniques 201

Macro
&Label CompDate &Date1,&Op,&Date2,&True

GblA &DateLen Length of Date variables
&Mask(1) SetA 8,7,2,13,4,11,10,5,12,3 BC Masks
&T SetC ' EQ NEQ GT NGT LT NLT GE NGE LE NLE ' Operators
&C SetC Upper('&Op') Convert to Upper Case
&N SetA Index('&T','&C') Find operator

AIf (&N eq 0).BadOp
&N SetA (&N+3)/4 Calculate mask index
&Label CP &Date1.(&DateLen),&Date2.(&DateLen)

BC &Mask(&N),&True Branch to 'True Target'
MExit

.BadOp MNote 8,'&SysMac: Bad Comparison Operator ''&Op.'''
MEnd

Figure 92. Comparison macro for “date” data types

The only unusual consideration in this macro is the ordering of the allowed operators in the char-
acter variable &T: EQ must appear before NEQ (and similarly for the other combinations) so
that if the specified operator is EQ, the INDEX function does not match the EQ in NEQ before
finding the correct match at EQ.

Instructions generated by the macro are shown in the following figure:

XXX Compdate A,eq,B,ABEqual
+XXX CP A(4),B(4)
+ BC 8,ABEqual Branch to 'True Target'

 YY Compdate A,ne,B,ABNeq
+YY CP A(4),B(4)
+ BC 7,ABneq Branch to 'True Target'

 A DS PL4
 B DS PL4

202 A+ + : Using HLASM's Macro Facility

Case Study 9: Using Program Attributes
We have seen in previous case studies how the assembler's “native” type attribute can help you
tailor generated code to specific conditions. The type attribute, however, is limited to a single 8-bit
byte, and some of its values are reserved by the assembler.

Program attributes provide a way to assign attributes to symbols that are completely independent
of the type attribute, and which can take arbitrary freely-chosen 32-bit values.

They are assigned to symbols as an operand of an EQU statement, or as a modifier in a DC or
DS statement. You can assign any meaningful 32-bit or 4-byte value to a program attribute:
numerics, bit patterns, characters, etc., whatever is most useful for your needs.

185Case Study 9: Using Program Attributes

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Program variables typically have attributes like these:

1. Storage representation: how bits and bytes are used by the machine

− Binary integers, characters, f loating point, bit f lags, etc.

2. Data representation naming: the assembler's representation

− Constants and data areas of types A, C, D, F, X, etc.

— ... and attributes of the name of the storage representation

• Tradit ional ly, the assembler 's tradit ional T' type attribute

3. The computational abstraction represented by the data item

− Date, Name, Age, Time, Weight, Height, Distance, Area, Volume, Speed, etc.

4. The measures and units used to describe the data abstraction

− Distances can be Inches, Centimeters, Miles, Kilometers, Light-Years, ...

• Traditional high-level languages generally don't handle the last two

− Program attributes can help you do more than HLLs!

Program Attributes

Generally, program variables have attributes like these:

1. Storage representation: how bits and bytes are used by instructions executed by the machine.
These may be things like:

• Numeric data, such as binary integers, floating point (hex, binary), packed, zoned, etc.

• Character: EBCDIC, ASCII, Unicode, etc.

• Other: pointers, flags, etc.

Each of these data items will also have properties such as storage length, precision, etc.

No attributes are attached by the machine to such data — for example, you can do integer
arithmetic with characters, floating point data, etc. — “it's just bits” to the hardware.

2. Data representation naming: how you describe the storage representation; that is, what you
believe the bits represent. In the assembler, you might specify constants with types like A, C,
D, F, X, etc., so that the assembler converts your data to the desired storage representation.
The assembler also assigns attributes such as type, length, scale, and integer to the symbolic
name of the storage representation.

• The assembler's traditional T' type attribute can be used to retrieve one such attribute; it is
used widely in existing macros, as we've seen.

Part 3: Macro Techniques 203

3. The computational abstraction represented by the data item: the meaning you attach to the
data. These may be things like Date, Name, Age, Time, Weight, Height, Distance, Area,
Volume, Speed, etc.

4. Data typically has units (e.g. English or Metric) and may even be “purely numeric”, such as
dates and mathematical constants like pi, SQRT(2), ...

• Dates can have many different formats, and may come from many different cultural calen-
dars.

5. Finally, Data may have measures (e.g. Feet or Meters) appropriate to the units chosen to
describe the data abstraction:

• Distances and lengths can be Inches, Centimeters, Miles, Kilometers, Light-Years, ...

• Weights can be Pounds, Ounces, Tons, Grams, Kilograms, ...

• Times can be microseconds, seconds, minutes, days, weeks, years, ...

• Combinations of units: Area (distance×distance), speed (distance/time), momentum
(weight×speed), ...

Few high-level languages can handle the last two: the computational abstraction and the units of
measure. It is not unusual for programs to perform computations on variables whose computa-
tional abstractions or units of measure are incompatible. (What is 2× today?)

We will illustrate how the assembler can help you handle these, using program attributes. Our
examples will be variations on a theme, exploiting increasingly detailed checking of operations and
operands, generating code tailored to the each abstraction and its units of measure.

We will show some examples that assign character values to program attributes, primarily for
easier readability. Other encodings could be used if more (or other) information is needed to
specify the properties of each symbol.

Suppose we have a macro that assigns one variable to another:

EVAL var1,=,var2 Assigns var2 to var1

with the idea that it could be extended some day to handle other types of evaluations and
expressions, such as

EVAL var1,=,expression Evaluates expression, assigns result to var1

We will show how you can use concepts like representations, items, units, and measures with five
variations on this “EVAL” theme:

1. A simple EVAL1 macro uses the T' type attribute, with only a single data representation.

2. The EVAL2 macro shows another use of T', with two data representations and lengths (integer
and floating point) and some conversions among them.

3. The DCL3 macro declares variables for two items (Weight, Distance) having either of two
representations. It uses two one-byte fields in the program attribute. The EVAL3 macro uses
the declared variables and supports data type conversion.

4. The EVAL4 macro uses a single storage representation for the same two items (Weight, Dis-
tance) now having two units (English, Metric), with generated instructions for unit conversion.

5. The DCL5 and EVAL5 macros support two storage representations, two items, two units, and
measures appropriate to the units (Kilometers, Miles; Kilograms, Pounds, etc.)

We start with two examples using the T' assembler type attribute.

204 A+ + : Using HLASM's Macro Facility

186Program Attributes, Variation 1: Simple Assignment

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Suppose macros EVAL1-EVAL5 assign one variable to another:

EVALn var1,=,var2 Assigns var2 to var1

• A simple form (EVAL1) with no checking; types F, H, E, D are OK

Macro , Some checking omitted
&L EVAL1 &T,&Op,&S Target variable, operator, source

LclC &V Operation variant, initially null
&TS SetC T'&S Type of source variable
&TT SetC T'&T Type of target variable

AIF ('&TS' eq '&TT').OKType
MNote 8,'&SysMac. ── Incompatible argument types'
MExit

.OKType AIF ('&TS' eq 'F').NoVar
&V SetC '&TS' Type variant
.NoVar ANop ,
&L L&V 0,&S

ST&V 0,&T
MEnd

• Traditional T' type attribute selects instructions

Program Attributes, Variation 1: Simple Assignment

This example uses the traditional assembler type attribute of the data representation to select gen-
erated instructions. In this simplest case, the type attributes of the source and target operands
must be the same.

Macro
&L EVAL1 &T,&Op,&S Target variable , operator, source variable

LclC &V Operation variant, initially null
AIF (N'&SysList eq 3).OKNarg
MNote 8,'&SysMac. -- Invalid argument list'
MExit

.OKNarg AIF ('&Op' eq '=').OKOp
MNote 8,'&SysMac. -- ''&Op'' unsupported operation'
MExit

.OKOp ANop ,
&TS SetC T'&S Type of source variable
&TT SetC T'&T Type of target variable

AIF ('&TS' eq '&TT').OKType
MNote 8,'&SysMac. -- Incompatible argument types'
MExit

.OKType AIF ('&TS' eq 'F').NoVar
&V SetC '&TS' Type variant
.NoVar ANop ,
&L L&V 0,&S

ST&V 0,&T
MEnd

Figure 93. Simple EVAL1 macro using type attribute

Typical instruction sequences generated by this EVAL1 macro are:

Part 3: Macro Techniques 205

000000 000014A0 33 A1 DC F'5280'
000004 34 B1 DS F

35 EVAL1 B1,=,A1
000008 5800 F000 36+ L 0,A1
00000C 5000 F004 37+ ST 0,B1

000010 441C7E0000000000 39 X1 DC D'7294'
000018 40 Y1 DS D

41 EVAL1 Y1,=,X1
000020 6800 F010 42+ LD 0,X1
000024 6000 F018 43+ STD 0,Y1

000028 07CF 45 K1 DC H'1999'
00002A 46 L1 DS H

47 EVAL1 L1,=,K1
00002C 4800 F028 48+ LH 0,K1
000030 4000 F02A 49+ STH 0,L1

Figure 94. Simple EVAL1 macro code beneration

The above figure shows typical type-sensitive generation of load and store instructions appropriate
to the type of data. Examples of error checking by the EVAL1 macro are:

51 EVAL1 L1,+,K1
** ASMA254I *** MNOTE *** 52+ 8,EVAL1 -- '+' unsupported operation

54 EVAL1 L1=K1
** ASMA017W Undefined keyword parameter; default to positional,

including keyword - EVAL1/L1
** ASMA254I *** MNOTE *** 55+ 8,EVAL1 -- Invalid argument list

57 EVAL1 L1,=,A1
** ASMA254I *** MNOTE *** 58+ 8,EVAL1 -- Incompatible argument types

Next, we examine a more complex use of the assembler's type attributes; this example will be a
model for later use of program attributes.

187Program Attributes, Variation 2: Mixed Representations

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Let EVAL2 support mixed integer/floating point operands.

− Symbol names chosen to show type and Source vs. Target

DS DC D'0.2' Doubleword hex float source
DT DS D Doubleword target variable
ES DC E'0.3' Short hex float source
ET DS E Short hex float target variable
FS DC F'45678901' Fullword binary integer source
FT DS F Fullword target variable
HS DC H'23456' Halfword binary integer source
HT DS H Halfword target variable

• Allow mixed-type assignments like

EVAL2 FT,=,HS Halfword binary assigned to fullword
EVAL2 DT,=,ES Short hex float assigned to long
EVAL2 DT,=,FS Fullword binary assigned to long hex float
EVAL2 ET,=,HS Halfword binary assigned to short hex float

− The third and fourth assignments require type conversion!

• Some assignments are flagged (e.g. float hex to halfword binary)

206 A+ + : Using HLASM's Macro Facility

Program Attributes, Variation 2: Mixed Representations

The EVAL2 macro in this example supports four storage representations: halfword and fullword
binary, and short and long hexadecimal floating point. It also allows some mixed type assign-
ments between source and target operands.

In the macro definition, the SETC variables &COK, &CCVT, &CWARN, &CSWR, and
&CERR contain target-source type pairs that respectively

• can be assigned needing only appropriate load and store instructions

• require conversion from fixed-point binary to floating point

• extend a short floating point operand to long

• convert compatible types with possible truncation and give a warning message

• cannot safely be converted from floating point to binary without a possibly serious loss of
data.

The five strings are concatenated into &C, which is then scanned using the Index function to
determine how to handle each possible pair of type attributes.

Macro
&L EVAL2 &T,&Op,&S Target, operator, source

LclC &VT,&VS Operation variants, target/source
AIF (N'&SysList eq 3).OKNarg
MNote 8,'&SysMac. -- Invalid argument list'
MExit

.OKNarg AIF ('&Op' eq '=').OKOp
MNote 8,'&SysMac. -- ''&Op'' unsupported operation'
MExit

.OKOp ANop ,
&COK SetC 'DD EE FF HH FH ' No problem
&CCVT SetC 'DF DH EH ' Conversion
&CSWR SetC 'DE ' Short/long conversion
&CWarn SetC 'ED EF HF ' Possible data loss
&CErr SetC 'FD FE HD HE ' No conversion
&C SetC '&COK.&CSWR.&CCVT.&CWarn.&Cerr'
&TS SetC T'&S Type of source variable
&TT SetC T'&T Type of target variable

AIF ('&L' eq '').NoLab
&L DC 0H
.NoLab ANop ,

Figure 95 (Part 1 of 2). EVAL2 macro with some type conversions

Part 3: Macro Techniques 207

&N SetA (Index('&C','&TT.&TS')+2)/3
AIF (&N gt 0).Valid1 Known combination
MNote 8,'&SysMac. -- Unsupported type mix &TT&TS'
MExit

.Valid1 AIF (&N lt 13).Valid2
MNote 8,'&SysMac. -- Types not convertible'
MExit

.Valid2 AIF (&N lt 10).Valid3
MNote 4,'&SysMac. -- Possible precision loss'

.Valid3 AIF ('&TS' eq 'F').V2A
&VS SetC '&TS'
.V2A AIF ('&TT' eq 'F').V2B
&VT SetC '&TT'
.V2B AIF (&N ne 6).DoLdSt Clear FPR for short to long?

LZER 0
.DoLdSt L&VS 0,&S

AIF (&N eq 11).DoCDFR
AIF (&N lt 7 or &N gt 9).DoSt

.DoCDFR CDFR 0,0

.DoSt ST&VT 0,&T
MEnd

Figure 95 (Part 2 of 2). EVAL2 macro with some type conversions

The following figure shows examples of defining the four data types supported by the EVAL2
macro. The first letter of the name is the Assembler type, and the second letter indicates that the
field is a Source or a Target.

000000 4033333333333333 54 DS DC D'0.2'
000008 55 DT DS D

000010 404CCCCD 56 ES DC E'0.3'
000014 57 ET DS E

000018 02B90135 58 FS DC F'45678901'
00001C 59 FT DS F

000020 5BA0 60 HS DC H'23456'
000022 61 HT DS H

208 A+ + : Using HLASM's Macro Facility

188Program Attributes, Variation 2: Mixed Representations ...

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Examples of output generated by EVAL2:

63 EVAL2 DT,=,DS OK
000024 6800 F000 64+ LD 0,DS
000028 6000 F008 65+ STD 0,DT

75 EVAL2 FT,=,HS Halfword to fullword
000044 4800 F020 76+ LH 0,HS
000048 5000 F01C 77+ ST 0,FT

79 EVAL2 DT,=,ES Short hex float to long
00004C 2F00 80+ LZER 0
00004E 7800 F010 81+ LE 0,ES
000052 6000 F008 82+ STD 0,DT

84 EVAL2 DT,=,FS Convert fixed to float
000056 5800 F018 85+ L 0,FS
00005A B3B5 0000 86+ CDFR 0,0
00005E 6000 F008 87+ STD 0,DT

106 EVAL2 HT,=,FS Fullword to halfword (?)
** ASMA254I *** MNOTE *** 107+ 4,EVAL2 ── Possible precision loss
00008E 5800 F018 108+ L 0,FS
000092 4000 F022 109+ STH 0,HT

Next, we show some examples of code generated by the EVAL2 macro:

63 EVAL2 DT,=,DS OK
000024 6800 F000 64+ LD 0,DS
000028 6000 F008 65+ STD 0,DT

75 EVAL2 FT,=,HS Halfword to fullword
000044 4800 F020 76+ LH 0,HS
000048 5000 F01C 77+ ST 0,FT

79 EVAL2 DT,=,ES Short float to long
00004C 2F00 80+ LZER 0
00004E 7800 F010 81+ LE 0,ES
000052 6000 F008 82+ STD 0,DT

84 EVAL2 DT,=,FS Convert fixed to float
000056 5800 F018 85+ L 0,FS
00005A B3B5 0000 86+ CDFR 0,0
00005E 6000 F008 87+ STD 0,DT

Figure 96. Examples of EVAL2 code generation

The following examples illustrate what happens when a longer data item is assigned to a shorter
data item:

97 EVAL2 ET,=,DS Long float to short
** ASMA254I *** MNOTE *** 98+ 4,EVAL2 -- Possible precision loss
00007A 6800 F000 99+ LD 0,DS
00007E 7000 F014 100+ STE 0,ET

106 EVAL2 HT,=,FS Fullword to halfword
** ASMA254I *** MNOTE *** 107+ 4,EVAL2 -- Possible precision loss
00008E 5800 F018 108+ L 0,FS
000092 4000 F022 109+ STH 0,HT

The following figure illustrates some error checking by EVAL2:

Part 3: Macro Techniques 209

117 EVAL2 HT,=,ES Short float to halfword
** ASMA254I *** MNOTE *** 118+ 8,EVAL2 -- Types not convertible

120 T EVAL2 T,=,T Bad Type
000096 121+T DC 0H
** ASMA254I *** MNOTE *** 122+ 8,EVAL2 -- Unsupported type mix MM

127 EVAL2 T,+,T Bad operator
** ASMA254I *** MNOTE *** 128+ 8,EVAL2 -- '+' unsupported operation

An interesting exercise is to generalize this macro in some of these ways:

• Modify the MNote severities to suit your tastes.
• Add a keyword parameter &Reg=0 allowing the user to select the register to be used as a

work register (but remember that long floating point operands may require an even-numbered
register)

• Modify the handling of error cases to still generate code.
• Support binary or decimal floating point data.

189Program Attributes, Variation 3: Declaring Properties

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Assign attributes to data having two i tems :
the physical properties (Distance, Weight)

• The program attribute uses letters for readability; other forms work as
well

− First character is data representation (Float or Integer)

− Second character is the Item type (Distance or Weight)

− Remaining characters are blank; will be used later for other attributes

• No units or measures specified; assumed to be compatible

• Use a DCL3 macro to declare the data (instead of doing it manually)

DCL3 names,Item=[W│D],Rep=[F│I]
.* ... and a name can also be (name,initial_value)

• Data declared by DCL3 is used by EVAL3

Program Attributes, Variation 3: Declaring Properties

We assign program attributes to data having two items that convey the physical properties
Distance and Weight:

• We use letters in the program attribute for readability. Any absolute expression such as bit
groups, hexadecimal digits, etc. would work as well; and the needed bits or digits can be
extracted from the value of the program attribute using functions like C2B and C2X.

• The program attribute's first character is the data representation (Float or Integer), and the
second character is the item type (D or W). The remaining two characters are blanks and will
be used for other attributes in later examples.

• No units or measures are assigned, as they are assumed to be compatible.

We now use a DCL3 macro to declare the data (rather than doing it manually). The macro can
declare either an unitialized storage area, or an initialized data item. The syntax is

210 A+ + : Using HLASM's Macro Facility

DCL3 names,Item=[W|D],Rep=[F|I]

where the “names” operand is a list of variable names. If an initial value is desired, specify
(name,value) instead.

First, the macro validates its arguments:

Macro
&L DCL3 &Item=,&Rep=

AIF (N'&SysList gt 0).OKList
MNote 8,'&SysMac. -- No positional arguments'
MExit

.OKList AIF ('&Item' ne '').HavItm
MNote 8,'&SysMac. -- No item type specified'
MExit

.HavItm AIF ('&Rep' ne '').HavRep
MNote 8,'&SysMac. -- No representation specified'
MExit

.HavRep ANop ,
&I SetA Find('&Item','WD')

AIF (&I gt 0).ItmOK
MNote 8,'&SysMac. -- Item type not D or W'
MExit

.ItmOK ANop ,
&I SetA Find('&Rep','FI')

AIF (&I gt 0).RepOK
MNote 8,'&SysMac. -- Representation not I or F'
MExit

.RepOK ANop ,

.* - - - continued

Figure 97. DCL3 macro to declare data items (Part 1 of 2)

Then, the macro scans its argument list and generates DS and DC statements for each declared
variable:

Part 3: Macro Techniques 211

&NI SetA N'&SysList Count of positionals
&I SetA 1 First positional
.Loop ANop ,
&Name SetC '&SysList(&I,1)' Get name

AIF (N'&SysList(&I) eq 1).GenDS
AIF (N'&SysList(&I) eq 2).GenDC
MNote 8,'&SysMac. -- Excess or missing suboperands, item &I'
MExit

.GenDS ANop ,
&T SetC 'D'

AIF ('&Rep' eq 'F').GenDS1
&T SetC 'F'
.GenDS1 ANop ,
&Name DS &T.P(C'&Rep.&Item. ')

AGO .Next
.GenDC ANop ,
&T SetC 'D'

AIF ('&Rep' eq 'F').GenDC1
&T SetC 'F'
.GenDC1 ANop ,
&Name DC &T.P(C'&Rep.&Item. ')'&SysList(&I,2)'
.Next ANop ,
&I SetA &I+1

AIF (&I le &NI).Loop
MEnd

Figure 98. DCL3 macro to declare data items (Part 2 of 2)

As an exercise, you might generalize the DCL3 macro to allow multiple variables to be declared
with the same initial value, and to allow default values for one or both keyword variables.

Some examples of declarations using DCL3 are:

DCL3 w,Item=W,Rep=I
DCL3 x,Item=W,Rep=F
DCL3 y,Item=D,Rep=I
DCL3 z,Item=D,Rep=F
DCL3 a,(b,99.99),Item=D,Rep=F
DCL3 m,(n,66),p,(q,444),Item=W,Rep=I

The statements generated by these declarations are shown in the following figure:

212 A+ + : Using HLASM's Macro Facility

51 DCL3 w,Item=W,Rep=I
000000 52+w DS FP(C'IW ')

53 DCL3 x,Item=W,Rep=F
000008 54+x DS DP(C'FW ')

55 DCL3 y,Item=D,Rep=I
000010 56+y DS FP(C'ID ')

57 DCL3 z,Item=D,Rep=F
000018 58+z DS DP(C'FD ')

59 DCL3 a,(b,99.99),c,(d,17.77),Item=D,Rep=F
000020 60+a DS DP(C'FD ')
000028 4263FD70A3D70A3D 61+b DC DP(C'FD ')'99.99'

74 DCL3 m,(n,66),p,(q,444),Item=W,Rep=I
000070 75+m DS FP(C'IW ')
000074 00000042 76+n DC FP(C'IW ')'66'
000078 77+p DS FP(C'IW ')
00007C 000001BC 78+q DC FP(C'IW ')'444'

Figure 99. Examples of DCL3 code generation

Now, we will see how to use these declarations in the EVAL3 macro.

190Program Attributes, Variation 3: Evaluating Conversions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• EVAL3 macro checks types and representations, generate instructions:

147 T1 EVAL3 w,=,m IW �─ IW
000090 5800 F070 148+T1 L 0,m
000094 5000 F000 149+ ST 0,w

150 T2 EVAL3 x,=,j FW �─ FW
000098 6800 F058 151+T2 LD 0,j
00009C 6000 F008 152+ STD 0,x

160 T3 EVAL3 x,=,q FW �─ IW
0000B0 5800 F07C 161+T3 L 0,q
0000C0 B3B5 0000 162+ CDFR 0,0
0000B8 6000 F008 163+ STD 0,x

164 T4 EVAL3 w,=,j IW �─ FW
0000BC 6800 F058 165+T4 LD 0,j
0000B4 B3B9 4000 166+ CFDR 0,4,0
** ASMA254I *** MNOTE *** 167┼ 4,EVAL3 ── Possible int�─float precision loss
0000C4 5000 F000 168+ ST 0,w

Program Attributes, Variation 3: Evaluating Conversions

The EVAL3 macro uses the program attributes created by the DCL3 macro to check types and
generate instructions. This first portion of the macro validates the structure of the argument list,
and the presence of program attributes.

Part 3: Macro Techniques 213

Macro
&Lab EVAL3 &T,&Op,&S

AIf (N'&SysList eq 3).OKList
MNote 8,'&SysMac. -- Invalid argument list'
MExit

 .OKList AIf ('&Op' eq '=').OKOp
MNote 8,'&SysMac. -- Unsupported ''&Op'' operator'
MExit

 .OKOp ANop ,
 &PAT SetC SysAttrP('&T') Target symbol attribute
 &PAS SetC SysAttrP('&S') Source symbol attribute

AIf ('&PAT' ne '' and 'PAS' ne '').OpPat
MNote 8,'&SysMac. -- An operand attribute not specified'
MExit

.* - - - continued

The next segment of the macro checks the data representations and data items in the program
attributes for validity, and that the data items of source and target variables are the same:

.OpPat ANop ,
&N SetA Index('FFIIF','&PAT'(1,1).'&PAS'(1,1))

AIF (&N ne 0).OKRep
MNote 8,'&SysMac. -- An operand has unknown representation'
MExit

.OKRep ANop ,
&N SetA Index('WWDDW','&PAT'(2,1).'&PAS'(2,1))

AIF (&N ne 0).OKItem
MNote 8,'&SysMac. -- An operand has unknown item'
MExit

 .OKItem AIF ('&PAT'(2,1) eq '&PAS'(2,1)).OKUMat
MNote 8,'&SysMac. -- Operand items mismatch'
MExit

 .OKUMat ANop ,
.* - - - continued

The final segment of the macro generates the code:

&SV SetC '' Source variant
&TV SetC '' Target variant

AIf ('&PAS'(1,1) eq 'I').OKLdT
 &SV SetC 'D'
 .OKLdT AIf ('&PAT'(1,1) eq 'I').OKStT
 &TV SetC 'D'
.OKStT ANop ,
&Lab L&SV 0,&S

AIf ('&PAT'(1,1) eq '&PAS'(1,1)).DoSt
AIf ('&PAT'(1,1) ne 'I').CDFR
MNote 4,'&SysMac. -- Possible float->int precision loss'
CFDR 0,4,0
AGo .DoSt

 .CDFR CDFR 0,0
 .DoSt ST&TV 0,&T

MEnd

214 A+ + : Using HLASM's Macro Facility

Some typical uses of the EVAL3 macro are shown in the following figure; the data items were
declared by the DCL macro, as shown in Figure 99 on page 213:

147 T1 EVAL3 w,=,m IW <- IW
000090 5800 F070 148+T1 L 0,m
000094 5000 F000 149+ ST 0,w

150 T2 EVAL3 x,=,j FW <- FW
000098 6800 F058 151+T2 LD 0,j
00009C 6000 F008 152+ STD 0,x

160 T5 EVAL3 x,=,q FW <- IW
0000B0 5800 F07C 161+T5 L 0,q
** ASMA254I *** MNOTE *** 162+ 4,EVAL3, -- Possible float->int precision loss

0000B4 B3B9 4000 163+ CFDR 0,4,0
0000B8 6000 F008 164+ STD 0,x

165 T6 EVAL3 w,=,j IW <- FW
0000BC 6800 F058 166+T6 LD 0,j
0000C0 B3B5 0000 167+ CDFR 0,0
0000C4 5000 F000 168+ ST 0,w

191Program Attributes, Variation 4: Assigning Measures

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Program attributes can assign “application meaning” to data items

− Weights: Metric kilograms and English pounds:

000000 42A5000000000000 44 WtE DC DP(C'WE ')'165' English: Pounds
000008 424ACCCCCCCCCCCD 45 WtM DC DP(C'WM ')'74.8' Metric: Kilograms
000010 46 NewE DS DP(C'WE ') English units
000018 47 NewM DS DP(C'WM ') Metric units

− Single storage representation: long hex floating point

• Final segment of the EVAL4 macro converts measures, e.g.

─ ─ ─
&L LD 0,&S

AIF ('&PAS'(2,1) eq '&PAT'(2,1)).DoSt
AIF ('&PAS'(2,1) eq 'E').ESrc Source units English

.* Source units metric:
MD 0,=D'2.20462' �── pounds per kilogram
AGO .DoSt

.ESrc DD 0,=D'2.20462' �── kilograms per pound

.DoSt STD 0,&T
─ ─ ─

Program Attributes, Variation 4: Assigning Measures

In this example, we use program attributes to assign properties that have meaning in an applica-
tion dealing with weights. We assume that the weight values in the application are measured in
Metric kilograms and English pounds, and that a single storage representation (hexadecimal
floating point) is used.

Assuming that the objects represented by program variables are shipped internationally, the
EVAL4 macro must convert weight values between kilograms and pounds. To illustrate, we
declare four variables representing the two possible values of measures. Because there are just two
options (Kg, Lb), the declarations can be done manually rather than by a macro:

Part 3: Macro Techniques 215

000000 42A5000000000000 44 WtE DC DP(C'FWE ')'165' Metric: Kilograms
000008 424ACCCCCCCCCCCD 45 WtM DC DP(C'FWM ')'74.8' English: Pounds
000010 46 NewE DS DP(C'FWE ') English units
000018 47 NewM DS DP(C'FWM ') Metric units

Most of the code in the EVAL4 macro is devoted to error checks; the last eight statements do the
“real work”.

Macro
&L EVAL4 &T,&Op,&S Target, operator, source

AIF (N'&SysList eq 3).OKNarg
MNote 8,'&SysMac. -- Invalid argument list'
MExit

.OKNarg AIF ('&Op' eq '=').OKOp
MNote 8,'&SysMac. -- ''&Op'' unsupported operation'
MExit

.OKOp ANop ,
&PAS SetC SysAttrP('&S') Source program attribute
&PAT SetC SysAttrP('&T') Target program attribute

AIF ('&PAS' ne '' and '&PAT' ne '').OKPats
MNote 8,'&SysMac. -- Program attribute(s) missing'
MExit

.OKPats ANop ,
AIF ('&PAS'(1,1) eq '&PAT'(1,1)).UMatch
MNote 8,'&SysMac. -- Target/source unit mismatch'
MExit

.UMatch AIF ('&PAS'(1,1) eq 'W').TMatch
MNote 8,'&SysMac. -- Item unit(s) not ''W'''
MExit

.TMatch AIF ('&PAS'(2,1) eq 'M' or '&PAS'(2,1) eq 'E').OKSM
MNote 8,'&SysMac. -- Source measure not E or M'
MExit

.OKSM AIF ('&PAT'(2,1) eq 'M' or '&PAT'(2,1) eq 'E').OKTM
MNote 8,'&SysMac. -- Target measure not E or M'
MExit

.OKTM ANop , Source operand
&L LD 0,&S

AIF ('&PAS'(2,1) eq '&PAT'(2,1)).DoSt
AIF ('&PAS'(2,1) eq 'E').ESrc Source units English

.* Source units metric:
MD 0,=D'2.20462'
AGO .DoSt

.ESrc DD 0,=D'2.20462'

.DoSt STD 0,&T
MEnd

Figure 100. EVAL4 macro converts measures

216 A+ + : Using HLASM's Macro Facility

192Program Attributes, Variation 4: Evaluating Measures

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Sample results from EVAL4:

49 EVAL4 NewE,=,WtE English�─English
000020 6800 F000 50+ LD 0,WtE
000024 6000 F010 51+ STD 0,NewE

52 EVAL4 NewM,=,WtM Metric�─Metric
000028 6800 F008 53+ LD 0,WtM
00002C 6000 F018 54+ STD 0,NewM

55 EVAL4 NewE,=,WtM English�─Metric
000030 6800 F008 56+ LD 0,WtM
000034 6C00 F068 57+ MD 0,=D'2.20462'
000038 6000 F010 58+ STD 0,NewE

59 EVAL4 NewM,=,WtE Metric�─English
00003C 6800 F000 60+ LD 0,WtE
000040 6D00 F068 61+ DD 0,=D'2.20462'
000044 6000 F018 62+ STD 0,NewM

• Sensitivity to extended types: No HLL can do this! (As far as I know)

Program Attributes, Variation 4: Evaluating Measures

When variables using different measures are assigned, the EVAL4 macro converts between metric
and English measures, as shown in the following listing extract:

49 EVAL4 NewE,=,WtE English<-English
000020 6800 F000 50+ LD 0,WtE
000024 6000 F010 51+ STD 0,NewE

52 EVAL4 NewM,=,WtM Metric<-Metric
000028 6800 F008 53+ LD 0,WtM
00002C 6000 F018 54+ STD 0,NewM

55 EVAL4 NewE,=,WtM English<-Metric
000030 6800 F008 56+ LD 0,WtM
000034 6C00 F068 57+ MD 0,=D'2.20462'
000038 6000 F010 58+ STD 0,NewE

59 EVAL4 NewM,=,WtE Metric<-English
00003C 6800 F000 60+ LD 0,WtE
000040 6D00 F068 61+ DD 0,=D'2.20462'
000044 6000 F018 62+ STD 0,NewM

Some examples of error checking by the EVAL4 macro are shown in the following figure:

Part 3: Macro Techniques 217

64 * test error cases
000048 66 Bad1 DS D
000050 67 Bad2 DS DP(42)
000058 68 Bad3 DS DP(C'AA ')
000060 69 Bad4 DS DP(C'WZ ')

72 EVAL4 NewE,=,Bad1
** ASMA254I *** MNOTE *** 73+ 8,EVAL4 -- Program attribute(s) missing

74 EVAL4 NewE,=,Bad2
** ASMA254I *** MNOTE *** 75+ 8,EVAL4 -- Target/source unit mismatch

80 EVAL4 Bad3,=,Bad3
** ASMA254I *** MNOTE *** 81+ 8,EVAL4 -- Item unit(s) not 'W'

84 EVAL4 NewE,=,Bad4
** ASMA254I *** MNOTE *** 85+ 8,EVAL4 -- Source measure not E or M

This macro illustrates an important benefit of program attributes: you can assign application-
specific information to each program variable used in the application, in a way that avoids errors
with mismatched variable properties. It also lets you automatically handle any needed conversions
among variables. Such sensitivity to extended types is not generally available in most “high level”
languages.

193Program Attributes, Variation 5: Declaring Units

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• First, we use a DCL5 macro to declare variables with al l properties

− Representations: Float, Integer (F, I)
− Items: Weight, Distance (W, D)
− Measures: English, Metric (E, M)
− Units: Kilogram(Kg,K), Pound(P), Mile(Mi,M), Foot(Ft,F), Meter(M),

Kilometer(Km,K)

• Note the dual use of M (Mile, Meter) and K (Kilogram, Kilometer)

• Some variables declared as Weights:
DCL5 iwmk,Rep=I,Item=W,Unit=M,Meas=kg
DCL5 fwmk,Rep=F,Item=W,Unit=m,meas=k

• Some variables declared as Distances:
DCL5 idef,Rep=I,Item=D,unit=e,meas=ft
DCL5 idem,Rep=I,Item=D,unit=e,meas=mi
DCL5 fdem,Rep=F,Item=D,unit=e,meas=m
DCL5 idmm,Rep=I,Item=D,unit=m,meas=m
DCL5 fdmk,Rep=F,Item=D,unit=m,meas=k

• Choice of letters used for Program Attribute values is arbitrary

Program Attributes, Variation 5: Declaring Units

First, we use a DCL5 macro to declare variables having four properties:

• Representation: Float, Integer (indicated by the letters F and I)
• Item: Weight, Distance (letters W and D)
• Measure: English, Metric (letters E and M)
• Unit: Kilogram, Pound (characters Kg, K, and P); Mile, Foot (characters Mi, M, Ft, and F);

and Meter, Kilometer (characters M, Km, and K)

Some letters like M and K are used for multiple purposes, and their interpretation depends on the
choice of item and unit types.

218 A+ + : Using HLASM's Macro Facility

To simplify declaring variables with this many possible combinations of representation, item,
units, and measures, we first provide a DCL5 macro to do the declarations for us. This first
segment of the macro checks the arguments to see if all necessary items have been specified. It
then checks the specified representation, item type, and unit type.

Macro
&L DCL5 &Item=,&Rep=,&Unit=,&Meas=

AIF (N'&SysList gt 0).OKList
MNote 8,'&SysMac. -- No positional arguments'
MExit

 .OKList AIF ('&Item' ne '').HavItm
MNote 8,'&SysMac. -- No item type specified'
MExit

 .HavItm AIF ('&Rep' ne '').HavRep
MNote 8,'&SysMac. -- No representation specified'
MExit

 .HavRep AIF ('&Unit' ne '').HavUnt
MNote 8,'&SysMac. -- No unit type specified'
MExit

 .HavUnt AIF ('&Meas' ne '').HavMes
MNote 8,'&SysMac. -- No measure specified'
MExit

 .HavMes ANop ,
 &RE SetC Upper('&Rep')
 &IT SetC Upper('&Item')
 &UN SetC Upper('&Unit')
 &ME SetC Upper('&Meas')
 &I SetA Find('&IT','WD')

AIF (&I gt 0).ItmOK
MNote 8,'&SysMac. -- Item type not D or W'
MExit

.ItmOK ANop ,
&I SetA Find('&RE','FI')

AIF (&I gt 0).RepOK
MNote 8,'&SysMac. -- Representation not I or F'
MExit

.RepOK ANop ,
&I SetA Find('&UN','EM')

AIF (&I gt 0).UntOK
MNote 8,'&SysMac. -- Unit type not E or M'
MExit

.* - - - continued

Figure 101. DCL5 macro to declare four program pttributes (Part 1 of 3)

The next segment of the macro checks that the measures are correct for the specified choice of
item and unit:

Part 3: Macro Techniques 219

 .UntOK AIF ('&UN' eq 'E').EngUnt
 .* Metric Units

AIF ('&IT' eq 'W').MetWt Check for metric weight
 &I SetA Find('&ME','KM K M')

AIF (&I gt 0).Valid
MNote 8,'&SysMac. -- Metric D measure not Km, K,or M'
MExit

.MetWt ANop , Check metric weight
&I SetA Find('&ME','Kg K')

AIF (&I gt 0).Valid
MNote 8,'&SysMac. -- Metric W measure not Kg or K'
MExit

 .EngUnt AIF ('&IT' eq 'W').EngWt
 &I SetA Find('&ME','Ft Mi F M')

AIF (&I gt 0).Valid
MNote 8,'&SysMac. -- English D measure not Ft, Mi, F or M'
MExit

.EngWt ANop , Check English weight
&I SetA Find('&ME','P')

AIF (&I gt 0).Valid
MNote 8,'&SysMac. -- English W measure not P'
MExit

.Valid ANop , All keywords validated
 &M SetC '&ME'(1,1) Pick off measure letter
 &NI SetA N'&SysList Count of positional args
 &I SetA 1 First positional
.* - - - continued

Figure 102. DCL5 macro to declare four program attributes (Part 2 of 3)

The final macro segment generates the DS and DC statements:

.Loop ANop ,
 &Name SetC '&SysList(&I,1)' Get name

AIF (N'&SysList(&I) eq 1).GenDS
AIF (N'&SysList(&I) eq 2).GenDC
MNote 8,'&SysMac. -- Excess or missing operands, item &I'
MExit

.GenDS ANop ,
&T SetC 'D'

AIF ('&RE' eq 'F').GenDS1
 &T SetC 'F'
 .GenDS1 ANop ,
 &Name DS &T.P(C'&RE.&IT.&UN.&M.')

AGO .Next
.GenDC ANop ,
&T SetC 'D'

AIF ('&RE' eq 'F').GenDC1
 &T SetC 'F'
 .GenDC1 ANop ,
 &Name DC &T.P(C'&RE.&IT.&UN.&M.')'&SysList(&I,2)'
 .Next ANop ,
 &I SetA &I+1

AIF (&I le &NI).Loop
MEnd

Figure 103. DCL5 macro to declare four program attributes (Part 3 of 3)

220 A+ + : Using HLASM's Macro Facility

To show some uses of the DCL5 macro, we can declare “Weight” variables with each possible
valid value of the four attribute types. The names of the variables are chosen for readability: their
names match the assigned letters in the program attribute.

DCL5 iwmk,Rep=I,Item=W,Unit=M,Meas=kg
DCL5 iwep,Rep=I,Item=W,Unit=E,Meas=p
DCL5 fwmk,Rep=F,Item=W,Unit=m,meas=k
DCL5 fwep,Rep=F,Item=W,Unit=e,meas=p

The statements generated by these declarations are shown below:

91 DCL5 iwmk,Rep=I,Item=W,Unit=M,Meas=kg
000000 92+iwmk DS FP(C'IWMK')

93 DCL5 iwep,Rep=I,Item=W,Unit=E,Meas=p
000004 94+iwep DS FP(C'IWEP')

95 DCL5 fwmk,Rep=F,Item=W,Unit=m,meas=k
000008 96+fwmk DS DP(C'FWMK')

97 DCL5 fwep,Rep=F,Item=W,Unit=e,meas=p
000010 98+fwep DS DP(C'FWEP')

Similarly, we can declare “Distance” variables with each possible valid value of the four attribute
types, using the same naming convention as was used for weight variables:

DCL5 idef,Rep=I,Item=D,unit=e,meas=ft
DCL5 fdef,Rep=F,Item=D,unit=e,meas=f
DCL5 idem,Rep=I,Item=D,unit=e,meas=mi
DCL5 fdem,Rep=F,Item=D,unit=e,meas=m
DCL5 idmm,Rep=I,Item=D,unit=m,meas=m
DCL5 fdmm,Rep=F,Item=D,unit=m,meas=m
DCL5 idmk,Rep=I,Item=D,unit=m,meas=km
DCL5 fdmk,Rep=F,Item=D,unit=m,meas=k

The generated statements for these declarations are shown below:

100 DCL5 idef,Rep=I,Item=D,unit=e,meas=ft
000018 101+idef DS FP(C'IDEF')

102 DCL5 fdef,Rep=F,Item=D,unit=e,meas=f
000020 103+fdef DS DP(C'FDEF')

104 DCL5 idem,Rep=I,Item=D,unit=e,meas=mi
000028 105+idem DS FP(C'IDEM')

106 DCL5 fdem,Rep=F,Item=D,unit=e,meas=m
000030 107+fdem DS DP(C'FDEM')

108 DCL5 idmm,Rep=I,Item=D,unit=m,meas=m
000038 109+idmm DS FP(C'IDMM')

110 DCL5 fdmm,Rep=F,Item=D,unit=m,meas=m
000040 111+fdmm DS DP(C'FDMM')

112 DCL5 idmk,Rep=I,Item=D,unit=m,meas=km
000048 113+idmk DS FP(C'IDMK')

114 DCL5 fdmk,Rep=F,Item=D,unit=m,meas=k
000050 115+fdmk DS DP(C'FDMK')

Part 3: Macro Techniques 221

Finally, some examples of invalid declarations illustrate diagnostic checking by the DCL5 macro:

DCL5 z1
DCL5 z2,Item=X
DCL5 z2a,Item=X,rep=f,unit=e,meas=f
DCL5 z2b,Item=w,rep=x,unit=e,meas=f
DCL5 z2d,Item=d,rep=f,unit=e,meas=x
DCL5 z3,Rep=X,Item=X,Unit=X
DCL5 z5b,Item=d,Rep=F,unit=x,meas=k

The output from these test cases is shown below:

139 DCL5 z1
** ASMA254I *** MNOTE *** 140+ 8,DCL5 -- No item type specified

141 DCL5 z2,Item=X
** ASMA254I *** MNOTE *** 142+ 8,DCL5 -- No representation specified

143 DCL5 z2a,Item=X,rep=f,unit=e,meas=f
** ASMA254I *** MNOTE *** 144+ 8,DCL5 -- Item type not D or W

145 DCL5 z2b,Item=w,rep=x,unit=e,meas=f
** ASMA254I *** MNOTE *** 146+ 8,DCL5 -- Representation not I or F

149 DCL5 z2d,Item=d,rep=f,unit=e,meas=x
** ASMA254I *** MNOTE *** 150+ 8,DCL5 -- English D measure not Ft, Mi, F or M

157 DCL5 z3,Rep=X,Item=X,Unit=X
** ASMA254I *** MNOTE *** 158+ 8,DCL5 -- No measure specified

163 DCL5 z5b,Item=d,Rep=F,unit=x,meas=k
** ASMA254I *** MNOTE *** 164+ 8,DCL5 -- Unit type not E or M

The choice of letters for Program Attribute values is arbitrary, and is intended to make the exam-
ples more readable. We could just as well have used bit patterns or other values; for example,
since each of the four properties has fewer than four values, we can encode them in two bits,
keeping the '00' combination to mean “unknown”. For example, this encoding requires only 8
bits, rather than DCL5's 32:

&Rep SetC '01' Floating point
&Item SetC '10' Distance
&Unit SetC '01' English
&Meas SetC '10' Mile
&Patt SetC '&Rep.&Item.&Unit.&Meas'
Var DS DP(B'&Patt') Similar to 'FDEM' in DCL5

222 A+ + : Using HLASM's Macro Facility

194Program Attributes, Variation 5: Evaluating and Assigning

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Use an EVAL5 macro to do assignments:

• Pseudo-code description:

Verify presence of non─null program attributes
Extract source and target variable Rep, Item, Unit, Meas
Verify units match (can't mix weight/distance assignment)
For units W and D:

Create a table of actions for each attribute combination
Construct source/target─variable “selection” and “action” matrix
Select action for source/target variables in matching matrix entry
Define appropriate conversion operations and constants

Generate code

• Other methods of selecting actions could be used

Program Attributes, Variation 5: Evaluating and Assigning

The EVAL5 macro is detailed, but fairly straightforward in its operation, as outlined in this
pseudocode:

Verify presence of non-null program attributes
Extract source and target variable Rep, Item, Unit, Meas
Verify units match (can't mix weight/distance assignment)
For units W and D:
Create a table of actions for each attribute combination
Construct source/target-variable “selection” and “action” matrix
Select action for source/target variables in matching matrix entry
Define appropriate conversion operations and constants

Generate code

In the entries in each action matrix, the low-order decimal digit is the action code, as follows:

1 assign with no further action
2 convert integer source to floating point and assign with no further action
3 convert integer source to floating point, multiply by the appropriate constant, and assign
4 convert integer source to floating point, divide by the appropriate constant, and assign
5 multiply by the appropriate constant, and assign
6 divide by the appropriate constant, and assign
7 floating point to integer conversions cannot be done without loss of precision; diagnose

and generate no code
8 integer to integer conversions that mix units or measures cannot be done without loss of

accuracy; diagnose and generate no code

The tens digit of each action code is an index into a table of conversion constants, as follows:

Part 3: Macro Techniques 223

1 English pounds per metric kilogram: 2.20422
2 Metric meters per kilometer: 1000
3 English feet per mile: 5280
4 English feet per metric meter: 3.28083
5 Metric kilometers per English mile: 1.60935
6 Metric meters per English mile: 1609.35
7 English feet per metric kilometer: 3280.83

The row and column headings in the action matrix for weights are the three letters of the program
attribute for representation, unit, and measure, in that order. The “W” for “Weight” is omitted
because it is common to all items in the matrix. For example, IMK means “weights represented
as Integers, in Metric units of Kilograms”.

Similarly, in the action matrix for distances, we omit the second letter “D” in the row and column
headings.

For two special cases involving conversion of integer miles to feet and integer kilometers to
meters, an additional hundreds unit is used to select an MHI instruction to perform integer rather
than floating point multiplication.

The first segment of the EVAL5 macro checks for correct format of the argument list, and for the
presence of program attributes for the source and target variables.

Figure 104. EVAL5 Macro: Action Matrix for Weight
Items

To →
From ↓ IMK FMK IEP FEP

IMK 1 2 8 13

FMK 7 1 7 15

IEP 8 14 1 2

FEP 7 16 7 1

Figure 105. EVAL5 macro: Action Matrix for Distance Items

To →
From ↓ IEF FEF IEM FEM IMM FMM IMK FMK

IEF 1 2 8 34 8 44 8 74

FEF 7 1 7 36 7 46 7 76

IEM 135 33 1 2 8 63 8 53

FEM 7 35 7 1 7 65 7 55

IMM 8 43 8 64 1 2 8 24

FMM 7 45 7 66 7 1 7 26

IMK 8 73 8 54 125 23 1 2

FMK 7 75 7 56 7 25 7 1

224 A+ + : Using HLASM's Macro Facility

Macro
&Lab EVAL5 &T,&Op,&S

AIf (N'&SysList eq 3).OKList
MNote 8,'&SysMac. -- Invalid argument list'
MExit

 .OKList AIf ('&Op' eq '=').OKOp
MNote 8,'&SysMac. -- Unsupported ''&Op'' operator'
MExit

 .OKOp ANop ,
 &PAT SetC SysAttrP('C Target symbol attribute
 &PAS SetC SysAttrP('&S') Source symbol attribute

AIF ('&PAS' ne '' and '&PAT' ne '').HavPA
 .DErr MNote 8,'&SysMac. -- missing or incorrect attributes --'

MNote 0,'Source or target not declared by DCL5?'
MExit

.* - - - continued

Figure 106. EVAL5 macro (Part 1 of 7)

The next segment extracts four “characters” from the program attribute of the source and target
variables, and verifies that the assignment is for matching items (so that the user can't, for
example, try to assign a distance to a weight). It then sets the type suffix for the load and store
instructions, assuming that the representation values in the program attributes are valid. (Their
validity is checked below.)

.HavPA ANop ,
&SR SetC '&PAS'(1,1) Source representation
&TR SetC '&PAT'(1,1) Target representation
&SI SetC '&PAS'(2,1) Source item
&TI SetC '&PAT'(2,1) Target item
&SU SetC '&PAS'(3,1) Source unit
&TU SetC '&PAT'(3,1) Target unit
&SM SetC '&PAS'(4,1) Source measure
&TM SetC '&PAT'(4,1) Target measure

AIf ('&PAT' ne '' and 'PAS' ne '').OpPat
MNote 8,'&SysMac. -- An operand attribute not specified'
MExit

 .OpPat AIf ('&SI' eq '&TI').OKItm
MNote 8,'&SysMac. -- Cannot mix weight/distance items'
MExit

.OKItm Anop ,
&SV SetC '' Source variant
&TV SetC '' Target variant

AIf ('&SR' eq 'I').OKLdT
 &SV SetC 'D' Float source
 .OKLdT AIf ('&TR' eq 'I').OKStT
 &TV SetC 'D' Float target
.OKStT ANop ,
.* - - - continued

Figure 107. EVAL5 macro (Part 2 of 7)

This segment initializes the list of conversion constants, and (if the source and target items are
weights) initializes the selection matrix &W and the action matrix &WA. Then, it searches for
the matching entries in the selection matrix, and if found, extracts the action code. It also initial-
izes the conversion constant if it will be needed. If no matching entry in the selection matrix is

Part 3: Macro Techniques 225

found, the program attributes for one or both variables is incorrect, and a message is issued, ter-
minating the macro expansion.

&CVT SetC 'MD' Assume multiply
&ScTg SetC '&SR.&SU.&SM.&TR.&TU.&TM'
 &Con(1) SetC '2.20422','1000','5280','3.28083','1.60935'
 .* Lb/Kg M/Km Ft/Mi Ft/Me Km/Mi
 &Con(6) SetC '1.60935E3','3.28083E3'
 .* Me/Mi Ft/Km

AIf ('&SI' eq 'D').Dist
 .* Do Weights
&WA(1) SetA 1,2,8,13,7,1,7,15,8,14,1,2,7,16,7,1 Weight Actions
 &W1 SetC ' IMKIMK IMKFMK IMKIEP IMKFEP' Row 1
 &W2 SetC ' FMKIMK FMKFMK FMKIEP FMKFEP' Row 2
 &W3 SetC ' IEPIMK IEPFMK IEPIEP IEPFEP' Row 3
 &W4 SetC ' FEPIMK FEPFMK FEPIEP FEPFEP' Row 4
 &W SetC '&W1.&W2.&W3.&W4' Weights “matrix”
 &N SetA Index('&W','&ScTg') Search for match

AIf (&N eq 0).DErr Error if no match
 &Act SetA &WA((&N/7)+1) Get action code

AIf (&Act lt 10).DoCode No Float required?
 &C SetA &Act/10 Get constant index
&Const SetC '=D''&Con(&C)''' Construct literal
 &Act SetA &Act-10*&C Only the action code

Ago .DoCode
.* - - - continued

Figure 108. EVAL5 macro (Part 3 of 7)

If the two variables are both distance items, this segment of the macro initializes the selection
matrix &D.

.Dist ANop ,
 &D1a SetC ' IEFIEF IEFFEF IEFIEM IEFFEM' Row 1
 &D1b SetC ' IEFIMM IEFFMM IEFIMK IEFFMK'
 &D2a SetC ' FEFIEF FEFFEF FEFIEM FEFFEM' Row 2
 &D2b SetC ' FEFIMM FEFFMM FEFIMK FEFFMK'
 &D3a SetC ' IEMIEF IEMFEF IEMIEM IEMFEM' Row 3
 &D3b SetC ' IEMIMM IEMFMM IEMIMK IEMFMK'
 &D4a SetC ' FEMIEF FEMFEF FEMIEM FEMFEM' Row 4
 &D4b SetC ' FEMIMM FEMFMM FEMIMK FEMFMK'
 &D5a SetC ' IMMIEF IMMFEF IMMIEM IMMFEM' Row 5
 &D5b SetC ' IMMIMM IMMFMM IMMIMK IMMFMK'
 &D6a SetC ' FMMIEF FMMFEF FMMIEM FMMFEM' Row 6
 &D6b SetC ' FMMIMM FMMFMM FMMIMK FMMFMK'
 &D7a SetC ' IMKIEF IMKFEF IMKIEM IMKFEM' Row 7
 &D7b SetC ' IMKIMM IMKFMM IMKIMK IMKFMK'
 &D8a SetC ' FMKIEF FMKFEF FMKIEM FMKFEM' Row 8
 &D8b SetC ' FMKIMM FMKFMM FMKIMK FMKFMK'
 &D SetC '&D1a.&D1b.&D2a.&D2b.&D3a.&D3b.&D4a.&D4b'
 &D SetC '&D.&D5a.&D5b.&D6a.&D6b.&D7a.&D7b.&D8a.&D8b'
.* - - - continued

Figure 109. EVAL5 macro (Part 4 of 7)

This segment initializes the action matrix &DA, whose entries correspond to the entries in the
selection matrix &D.

226 A+ + : Using HLASM's Macro Facility

.* Distance Actions
 &DA(01) SetA 001,002,008,034,008,044,008,074 Row 1
 &DA(09) SetA 007,001,007,036,007,046,007,076 Row 2
 &DA(17) SetA 135,033,001,002,008,063,008,053 Row 3
 &DA(25) SetA 007,035,007,001,007,065,007,055 Row 4
 &DA(33) SetA 008,043,008,064,001,002,008,024 Row 5
 &DA(41) SetA 007,045,007,066,007,001,007,026 Row 6
 &DA(49) SetA 008,073,008,054,125,023,001,002 Row 7
 &DA(57) SetA 007,075,007,056,007,025,007,001 Row 8
.* - - - continued

Figure 110. EVAL5 macro (Part 5 of 7)

This segment of the macro analyzes the action code, and creates the operand for the conversion
instruction if it will be needed.

&N SetA Index('&D','&ScTg')
AIf (&N eq 0).DErr

 &Act SetA &DA((&N/7)+1)
AIf (&Act lt 10).DoCode

 &C SetA &Act/10
AIf (&C gt 10).MHI

&Const SetC '=D''&Con(&C)'''
AGo .DoW1

.MHI ANop ,
&CVT SetC 'MHI' Integer multiple
&Const SetC '&Con(&C-10)' Integer constant
.DoW1 ANop ,
&Act SetA &Act-10*(&Act/10) Correct action code (Mod 10)
.* - - - continued

Figure 111. EVAL5 macro (Part 6 of 7)

The final segment of the macro generates either an appropriate message, or the instructions to
perform the assignment, with conversions if needed.

 .DoCode ANop , Ready to generate code
AIf (&Act le 7).CodeA
MNote 8,'&SysMac -- cannot safely convert integer unit/measure'
MExit

 .CodeA AIf (&Act le 6).CodeB
MNote 8,'&SysMac. -- cannot convert without precision loss'
MExit

.CodeB ANop ,
&Lab L&SV 0,&S

AIf (&Act eq 1).DoSt
AIf (&Act lt 2 or &Act gt 4).CodeC
CDFR 0,0
AIF (&Act eq 2).DoSt Done

 .CodeC AIf (&Act eq 3 or &Act eq 5).CodeD
 &CVT SetC 'DD' Divide
.CodeD &CVT 0,&Const
.DoSt ST&TV 0,&T

MEnd

Figure 112. EVAL5 macro (Part 7 of 7)

Part 3: Macro Techniques 227

195Program Attributes, Variation 5: Evaluation Examples

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Examples of statements generated by the EVAL5 macro:

317 EVAL5 fwep,=,iwmk Kg to Pounds, int to float
5800 F000 318+ L 0,iwmk
B3B5 0000 319+ CDFR 0,0
6C00 F360 320+ MD 0,=D'2.20422'
6000 F010 321+ STD 0,fwep

417 EVAL5 idef,=,idem Miles to Feet, both int
5800 F028 418+ L 0,idem
A70C 14A0 419+ MHI 0,5280
5000 F018 420+ ST 0,idef

442 EVAL5 fdmk,=,idem Miles to Km, int to float
5800 F028 443+ L 0,idem
B3B5 0000 444+ CDFR 0,0
6C00 F388 445+ MD 0,=D'1.60935'
6000 F050 446+ STD 0,fdmk

• Automatic conformance checking, and conversion of representation,
unit, and measure

We now illustrate some examples of EVAL5 calls. Some simply generate code to copy the source
variable to the target, while others require conversion of representation, unit, or measures, in any
combination. First, some examples of weight assignments:

EVAL5 iwmk,=,iwmk integer kilos
── integer kilos
EVAL5 fwmk,=,iwmk float kilos
── integer kilos
EVAL5 iwep,=,iwmk integer pounds
── integer kilos?
EVAL5 fwep,=,iwmk float pounds
── integer kilos

EVAL5 iwep,=,fwmk integer pounds
── float kilos?
EVAL5 fwep,=,fwmk float pounds
── float kilos

EVAL5 fwmk,=,iwep float kilos
── integer pounds

The statements generated by these calls are shown in the following figure. Note that the fourth
and seventh EVAL5 calls require all three conversions.

228 A+ + : Using HLASM's Macro Facility

308 EVAL5 iwmk,=,iwmk
5800 F000 309+ L 0,iwmk
5000 F000 310+ ST 0,iwmk

311 EVAL5 fwmk,=,iwmk
5800 F000 312+ L 0,iwmk
B3B5 0000 313+ CDFR 0,0
6000 F008 314+ STD 0,fwmk

315 EVAL5 iwep,=,iwmk
*** MNOTE *** 316+ 8,EVAL5 -- cannot safely convert integer unit/measure

317 EVAL5 fwep,=,iwmk
5800 F000 318+ L 0,iwmk
B3B5 0000 319+ CDFR 0,0
6C00 F360 320+ MD 0,=D'2.20422'
6000 F010 321+ STD 0,fwep

328 EVAL5 iwep,=,fwmk
*** MNOTE *** 329+ 8,EVAL5 -- cannot convert without precision loss

330 EVAL5 fwep,=,fwmk
6800 F008 331+ LD 0,fwmk
6C00 F360 332+ MD 0,=D'2.20422'
6000 F010 333+ STD 0,fwep

337 EVAL5 fwmk,=,iwep
5800 F004 338+ L 0,iwep
B3B5 0000 339+ CDFR 0,0
6D00 F360 340+ DD 0,=D'2.20422'
6000 F008 341+ STD 0,fwmk

Next, we see some examples of EVAL5 calls involving distance variables:

EVAL5 fdem,=,idef float miles
── integer feet
EVAL5 idmm,=,idef integer meters
── integer feet?
EVAL5 fdmm,=,idef float meters
── integer feet
EVAL5 fdmk,=,idef float kilometers
── integer feet
EVAL5 fdef,=,fdef float feet
── float feet
EVAL5 idef,=,idem integer feet
── integer miles
EVAL5 fdmk,=,idem float kilometers
── integer miles

The statements generated by these calls are shown in the following figure. As with the examples
of weight variables above, the fourth and seventh EVAL5 calls require all three conversions.

Part 3: Macro Techniques 229

373 EVAL5 fdem,=,idef
5800 F018 374+ L 0,idef
B3B5 0000 375+ CDFR 0,0
6D00 F368 376+ DD 0,=D'5280'
6000 F030 377+ STD 0,fdem

378 EVAL5 idmm,=,idef
*** MNOTE *** 379+ 8,EVAL5 -- cannot safely convert integer unit/measure

380 EVAL5 fdmm,=,idef
5800 F018 381+ L 0,idef
B3B5 0000 382+ CDFR 0,0
6D00 F370 383+ DD 0,=D'3.28083'
6000 F040 384+ STD 0,fdmm

387 EVAL5 fdmk,=,idef
5800 F018 388+ L 0,idef
B3B5 0000 389+ CDFR 0,0
6D00 F378 390+ DD 0,=D'3.28083E3'
6000 F050 391+ STD 0,fdmk

395 EVAL5 fdef,=,fdef
6800 F020 396+ LD 0,fdef
6000 F020 397+ STD 0,fdef

417 EVAL5 idef,=,idem
5800 F028 418+ L 0,idem
A70C 14A0 419+ MHI 0,5280
5000 F018 420+ ST 0,idef

442 EVAL5 fdmk,=,idem
5800 F028 443+ L 0,idem
B3B5 0000 444+ CDFR 0,0
6C00 F388 445+ MD 0,=D'1.60935'
6000 F050 446+ STD 0,fdmk

196Assembler and Program Attribute Summary

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Assembler attributes help ensure correct register usage

• Program attributes provide tremendous flexibil i ty

− Detailed descriptions of individual data items

− Verifiable interactions between instructions and data

− Enables conversions, diagnostics, etc.

• Adds more power to the macro language

• No HLL can do such powerful and useful things as this!
(As far as I know)

− What HLLs call “strong typing” is much weaker

230 A+ + : Using HLASM's Macro Facility

Assembler and Program Attribute Summary

The examples in this case study have shown only a few possible uses of program attributes. The
ability of the Assembler Language to assign a greater range of properties to program variables lets
you write macros that can validate and perform operations that are difficult or impossible in most
high-level languages. For example, you can check that assigning a value to a “velocity” or “speed”
variable has been derived from other velocity variables, or are calculated by dividing a distance
variable by a time variable, multiplying an acceleration variable by a time variable, and so on.

The vast number of possibilities provided by assembler and program attributes is nearly unlimited.
It's up to you to take advantage of the added power provided by these two attributes; and, you
can still retain the high levels of control and efficiency always associated with Assembler Language
programs.

197Case Study 10: “Front-Ending” a Library Macro

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Put your code “around” a call to a library macro, to:

− Validate arguments to the l ibrary macro
− Generate your own code before/after the l ibrary macro's

• Use OPSYN for dynamic renaming of opcodes:

1. Define your “wrapper” macro with the same name
2. OPSYN the name to a temp, then nullify itself (!)
3. Do “front-end” processing, then call the l ibrary macro
4. Do “back-end” processing
5. Re-establish the “wrapper” definit ion from the temp name

• Example: “Wrapper” for a “READ” macro (defined inline!)
Macro , Defined in the source program

&L READ &A,&B,&C
READ_XX OpSyn READ Save Wrapper's definition as READ_XX
READ OpSyn , Nullify this macro's definition

─ ─ ─ ...perform 'front─end' processing
&L READ &A1,&B1,&C1 Call system version of READ

─ ─ ─ ...perform 'back─end' processing
READ OpSyn READ_XX Re─establish Wrapper's definition

MEnd

Case Study 10: “Front-Ending” a Library Macro
Sometimes it is useful to modify slightly the behavior of a “system” or other established macro.
Making changes to the macro itself can lead to maintenance problems if service or updates are
provided to the original definition. If your needs can be met by “front-ending” or “wrapping” the
original macro definition, it can be called by the “wrapper” macro using the same name!

This may seem strange, because the assembler knows of only one definition of each operation
code at a given time. The technique used is this:

1. Define a “wrapper” macro with the same name as the original macro.

2. When the “wrapper” is expanded, it uses OPSYN to save its name under a different name,
and then nullifies its own definition!

3. The “wrapper” macro does whatever “front-end” processing it likes, and then calls the original
macro; if any modifications were made to the original operands, those new operands are used
instead. Because the “wrapper” definition has been nullified, the assembler will search the
macro library for the intended “official” definition of the original macro; once found, it will be
encoded and the call will cause normal macro expansion.

4. When expansion of the original macro is finished, the “wrapper” macro can do any further
“back-end” processing needed.

Part 3: Macro Techniques 231

5. Finally, the “wrapper” macro re-establishes its own definition, and exits.

To illustrate, suppose we want to “front-end” a READ macro:

Macro , Defined in the source program
&L READ &A,&B,&C
READ_XX OpSyn READ Save Wrapper's definition as READ_XX
READ OpSyn , Nullify this macro's definition

- - - ...perform 'front-end' processing
&L READ &A1,&B1,&C1 Call system version of READ

- - - ...perform 'back-end' processing
READ OpSyn READ_XX Re-establish Wrapper's definition

MEnd

Figure 113. Example of a macro “wrapper”

The “wrapper” macro cannot be placed in the macro library, because it would then replace the
original macro it is intended to “wrap”! Similarly, the wrapping macro cannot be placed in a sepa-
rate library concatenated before or after the wrapped macro, because the assembler will always
find that definition first in the search order, and never the other. If the “wrapper” macro is not
part of the source file, it can easily be inserted either via COPY or as part of a PROFILE-option
member (with a different name, of course!).

This technique can be useful in setting different default keyword values in a macro. Rather than
rewrite the macro (which may belong to some other organization), you can “wrap” the macro to
pass modified arguments of your choice.

198Summary

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Easy to implement “High-Level Language” features in your Assembler
Language

• Start with simple, concrete, useful forms

• Build new “language” elements incrementally

• Useful results directly proportional to implementation effort

− Create as few or as many capabilit ies as needed

− Checking and diagnostics as simple or elaborate as desired

• New language can precisely match application requirements

• Best of all: it's fun!

Summary

This overview has conveyed how concepts of typical high-level languages can be implemented in
Assembler Language in a controlled, incremental, and comprehensible way. Nothing unusual has
been done here: all macro actions and designs are straightforward, with simple goals and results.

These macro techniques are also useful for teaching:

232 A+ + : Using HLASM's Macro Facility

• You can start with very simple, concrete examples before attempting complex or abstract
designs.

• From a simple base, you can elaborate and extend the macros in many directions, to enhance
whatever features are interesting.

• You can create a “language of choice” with as few or as many features as desired. For
example, it is easy to design a “mini-language” with at least two different data types, conver-
sions between them, operations on each (possibly involving mixing of types), and input-
output operations (possibly involving conversions to and from “external” representations).13

The best aspect of using macros to build your own language is that you can watch what is hap-
pening at each stage, and elaborate or tailor the results as desired.

A humorous example of dynamic language modification appeared many years ago in the Reader's
Digest.14

In a letter to The Economist, M. J. Shields, of Jarrow, England, points out that George
Bernard Shaw, among others, urged spelling reform, suggesting that one letter be altered or
deleted each year, thus giving the populace time to absorb the change. Shields writes:

For example, in Year 1 that useless letter “c” would be dropped to be replased by
either “k” or “s,” and likewise “x” would no longer be part of the alphabet. The only
kase in which “c” would be retained would be the “ch” formation, which will be dealt
with later. Year 2 might well reform “w” spelling, so that “which” and “one” would
take the same konsonant, wile Year 3 might well abolish “y” replasing it with “i,” and
Iear 4 might fiks the “g-j” anomali wonse and for all.

Jenerally, then, the improvement would kontinue iear bai iear, with Iear 5 doing awai
with useless double konsonants, and Iears 6-12 or so modifaiing vowlz and the
rimeining voist and unvoist konsonants. Bai Ier 15 or sou, it wud fainali bi posibl tu
meik ius ov thi ridandant letez “c,” “y” and “x” -- bai now jast a memori in the
maindz ov ould doderez -- tu riplais “ch,” “sh” and “th” rispektivli.

Fainali, xen, aafte sam 20 iers of orxogrefkl riform, wi wud hev a lojikl, kohirnt speling
in ius xrewawt xe Ingliy-spiking werld. Haweve, sins xe Wely, xe Airiy, and xe Skots du
not spik Ingliy, xei wud hev to hev a speling siutd tu xer oun lengwij. Xei kud, haweve,
orlweiz lern Ingliy az a sekond lengwij et skuul!

-- Iorz feixfuli, M. J. Yilz.

13 The author has seen examples of macro sets to perform recursive-descent parsing of expressions; to generate in-line
code for Format-statement conversion expansions; and even a single macro named “FORTRAN” followed by a
Fortran program all of whose statements were read by AREAD statements!

14 Reprinted by permission.

Part 3: Macro Techniques 233

External Conditional Assembly Functions

ExtFunc-199

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

External Functions

ExtFunc-200External Conditional Assembly Functions

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Two types of external, user-written functions

1. Arithmetic functions: like &A = AFunc(&A1, &A2, ...)
&A SetAF 'AFunc',&A1,&A2,... Arithmetic arguments
&LogN SetAF 'Log2',&N Logb(&N)

2. Character functions: like &C = CFunc('&S1', '&S2', ...)
&C SetCF 'CFunc','&S1','&S2',... String arguments
&RevX SetCF 'Reverse','&X' Reverse(&X)

• Functions can access the assembly environment

• Link from HLASM uses standard linkage conventions

− Assembler provides a save area and a 4-doubleword work area

− Zero to many arguments

• Functions may provide messages with severity codes for the listing

• Return code indicates success or failure

− Failure return terminates the assembly

234 A+ + : Using HLASM's Macro Facility

External Conditional Assembly Functions
High Level Assembler supports a powerful capability for invoking externally-defined functions
during the assembly that can perform almost any desired action. They are invoked using the con-
ditional assembly statements SETAF and SETCF, by analogy with the familiar SETA and SETC
statements.

The syntax of the statements is similar to that of SETA and SETC: a local or global variable
symbol appears in the name field; it will receive the value returned from the function. The opera-
tion mnemonic indicates the type of function to be called, and the type of value to be assigned to
the “target” variable. The first operand in each case is a quoted character expression (typically a
character string) giving the name of the function to be called. The remaining operands are
optional, and their presence depends on the function: some functions require no arguments,
others may require several. The type of each of these arguments is the same as that of the target
variable: arithmetic arguments for SETAF, and character arguments for SETCF.

A compact notational representation of this description is

&Arith_Var SETAF 'Arith_function'[,arith_val]...
&Char_Var SETCF 'Char_function'[,character_val]...

For example, we might invoke the LOG2 and REVERSE functions (to be discussed in detail
below) with these two statements:

&LogN SetAF 'Log2',&N Logb(&N)
&RevX SetCF 'Reverse','&X' Reverse(&X)

When a function is first invoked, the assembler dynamically loads the module containing the func-
tion and prepares control structures for calling the function. The call uses standard operating
system calling conventions; the assembler creates the calling sequence using the parameters and
the function name supplied in the SETxF statement.

Using standard parameter-passing conventions, the assembler sets R1 to point to a list of
addresses. The first address in this primary list points to a “Request Information Area”, a list of
integer values describing the type of function (arithmetic or character), the version of the interface,
the number of arguments, the return code, and either the returned value and the integer argu-
ments (for SETAF), or the lengths of the respective argument strings (for SETCF). The
remaining items in the primary list pointed to by R1 are pointers to a 32-byte work area, and (for
SETCF) pointers to the result string and each of the argument strings.

HLASM provides ways for external function to return messages and severity codes; this allows
functions to detect and signal error conditions in a way similar to the facility provided by I/O
exits.

At the end of the assembly, HLASM checks to see if each called external function wants a final
“closing” call so it can free any resources it may have acquired. Finally, the assembler's summary
page lists for each function the number of SETAF and SETCF calls, the number of messages
issued, and the highest severity code returned by the function.

We will illustrate the capabilities of these functions with two simple examples: an arithmetic func-
tion LOG2 to evaluate the binary logarithm of an integer argument, and a string function
REVERSE to reverse the characters in a character-string argument. These examples don't really
require an external function; they can be programmed easily (if inelegantly) using familiar condi-
tional assembly statements. However, because they also can access the environment in which
HLASM is executing, external functions have considerably greater power and flexibility than the
conditional language alone can provide.

External Conditional Assembly Functions 235

ExtFunc-201SETAF External Function Interface

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Primary List Request Info Area
┌────┐ ┌───────────────┐ ┌───────────────────┐
│ R1 ├───�│ ReqInfoArea ├─────�│ ParmList Version │
└────┘ ├───────────────┤ ├───────────────────┤

│ WorkArea │ │ Function Type │
├───────────────┤ ├───────────────────┤
│ Asmblr Info │ │ No. of Params (n) │
├───────────────┤ ├───────────────────┤
│ Reserved │ │ Return Code │
├───────────────┤ ├───┬───────────────┤
│ Message Buf │ │Flg│ Reserved │
└───────────────┘ ├───┴───────────────┤

│ Reserved │
├────────┬──────────┤
│ Msg Len│ Msg Sev │
├────────┴──────────┤
│ Function Value │
├───────────────────┤

(n)│ Parameters 1─n │
└───────────────────┘

• (n) means the field is
repeated n t imes

• HLASM provides a
32-byte work area

SETAF External Function Interface
The interface used by High Level Assembler to invoke external arithmetic-valued functions is a
standard calling sequence, with an argument list composed of two structures: the formats of the
Primary Address List and the Request Information Area are shown in Figure 114. (Symbolic
mappings of the Primary List and the Request Information Area are provided by the
ASMAEFNP macro.)

Primary List Request Info Area
┌────┐ ┌────────────────┐ ┌─────────────────────┐
│ R1 ├───────�│ A(ReqInfoArea) ├────────�│ Parm List Version │
└────┘ ├────────────────┤ ├─────────────────────┤

│ A(WorkArea) │ │ Function Type │
├────────────────┤ ├─────────────────────┤
│ A(Asmblr Info) │ │ Number of Params (n)│
├────────────────┤ ├─────────────────────┤
│ Reserved │ │ Return Code │
├────────────────┤ ├───┬─────────────────┤
│ � Message Buf │ │Flg│ Reserved │
└────────────────┘ ├───┴─────────────────┤

│ Reserved │
├──────────┬──────────┤
│ Msg Len │ Msg Sev │
├──────────┴──────────┤
│ Returned Fn. Value │
├─────────────────────┤
│ Parameter 1 │
├─────────────────────┤
: :
├─────────────────────┤
│ Parameter n │
└─────────────────────┘

Figure 114. Interface for Arithmetic (SETAF) External Functions

236 A+ + : Using HLASM's Macro Facility

Arithmetic-Valued Function Example: LOG2

This LOG2 function evaluates the binary logarithm of its single argument, and returns the expo-
nent of the largest power of two not exceeding the value of the argument. Mathematically, the
result of calling LOG2 with argument x can be expressed as

result = floor(log2(x))

This can be used to calculate the largest power of two less than or equal to x. For example, if
&Exponent is an arithmetic variable symbol whose value will be returned by calling LOG2, the
power of two can be found using statements such as

&Exponent SETAF 'Log2',&Arith_Var

Special treatment is provided for non-positive arguments, for which the binary logarithm is unde-
fined. Invalid calls to LOG2 cause either an error message or a nonzero return code to be
returned to the assembler (which will then terminate the assembly).

We will now describe an implementation of the LOG2 function. It uses no local storage, and
may reside anywhere below or above 16MB.

LOG2 Title 'HLASM Conditional-Assembly Function LOG2'
**
* *
* Call from High Level Assembler: *
* *
* &Int_Ans SETAF 'LOG2',&Int_Arg *
* *
* If &Int_Arg > 0, &Int_Ans is set to floor(log2(&Int_Arg)) *
* That is, to the largest N such that *
* 2**N <= &Int_Arg. *
* *
* If the function is invoked incorrectly, the return code *
* will indicate the reason, and the assembler will terminate *
* the assembly. An appropriate message is provided, except *
* when the wrong parameter list version is detected, in which *
* the function causes assembly termination (the interface for *
* returning a message may not be available). *
* *
**

Figure 115. Conditional-Assembly Function LOG2: Initial Commentary

The block of comments in Figure 115 describes the operation of the function, the returned func-
tion values, and error handling.

External Conditional Assembly Functions 237

LOG2 RSect , Code is reentrant, read-only
LOG2 AMode Any No dependence on addressing mode
LOG2 RMode Any No dependence on residence mode

* Primary Entry Point *

Using LOG2,R15 Addressability for code
STM R14,R4,D12(R13) Save caller's registers
Using AEFNPARM,R1 Map the Primary List
L R2,AEFNRIP Load address of Request Info Area
Using AEFNRIL,R2 Map Request Info Area
XC AEFNRETC,AEFNRETC Set Return Code area to zero
XC AEFN_VALUE,AEFN_VALUE Set answer to zero also

Figure 116. Conditional-Assembly Function LOG2: Entry

The entry point instructions illustrated in Figure 116 save appropriate general registers and estab-
lish mappings for the Primary List and the Request Information Area. The return code field is set
to zero, indicating that the assembler can continue. (This field will be changed if the parameter list
version is invalid.) In case the assembly might continue in spite of errors, the result field is set to
zero.

* Validate Calling Sequence *

CLC AEFNVER,=A(AEFNVER2) Check for expected version
JL Err_LVer Branch if wrong PList version
CLC AEFNVER,=A(AEFNVER3) Check for expected version
JH Err_LVer Branch if wrong PList version
CLC AEFNTYPE,=A(AEFNSETAF) Check for SETAF function call
JNE Err_FTyp Branch if wrong function type
CLC AEFNUMBR,=A(OurNArgs) Check for single argument
JNE Err_NArg Branch if wrong # of arguments

* Calling sequence is valid, check value of argument *

L R3,AEFN_PARM1 Get function argument in R1
LTR R3,R3 Check for nonnegative argument
JZ Zero_Arg Branch if zero argument
JM Neg_Arg Branch if negative argument

Figure 117. Conditional-Assembly Function LOG2: Validation

The instructions illustrated in Figure 117 first validate that the function is being invoked with the
expected calling sequence. The function type, parameter list version, and number of arguments are
checked, and error messages for the assembler will be used to indicate improper invocations. Once
the interface has been checked, the argument itself is tested.

238 A+ + : Using HLASM's Macro Facility

* Calculate Floor(Log2(argument)) in R0 *

LA R4,31 Set answer to 1 past max possible
TestLoop DC 0H'0' Check magnitude of the argument

BCTR R4,Null Count answer down by 1
JXH R3,R3,TestLoop Double arg, branch if no overflow

* Store result and return to High Level Assembler *

ST R4,AEFN_VALUE Store result in Request Info List
LM R2,R4,D28(R13) Restore registers
BR R14 Return to Assembler

Figure 118. Conditional-Assembly Function LOG2: Computation

The “computation” of the logarithm itself is quite simple, as shown in Figure 118. The JXH
instruction effectively doubles the value in R3 each time it is executed, and compares the doubled
result to the previous (un-doubled) value. When a bit overflows into the sign position, the JXH
branch-test condition will fail and control will pass to the sequence that stores the result and
returns control to the assembler.

* Handle zero and negative arguments *

Zero_Arg DC 0H'0' Return for negative argument

LA R4,BadArgZ Point to error message
J Err_Exit And return with a message

Neg_Arg DC 0H'0' Return for negative argument
LA R4,BadArgN Point to error message
J Err_Exit And return with a message

* Handle invalid calling sequences *

Err_LVer DC 0H'0' Wrong interface version

MVC AEFNRETC,=A(AEFNBAD) Can't count on doing a message
J Return Return to Assembler immediately

Err_FTyp DC 0H'0' Wrong function type
LA R4,BadFun Point to error message
J Err_Exit Return to Assembler

Err_NArg DC 0H'0' Wrong number of arguments
LA R4,BadNum Point to error message

Figure 119. Conditional-Assembly Function LOG2: Error Handling

The error-handling code in Figure 119 provides either an immediate termination return to the
assembler (at Err_LVer) in case the parameter list format is unacceptable, or points to an error
message and its preceding length byte.

External Conditional Assembly Functions 239

* Issue Error Messages and Return to HLASM *

Err_Exit DC 0H'0'

MVC AEFNMSGS,=Y(ErrSev) Set error message severity
L R1,AEFNMSGA Get pointer to message buffer
Drop R1
XR R3,R3 Clear for message length
IC R3,D0(,R4) Get message length
STH R3,AEFNMSGL Store for assembler's use
BCTR R3,Null Decrement for MVC instruction
EX R3,Move_Msg Move message to buffer

Return DC 0H'0' Return to HLASM
LM R2,R4,28(R13) Restore R2-R4
Drop R2,R15 Release addressability
BR R14 Return to assembler

Move_Msg MVC D0(*-*,R1),D1(R4) Executed

Figure 120. Conditional-Assembly Function LOG2: Error Message Handling

The error-handling code in Figure 120 moves messages to the assembler's message buffer, and
sets the message severity code to 12 (as defined by the symbol ErrSev).

* Error Messages *

BadFun DC AL1(L'BadFunM) Length of message
BadFunM DC C'Wrong function type (not SETAF)'

BadNum DC AL1(L'BadNumM) Length of message
BadNumM DC C'Wrong number of arguments (not 1)'

BadArgZ DC AL1(L'BadArgZM) Length of message
BadArgZM DC C'Zero argument'

BadArgN DC AL1(L'BadArgNM) Length of message
BadArgNM DC C'Negative argument'

Figure 121. Conditional-Assembly Function LOG2: Error Message Handling

Each message text shown in Figure 121 is defined with a preceding byte containing its length.

240 A+ + : Using HLASM's Macro Facility

* Equates for Registers and Displacements *

Null Equ 0 Null Register for BCTR
R1 Equ 1 A(Parm list), A(msg buffer)
R2 Equ 2 A(Req info list)
R3 Equ 3 Arg test, msg length
R4 Equ 4 Result value, msg address
R13 Equ 13 Save area
R14 Equ 14 Return address
R15 Equ 15 Code base

D0 Equ 0 Displacement 0
D1 Equ 1 Displacement 1
D12 Equ 12 Displacement 12
D28 Equ 28 Displacement 28

Figure 122. Conditional-Assembly Function LOG2: Symbol Equates

The equates shown in Figure 122 are typical, except that symbols are defined for use wherever an
absolute displacement is to be used in an instruction. This technique helps in locating (and, if
necessary, modifying) what would otherwise be non-symbolic references in instructions.

* Equates for values used in argument and call validations *

OurNArgs Equ 1 Expected number of arguments
ErrSev Equ 12 Severity code for all messages

AEFN_PARM1 Equ AEFN_PARMN First argument in list

Figure 123. Conditional-Assembly Function LOG2: Validation Equates

The symbols defined in Figure 123 define the expected value of the number of arguments in the
Request Information Area provided by the assembler, and the severity code used for messages.
The symbol AEFN_PARM1 is equated to the first item in the argument list; it is used only for its
symbolic value.

* Dummy Control Sections for SETAF Interface *

ASMAEFNP PRINT=GEN
End

Figure 124. Conditional-Assembly Function LOG2: Dummy Sections

Finally, the Request Information Area is mapped by the expansion of the ASMAEFNP macro
supplied with HLASM, as shown in Figure 124.

Installing the LOG2 function is described on page 248.

External Conditional Assembly Functions 241

ExtFunc-202SETCF External Function Interface

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

Primary List Request Info Area
┌────┐ ┌─────────────────┐ ┌───────────────────┐
│ R1 ├──�│ ReqInfoArea ├─────�│ ParmList Version │
└────┘ ├─────────────────┤ ├───────────────────┤

│ WorkArea ├──� │ Function Type │
├─────────────────┤ ├───────────────────┤
│ Asm. Info ├──� │ Number of Params │
├─────────────────┤ ├───────────────────┤
│ Reserved │ │ Return Code │
├─────────────────┤ ├─────┬─────────────┤
│ Msg Buffer │ │ Flag│ Reserved │
├─────────────────┤ ├─────┴─────────────┤
│ Ret. String ├──� │ Reserved │
├─────────────────┤ ├─────────┬─────────┤

(n)│ Parm 1─n Str. ├─┐ │ Msg Len │ Msg Sev │
└─────────────────┘ │ ├─────────┴─────────┤

� │ Ret. Str. Length │
├───────────────────┤

(n)│ Parm 1─n Str. Len │
└───────────────────┘

• (n) means the field is
repeated n t imes

• HLASM provides a 4
doubleword work
area

SETCF External Function Interface
The assembler interface for character functions is illustrated in Figure 125, where the formats of
the Primary Address List and the Request Information Area are shown.

Primary List Request Info Area
┌────┐ ┌────────────────┐ ┌────────────────────┐
│ R1 ├───────�│ A(ReqInfoArea) ├────────�│ Parm List Version │
└────┘ ├────────────────┤ ├────────────────────┤

│ A(WorkArea) ├──� │ Function Type │
├────────────────┤ ├────────────────────┤
│ A(Asm.Info) ├──� │ Number of Parms │
├────────────────┤ ├────────────────────┤
│ Reserved │ │ Return Code │
├────────────────┤ ├─────┬──────────────┤
│ � Msg Buffer │ │ Flag│ Reserved │
├────────────────┤ ├─────┴──────────────┤
│ A(Return Strg) ├──� │ Reserved │
├────────────────┤ ├─────────┬──────────┤
│ A(Parm 1 Strg) ├──� │ Msg Len │ Msg Sev │
├────────────────┤ ├─────────┴──────────┤
: : │ Return String Len. │
├────────────────┤ ├────────────────────┤
│ A(Parm n Strg) ├──� │ Parm 1 String Len. │
└────────────────┘ ├────────────────────┤

: :
├────────────────────┤
│ Parm n String Len │
└────────────────────┘

Figure 125. Interface for Character (SETCF) External Functions

242 A+ + : Using HLASM's Macro Facility

String-Valued Function Example: REVERSE

The REVERSE function accepts a single string argument of zero to 256 characters, and returns a
string of the same length with the characters in reverse order.

The implementation described here uses no local or working storage, and may reside anywhere
above or below 16MB.

REV Title 'Macro-Time Function REVERSE: Reverse Character Strings'
**
* *
* This external function reverses a character string. Null *
* strings are acceptable. *
* *
* If the function is invoked with an unsupported parameter *
* list version, the assembly will be terminated. Other error *
* conditions will be indicated by an error message, and a *
* null string will be returned. Errors detected are: *
* *
* Function was not invoked by SETCF *
* Number of arguments was not 1 *
* Argument string length was not 0-256 *
* *
**

Figure 126. Conditional-Assembly Function REVERSE: Prologue Text

The prologue text for the REVERSE function shown in Figure 126 describes the operation of the
function, and the error conditions diagnosed. If the parameter list version is not supported, the
assembler will be requested to terminate the assembly, as there is no guarantee that a message can
be provided by the function.

REVERSE Rsect , Code is reentrant, read-only
REVERSE AMode Any No dependence on addressing mode
REVERSE RMode Any No dependence on residence mode

Using Reverse,R15 Establish code base register
STM R14,R5,D12(R13) Save caller's registers
Using AEFNPARM,R1 Map primary argument-address list
L R2,AEFNRIP Get address of Request Info Area
Using AEFNRIL,R2 Map Request Info Area
XC AEFNRETC,AEFNRETC Set return code to zero
XC AEFN_STRL,AEFN_STRL Set return string to null
L R5,AEFNMSGA Address of message buffer

Figure 127. Conditional-Assembly Function REVERSE: Entry Point

The entry point instructions in Figure 127 first save the caller's registers; no save area linkage is
required, as the REVERSE function makes no further calls, and uses no system services. Then,
the Primary Address List and the Request Information Area are mapped using fields defined by
the ASMAEFNP macro. The return code and returned string length are set to zero, and R5 is set
to point to the message buffer in case a message is to be produced. (Note that the Primary
Address List contains more fields than were referenced in the LOG2 example.)

External Conditional Assembly Functions 243

**
* Validate calling sequence *
**

CLC AEFNVER,=A(AEFNVER2) Check for interface version
JL Err_LVer Branch if bad PList version
CLC AEFNVER,=A(AEFNVER3) Check for interface version
JH Err_LVer Branch if bad PList version
CLC AEFNTYPE,=A(AEFNSETCF) Check for SETCF function call
JNE Err_FTyp Branch if bad function type
CLC AEFNUMBR,=A(OurNArgs) Check for single argument
JNE Err_NArg Branch if bad number of arguments

L R3,AEFNCF_PARM1 Point R3 to argument string
L R1,AEFNCF_SA Point R1 to returned string
Drop R1 R1 no longer addresses primary list

Figure 128. Conditional-Assembly Function REVERSE: Call Validation

The instructions shown in Figure 128 validate that the version of the parameter list is correct,
that the REVERSE function was invoked as a character function, and that there is a single argu-
ment. Then, pointers to the argument and result strings are established.

**
* Check for invalid argument string length *
**

L R4,AEFN_PARM1_L Get length of argument string
LTR R4,R4 Validate length of input string
JM Err_Arg Branch if invalid argument
JZ Return Branch if input string is null
C R4,=A(OurStMax) Check for excess length
JH Err_Arg Branch if invalid argument

Figure 129. Conditional-Assembly Function REVERSE: Argument Validation

In Figure 129, the length of the argument string is validated. If efficiency is a major concern,
these validation checks could be omitted.

244 A+ + : Using HLASM's Macro Facility

**
* Argument is valid; set up reversing translate string *
**

ST R4,AEFN_STRL Set return string length
LA R5,EndTrans Point 1 past end of translate table
SR R5,R4 Subtract argument length
BCTR R4,Null Decrement count by 1 for move
EX R4,Move_TR Move translation string to answer
EX R4,Tran_Ans Reverse bytes of arg into answer

Return DC 0H'0'
LM R2,R5,D28(R13) Restore R2-R5
BR R14 Return to Assembler

Move_TR DC 0H'0' Executed, length in R4
MVC D0(*-*,R1),D0(R5) Move table 'tail' to result string

Tran_Ans DC 0H'0' Executed, length in R4
TR D0(*-*,R1),D0(R3) Translate with reversal into answer

Figure 130. Conditional-Assembly Function REVERSE: String Reversal

The instructions in Figure 130 perform the actual “work” of the REVERSE function. The length
of the argument string is used to extract the proper number of bytes from the end of the translate
table (which contains the byte values from X'F F' to X'00' in descending order), and place them
in the output string area. Then, the output string is “translated” using the argument string as the
“table”, yielding the reversed argument string as a result. The caller's register contents are then
restored, and control is returned to the assembler.

The function could of course use an MVCIN instruction, but we can't guarantee it is available on
the system doing the assembly.

**
* Error Returns and Message Handling *
**
Err_LVer DC 0H'0' Unsupported parameter list version

MVC AEFNRETC,=A(AEFNBAD) Termination return code
J Err_Exit Return to Assembler

Err_Arg DC 0H'0' Return for invalid argument
LA R3,InvArg Point to error message
J Err_Msg Return message to Assembler

Err_FTyp DC 0H'0' Wrong function type for this call
LA R3,BadFun Point to error message
J Err_Msg Return message to Assembler

Err_NArg DC 0H'0' Wrong number of arguments
LA R3,BadNum Point to error message

Figure 131 (Part 1 of 2). Conditional-Assembly Function REVERSE: Error Handling

External Conditional Assembly Functions 245

Err_Msg DC 0H'0' Return error message to HLASM
XR R4,R4 Clear R4 for length
IC R4,D0(,R3) Pick up message length
STH R4,AEFNMSGL Save length for HLASM
MVC AEFNMSGS,=Y(ErrSev) Set message severity code
BCTR R4,Null Decrement length for executed MVC
EX R4,Move_Msg Move message to buffer

Err_Exit DC 0H'0'
LM R2,R5,D28(R13) Restore R2-R5
Drop R2,R15 Addressability now lost
BR R14 Return to Assembler to terminate

Move_Msg DC 0H'0'
MVC D0(*-*,R5),D1(R3) Move message to buffer

Figure 131 (Part 2 of 2). Conditional-Assembly Function REVERSE: Error Handling

The instructions in Figure 131 on page 245 set the return code for a severe error in case the
parameter interface version is not supported. For other possible error conditions detected during
call and argument validation, the appropriate message is moved to the message buffer, and the
severity is set to 12 (the value of ErrSev). Control is then returned to the assembler.

* Error Messages *

InvArg DC AL1(L'InvArgM) Length of message text
InvArgM DC C'Argument length invalid'
BadFun DC AL1(L'BadFunM) Length of message text
BadFunM DC C'Not invoked by SETCF'
BadNum DC AL1(L'BadNumM) Length of message text
BadNumM DC C'Wrong number of arguments (not 1)'

Figure 132. Conditional-Assembly Function REVERSE: Error Messages

The error message texts (preceded by a length byte) are shown in Figure 132.

Trans DC 0XL256'0',256AL1(255-(*-Trans)) Table from 255 to 0
EndTrans DC 0X'0' End of translate string

LtOrg

Figure 133. Conditional-Assembly Function REVERSE: Translate Table

The translate table defined in Figure 133 is a string of 256 byte values in descending order. The
“tail” of this string is moved to the result string to be used as a translation source.

246 A+ + : Using HLASM's Macro Facility

* Equates for Registers, Lengths, Displacements, etc. *

Null Equ 0 For BCTR instructions
R1 Equ 1 Primary List, A(returned string)
R2 Equ 2 A(Request Info List)
R3 Equ 3 Message pointer
R4 Equ 4 Lengths
R5 Equ 5 A(TR table), A(message buffer)
R13 Equ 13 Save area
R14 Equ 14 Return address
R15 Equ 15 Code base

D0 Equ 0 Displacement 0
D1 Equ 1 Displacement 1
D12 Equ 12 Displacement 12
D28 Equ 28 Displacement 28

Figure 134. Conditional-Assembly Function REVERSE: Basic Equates

Typical equates for the general purpose registers are defined in Figure 134, along with symbols
representing displacements used in various instructions.

* Equates for Parameter-List Values and Fields *

OurNArgs Equ 1 Expected number of arguments
ErrSev Equ 12 Error message severity
OurStMax Equ 256 Maximum allowed string length

AEFNCF_PARM1 Equ AEFNCF_PARMA Name for first string parameter
AEFN_PARM1_L Equ AEFN_PARMN_L Name for first string length

Figure 135. Conditional-Assembly Function REVERSE: Validation Equates

The symbols used in call and argument validation are defined in Figure 135. The last two
symbols simplify references to the first (and only) argument.

* Dummy Control Sections for SETCF Interface *

ASMAEFNP PRINT=GEN
End

Figure 136. Conditional-Assembly Function REVERSE: Dummy Sections

The DSECT mappings for the Primary Address List and the Request Information Area are
created by the expansion of the ASMAEFNP macro, as shown in Figure 136.

Note: HLASM supports character variables as long as 1024 characters. You may enjoy modifying
this function to accept and process arguments from 0 to 1024 characters in length.

External Conditional Assembly Functions 247

Installing the LOG2 and REVERSE Functions
First, assemble the statements for the exit and convert the resulting object file into a loadable
module:

• on MVS, the object file is link edited into an appropriate library and given the name LOG2 or
REVERSE (as appropriate). It may be marked re-entrant if desired. Be sure that the library
containing the function modules is available to the assembler during subsequent assemblies
that require the functions.

• on CMS, LOAD the text deck from the assembly with the CLEAR and RLDSAVE options;
then GENMOD to obtain a loadable file with name LOG2 or REVERSE (as appropriate)
and file type MODULE. Be sure that the minidisk containing the function modules is avail-
able to the assembler during subsequent assemblies that require the functions.

248 A+ + : Using HLASM's Macro Facility

System (&SYS) Variable Symbols

SysVars-203

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

System (&SYS) Variable Symbols

System variable symbols are a special class of variable symbols, starting with the characters &SYS.
They are “owned” by the assembler: they may not be declared in LCLx or GBLx statements, and
may not be used as symbolic parameters. Their values are assigned by the assembler, and never by
SETx statements.

SysVars-204System Variable Symbols: Overview

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• Variable symbols whose value is defined by the assembler

− They can't be declared in LCLx and GBLx statements

− They can't be assigned values in SETs statements

− They can't be used in a macro as symbolic parameters

• Symbol characteristics include

− Type (arithmetic, boolean, or character)

− Type attributes (mostly 'U' or 'O')

− Scope (usable in macros only, or in open code and macros)

− Variabil ity (when and where values might change)

System (&SYS) Variable Symbols 249

System Variable Symbols: Properties
The symbols have a variety of characterizations:

• Type

Most symbols have character values, and are type C: that is, they would normally be used in
SETC statements or in similar contexts. A few, however, have arithmetic values (type A) or
boolean values (type B). &SYSDATC and &SYSSTMT are nominally type C, but may also
be used as type A.

• Type attributes

Most system variable symbols have type attribute U (“undefined”) or O (“omitted”, usually
indicating a null value); some numeric variables have type N. The exception is &SYSLIST: its
type attribute is determined from the designated argument list item.

• Usage scope

Some symbols are usable only within macros (“local” scope), while others are usable both
within macros and in open code (“global” scope).

• Variability

Some symbols have values that do not change as the assembly progresses. Normally, such
values are established at the beginning of an assembly. These values are denoted “Fixed”, and
have Global scope.

Other symbols have values that may change during the assembly. These values might be
established at the beginning of an assembly or at some point subsequent to the beginning, and
may change depending on conditions either internal or external to the assembly process.

− Variables whose values are established at the beginning of a macro expansion, and for this
the values remain unchanged throughout the expansion, are designated “Constant”, even
though they may have different values in a later expansion of the same macro, or within
“inner macros” invoked by another macro. All have local scope.

− Variables whose values may change within a single macro expansion are designated “Vari-
able”; this applies to &SYSSTMT, &SYSM_HSEV, and &SYSM_SEV.

These symbols have many uses: helping to control conditional assemblies, capturing environ-
mental data for inclusion in the generated object code, providing program debugging data, etc.
Figure 137 on page 251 summarizes their properties.

250 A+ + : Using HLASM's Macro Facility

C
on

te
nt

 a
nd

 U
se

S
Y

S
A

D
A

T
A

 f
il

e
da

ta
 s

et
 n

am
e

S
Y

S
A

D
A

T
A

 f
il

e
m

em
be

r
na

m
e

S
Y

S
A

D
A

T
A

 f
il

e
vo

lu
m

e
id

en
ti

fi
er

A
ss

em
bl

er
na

m
e

D
at

e/
ti

m
e

m
ac

ro
 w

as
 g

en
er

at
ed

A
ss

em
bl

y
da

te
,

in
 Y

Y
Y

Y
M

M
D

D
 f

or
m

at

A
ss

em
bl

y
da

te
 i

n
M

M
/D

D
/Y

Y
 f

or
m

at

C
ur

re
nt

 c
on

tr
ol

 s
ec

ti
on

 n
am

e

C
ur

re
nt

 p
ri

m
ar

y
in

pu
t

da
ta

 s
et

 n
am

e

C
ur

re
nt

 p
ri

m
ar

y
in

pu
t

m
em

be
r

na
m

e

C
ur

re
nt

 p
ri

m
ar

y
in

pu
t

da
ta

 s
et

 n
am

e
vo

lu
m

e
id

en
ti

fi
er

A
ss

em
bl

y
jo

b
na

m
e

C
ur

re
nt

 l
ib

ra
ry

 d
at

a
se

t
na

m
e

C
ur

re
nt

 l
ib

ra
ry

 m
em

be
r

na
m

e

C
ur

re
nt

 l
ib

ra
ry

 d
at

a
se

t
vo

lu
m

e
id

en
ti

fi
er

S
Y

S
L

IN
 f

il
e

da
ta

 s
et

 n
am

e

S
Y

S
L

IN
 f

il
e

m
em

be
r

na
m

e

S
Y

S
L

IN
 f

il
e

vo
lu

m
e

id
en

ti
fi

er

M
ac

ro
 a

rg
um

en
t

li
st

 a
nd

 s
ub

li
st

 e
le

m
en

ts

C
ur

re
nt

 l
oc

at
io

n
co

un
te

r
na

m
e

H
ig

he
st

 M
N

O
T

E
 s

ev
er

it
y

so
 f

ar
 i

n
as

se
m

bl
y

H
ig

he
st

 M
N

O
T

E
 s

ev
er

it
y

fo
r

m
os

t
re

ce
nt

ly
 c

al
le

d
m

ac
ro

N
am

e
of

 c
ur

re
nt

 m
ac

ro
 a

nd
 i

ts
 c

al
le

rs

M
ac

ro
 i

nv
oc

at
io

n
co

un
t

N
es

ti
ng

 l
ev

el
 o

f
th

e
m

ac
ro

 c
al

l

S
et

ti
ng

 o
f

D
B

C
S

 i
nv

oc
at

io
n

pa
ra

m
et

er

S
et

ti
ng

 o
f

O
P

T
A

B
L

E
 i

nv
oc

at
io

n
pa

ra
m

et
er

S
et

ti
ng

 o
f

R
E

N
T

 i
nv

oc
at

io
n

pa
ra

m
et

er

S
et

ti
ng

 o
f

X
O

B
JE

C
T

/G
O

F
F

 i
nv

oc
at

io
n

pa
ra

m
et

er

V
ar

ia
bi

lit
y

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

C
on

st
an

t

F
ix

ed

F
ix

ed

C
on

st
an

t

C
on

st
an

t

C
on

st
an

t

C
on

st
an

t

F
ix

ed

C
on

st
an

t

C
on

st
an

t

C
on

st
an

t

F
ix

ed

F
ix

ed

F
ix

ed

C
on

st
an

t

C
on

st
an

t

V
ar

ia
bl

e

V
ar

ia
bl

e

C
on

st
an

t

C
on

st
an

t

C
on

st
an

t

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

U
sa

ge
Sc

op
e

L
oc

al

L
oc

al

L
oc

al

G
lo

ba
l

L
oc

al

G
lo

ba
l

G
lo

ba
l

L
oc

al

L
oc

al

L
oc

al

L
oc

al

G
lo

ba
l

L
oc

al

L
oc

al

L
oc

al

L
oc

al

L
oc

al

L
oc

al

L
oc

al

L
oc

al

G
lo

ba
l

G
lo

ba
l

L
oc

al

L
oc

al

L
oc

al

G
lo

ba
l

G
lo

ba
l

G
lo

ba
l

G
lo

ba
l

T
yp

e
A

tt
r.

U U U U U N U U U

U
,O

U
,O U U

U
,O

U
,O U U U an
y

U N N

U
,O N N N U N N

T
yp

e

C C C C C

C
,A C C C C C C C C C C C C C C C C C

C
,A A B C B B

F
ig

ur
e

13
7

(P
ag

e
1

of

2)
.

P
ro

pe
rt

ie
s

an
d

U
se

s
of

S
ys

te
m

V
ar

ia
bl

e
S

ym
bo

ls

V
ar

ia
bl

e
Sy

m
bo

l

&
S

Y
S

A
D

A
T

A
_D

S
N

&
S

Y
S

A
D

A
T

A
_M

E
M

B
E

R

&
S

Y
S

A
D

A
T

A
_V

O
L

U
M

E

&
S

Y
S

A
S

M

&
S

Y
S

C
L

O
C

K

&
S

Y
S

D
A

T
C

&
S

Y
S

D
A

T
E

&
S

Y
S

E
C

T

&
S

Y
S

IN
_D

S
N

&
S

Y
S

IN
_M

E
M

B
E

R

&
S

Y
S

IN
_V

O
L

U
M

E

&
S

Y
S

JO
B

&
S

Y
S

L
IB

_D
S

N

&
S

Y
S

L
IB

_M
E

M
B

E
R

&
S

Y
S

L
IB

_V
O

L
U

M
E

&
S

Y
S

L
IN

_D
S

N

&
S

Y
S

L
IN

_M
E

M
B

E
R

&
S

Y
S

L
IN

_V
O

L
U

M
E

&
S

Y
S

L
IS

T

&
S

Y
S

L
O

C

&
S

Y
S

M
_H

S
E

V

&
S

Y
S

M
_S

E
V

&
S

Y
S

M
A

C

&
S

Y
S

N
D

X

&
S

Y
S

N
E

S
T

&
S

Y
S

O
P

T
_D

B
C

S

&
S

Y
S

O
P

T
_O

P
T

A
B

L
E

&
S

Y
S

O
P

T
_R

E
N

T

&
S

Y
S

O
P

T
_X

O
B

JE
C

T

System (&SYS) Variable Symbols 251

C
on

te
nt

 a
nd

 U
se

V
al

ue
 p

ro
vi

de
d

by
 S

Y
S

P
A

R
M

 i
nv

oc
at

io
n

pa
ra

m
et

er

S
Y

S
P

R
IN

T
 f

il
e

da
ta

 s
et

 n
am

e

S
Y

S
P

R
IN

T
 f

il
e

m
em

be
r

na
m

e

S
Y

S
P

R
IN

T
 f

il
e

vo
lu

m
e

id
en

ti
fi

er

S
Y

S
P

U
N

C
H

 f
il

e
da

ta
 s

et
 n

am
e

S
Y

S
P

U
N

C
H

 f
il

e
m

em
be

r
na

m
e

S
Y

S
P

U
N

C
H

 f
il

e
vo

lu
m

e
id

en
ti

fi
er

S
eq

ue
nc

e
fi

el
d

of
 c

ur
re

nt
 o

pe
n

co
de

 s
ta

te
m

en
t

A
ss

em
bl

y
st

ep
 n

am
e

N
um

be
r

of
 n

ex
t

st
at

em
en

t
to

 b
e

pr
oc

es
se

d

C
ur

re
nt

 c
on

tr
ol

 s
ec

ti
on

 t
yp

e

S
ys

te
m

 o
n

w
hi

ch
 a

ss
em

bl
y

is
 d

on
e

S
Y

S
T

E
R

M
 f

il
e

da
ta

 s
et

 n
am

e

S
Y

S
T

E
R

M
 f

il
e

m
em

be
r

na
m

e

S
Y

S
T

E
R

M
 f

il
e

vo
lu

m
e

id
en

ti
fi

er

A
ss

em
bl

y
st

ar
t

ti
m

e

A
ss

em
bl

er
ve

rs
io

n

V
ar

ia
bi

lit
y

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

C
on

st
an

t

F
ix

ed

V
ar

ia
bl

e

C
on

st
an

t

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

F
ix

ed

U
sa

ge
Sc

op
e

G
lo

ba
l

L
oc

al

L
oc

al

L
oc

al

L
oc

al

L
oc

al

L
oc

al

L
oc

al

G
lo

ba
l

G
lo

ba
l

L
oc

al

G
lo

ba
l

L
oc

al

L
oc

al

L
oc

al

G
lo

ba
l

G
lo

ba
l

T
yp

e
A

tt
r.

U
,O U U U U U U

U
,O U N

U
,O U U U U U U

T
yp

e

C C C C C C C C C

C
,A C C C C C C C

F
ig

ur
e

13
7

(P
ag

e
2

of

2)
.

P
ro

pe
rt

ie
s

an
d

U
se

s
of

S
ys

te
m

V
ar

ia
bl

e
S

ym
bo

ls

V
ar

ia
bl

e
Sy

m
bo

l

&
S

Y
S

P
A

R
M

&
S

Y
S

P
R

IN
T

_D
S

N

&
S

Y
S

P
R

IN
T

_M
E

M
B

E
R

&
S

Y
S

P
R

IN
T

_V
O

L
U

M
E

&
S

Y
S

P
U

N
C

H
_D

S
N

&
S

Y
S

P
U

N
C

H
_M

E
M

B
E

R

&
S

Y
S

P
U

N
C

H
_V

O
L

U
M

E

&
S

Y
S

S
E

Q
F

&
S

Y
S

S
T

E
P

&
S

Y
S

S
T

M
T

&
S

Y
S

S
T

Y
P

&
S

Y
S

T
E

M
_I

D

&
S

Y
S

T
E

R
M

_D
S

N

&
S

Y
S

T
E

R
M

_M
E

M
B

E
R

&
S

Y
S

T
E

R
M

_V
O

L
U

M
E

&
S

Y
S

T
IM

E

&
S

Y
S

V
E

R

252 A+ + : Using HLASM's Macro Facility

SysVars-205System Variable Symbols with Fixed Values

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• &SYSASM, &SYSVER: describe the assembler itself

• &SYSTEM_ID: describes the system where the assembly is done

• &SYSJOB, &SYSSTEP: describe the assembly job

• &SYSDATC, &SYSDATE: assembly date

• &SYSTIME: assembly time (HH.MM)

• &SYSOPT_OPTABLE: which opcode table is being used

• &SYSOPT_DBCS, &SYSOPT_RENT, &SYSOPT_XOBJECT: status of the DBCS,
RENT, and GOFF/XOBJECT options

• &SYSPARM: value of the SYSPARM option

• All 15 output file symbols (SYSADATA, SYSLIN, SYSPRINT,
SYSPUNCH, SYSTERM)

− E.g., &SYSLIN_DSN, &SYSLIN_MEMBER, &SYSLIN_VOLUME

Variable Symbols With Fixed Values During an Assembly
These sequence symbol values are established at the beginning of an assembly, and remain
unchanged throughout the assembly.

&SYSASM and &SYSVER

&SYSASM provides the name of the assembler; its value is

HIGH LEVEL ASSEMBLER

&SYSVER describes the version, release, and modification level of the assembler. Its value
increases monotonically across versions and releases of HLASM. A typical value of &SYSVER
might be

1.6.0

This pair of variables could be used to provide identification within an assembled program of the
assembler used to assemble it:

What_ASM DC C'Assembled by &SYSASM., Version &SYSVER..'

&SYSTEM_ID

&SYSTEM_ID identifies the operating system under which the assembly is being performed. A
typical value of this variable might be

z/OS 1.12.0

This variable could be used to provide identification within an assembled program of the system
where it was assembled:

What_Sys DC C'Assembled on &SYSTEM_ID..'

System (&SYS) Variable Symbols 253

&SYSJOB and &SYSSTEP

These two variables provide the name of the job and step under which the assembler is running.

When assembling under CMS, the value of &SYSJOB is always (NOJOB); and when assembling
under CMS or VSE, the value of &SYSSTEP is always (NOSTEP).

This pair of variables could be used to provide identification within an assembled program of the
job and step used to assemble it:

Who_ASM DC C'Assembled in Job &SYSJOB., Step &SYSSTEP..'

&SYSDATC

This provides the current date, with century included, in the format YYYYMMDD. A typical value* of
this variable might be

19920626

&SYSDATE

&SYSDATE provides the current date, in the form MM/DD/YY; it contains only the last two digits
of the year. A typical value of this variable might be

06/26/92

&SYSTIME

&SYSTIME provides the time at which the assembly started, in the form HH.MM.

This variable, along with &SYSDATE or &SYSDATC, could be used to provide identification
within an assembled program of the date and time of assembly:

When_ASM DC C'Assembled on &SYSDATC., at &SYSTIME..'

Differences among &SYSTIME, &SYSCLOCK, and the CLOCKB and CLOCKD operands of
the AREAD statement are discussed on page 261.

&SYSOPT_OPTABLE

This variable provides the name of the current operation code table being used for this assembly,
as established by the OPTABLE option. A typical value of this variable might be

ESA

This variable is useful for creating programs that must execute on machines with limitations on
the set of available instructions. For macro-generated code, this variable can be used to determine
what instructions should be generated for various operations, such as generating BALR vs. BASR vs.
BRAS.

This variable could be used to provide identification within an assembled program of the opera-
tion code table used to assemble it:

What_Ops DC C'Opcode table for assembly was &SYSOPT_OPTABLE..'

* Not really typical, but important: HLASM V1R1 became available on June 26, 1992.

254 A+ + : Using HLASM's Macro Facility

&SYSOPT_DBCS, &SYSOPT_RENT, and &SYSOPT_XOBJECT

&SYSOPT_DBCS, &SYSOPT_RENT, and &SYSOPT_XOBJECT provide the settings of the
DBCS, RENT, and GOFF/XOBJECT options, respectively. They can be used to control gener-
ation of instructions or data appropriate to the type of desired object code, or to help control the
scanning of DBCS macro arguments.

For example, character data to be included in constants can be generated with proper encodings if
DBCS environments must be considered. Similarly, macros can use the setting of the RENT
option to generate different instruction sequences for reentrant and non-reentrant situations.

To illustrate, &SYSOPT_RENT could be used to provide conditional assembly support for dif-
ferent code sequences:

AIF (&SYSOPT_RENT).Do_Rent
MYMAC Parm1,Parm2,GENCODE=NORENT Generate non-RENT code
AGO .Continue

.Do_Rent MYMAC Parm1,Parm2,GENCODE=RENT Generate RENT code

.Continue ANOP

&SYSPARM

&SYSPARM provides the character string provided by the programmer in the SYSPARM
option:

SYSPARM(string)

It could be used to provide identification within an assembled program of the &SYSPARM value
used to assemble it, as well as to control conditional assembly activities:

What_PRM DC C'&&SYSPARM value was ''&SYSPARM.''.'

.X14 AIF ('&SYSPARM' NE 'TRACE').Skip_Trace
MNOTE 'Assembly reached Sequence Symbol .X14'

.Skip_Trace ANOP

&SYS Symbols for Output Files

There are fifteen variable symbols describing the output files of High Level Assembler, three for
each file:

The &SYSxxxx_DSN symbols provide the file or data set name used for the corresponding
output file; the &SYSxxxx_MEMBER symbols provide the member name (if any) used for the
output file; and the &SYSxxxx_VOLUME symbols provide the volume identifier used for the
output file.

To illustrate, suppose you wish to “capture” information about the destination of the object file
written to the SYSLIN data set. You could write a set of statements such as:

What_OBJF DC C'SYSLIN file name is ''&SYSLIN_DSN.''.'
What_OBJM DC C'SYSLIN member is ''&SYSLIN_MEMBER.''.'
What_OBJV DC C'SYSLIN volume is ''&SYSLIN_VOLUME.''.'

File DataSet Name Member Name Volume ID

SYSPRINT &SYSPRINT_DSN &SYSPRINT_MEMBER &SYSPRINT_VOLUME
SYSTERM &SYSTERM_DSN &SYSTERM_MEMBER &SYSTERM_VOLUME
SYSPUNCH &SYSPUNCH_DSN &SYSPUNCH_MEMBER &SYSPUNCH_VOLUME
SYSLIN &SYSLIN_DSN &SYSLIN_MEMBER &SYSLIN_VOLUME
SYSADATA &SYSADATA_DSN &SYSADATA_MEMBER &SYSADATA_VOLUME

System (&SYS) Variable Symbols 255

SysVars-206System Variable Symbols with Values Constant in Macros

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• &SYSSEQF: sequence field of the statement calling the macro

• &SYSECT: section name active at time of call

• &SYSSTYP: section type active at time of call

• &SYSLOC: name of location counter active at time of call

• &SYSIN_DSN, &SYSIN_MEMBER, &SYSIN_VOLUME:
origins of current primary input fi le

• &SYSLIB_DSN, &SYSLIB_MEMBER, &SYSLIB_VOLUME:
origins of current l ibrary input file

• &SYSCLOCK: date/time macro was called

• &SYSNEST: macro nesting level

• &SYSMAC: name of current macro and its callers

• &SYSNDX: incremented by 1 at each macro call

• &SYSLIST: access to macro positional parameters and sublists

Variable Symbols With Constant Values Within a Macro
These symbols' values are initialized when a macro expansion is initiated, and remain fixed
throughout the duration of that expansion.

&SYSSEQF

&SYSSEQF provides the contents of the sequence field of the current input statement. This
information can be used for debugging data. For example, suppose you have a macro which
inserts information about the current sequence field into the object code of the program, and sets
R0 to its address (so that a debugger can tell you which statement was identified in some debug-
ging activity). A macro like the following might be used:

Macro
&L DebugPtA
&L BAS 0,*+12 Addr of Sequence Field in R0

DC CL8'&SYSSEQF' Sequence Field info
MEnd
- - -

B DebugPtA

&SYSECT

&SYSECT provides the name of the control section (CSECT, DSECT, COM, or RSECT) into
which statements are being grouped or assembled at the time the referencing macro was invoked.
If a macro must generate code or data in a different control section, this variable lets your macro
restore the name of the previous environment before exiting. (Note also its relation to
&SYSSTYP.) An example illustrating &SYSECT and &SYSSTYP is shown below.

256 A+ + : Using HLASM's Macro Facility

&SYSSTYP

&SYSSTYP provides the type of the control section into which statements are being grouped or
assembled (CSECT, DSECT, COM, or RSECT) at the time the referencing macro was invoked.
If a macro must generate code or data in a different control section, this variable permits the
macro to restore the proper type of control section for the previous environment, before exiting.

For example, suppose we need to generate multiple copies of a small DSECT. The macro shown
in the following example generates the DSECT so that each generated name is prefixed with the
characters supplied in the macro argument. The environment in which the macro was invoked is
then restored on exit from the macro.

Macro
DSectGen &P

&P.Sect DSect , Generate tailored DSECT name
&P.F1 DS D DSECT Field No. 1
&P.F2 DS 18F DSECT Field No. 2, a save area
&SYSECT &SYSSTYP Restore original section

MEnd

&SYSLOC

&SYSLOC contains the name of the current location counter, as defined either by a control
section definition or a LOCTR statement.

As in the example of &SYSSTYP, the &SYSLOC variable can be used to capture and restore the
current location counter name. Again, suppose we are interrupting the statement flow to generate
a small DSECT:

Macro
DSectGen &P

&P.Sect DSect Generate the DSECT name
&P.F1 DS D DSECT Field No. 1
&P.F2 DS 18F DSECT Save Area
&SYSLOC LOCTR Restore previous location counter

MEnd

&SYSIN_DSN, &SYSIN_MEMBER, and &SYSIN_VOLUME

These three symbols identify the origins of the current primary input file. Their values change
across input-file concatenations. This information can be used to determine reassembly require-
ments.

• &SYSIN_DSN provides the name of the current primary input (SYSIN) data set or file.

• &SYSIN_MEMBER provides the name of the current primary input member, if any.

• &SYSIN_VOLUME provides the name of the current primary input volume.

For example, the following SYSINFO macro will capture the name of the current input file, its
member name, and the volume identifier. (If the input does not come from a library member, the
member name will be replaced by the characters “(None)”.)

System (&SYS) Variable Symbols 257

Macro
&L SYSINFO
&L DC C'Input: &SYSIN_DSN'
&Mem SetC '&SYSIN_MEMBER'

AIF ('&Mem' ne '').Do_Mem
&Mem SetC '(None)'
.Do_Mem DC C'Member: &Mem'

DC C'Volume: &SYSIN_VOLUME'
MEnd

My_Job SYSINFO

&SYSLIB_DSN, &SYSLIB_MEMBER, and &SYSLIB_VOLUME

These three symbols identify the origins of the current library member. Their values change from
member to member. This information can be used to determine reassembly requirements.

• &SYSLIB_DSN provides the name of the library data set from which each macro and COPY
file is retrieved.

• &SYSLIB_MEMBER provides the name of the library member from which this macro and
COPY file is retrieved.

• &SYSLIB_VOLUME provides the volume identifier (VOLID) of the library data set from
which this macro and COPY file is retrieved.

For example, suppose the LIBINFO macro below is stored in a macro library accessible to the
assembler at assembly time. (The macro includes a test for a blank member name, which should
never occur.)

Macro
&L LIBINFO
&L DC C'Library Input: &SYSLIB_DSN'
&Mem SetC '&SYSLIB_MEMBER'

AIF ('&Mem' ne '').Do_Mem
MNote 4,'LIBINFO: The library member name should not be null.'

.Do_Mem DC C'Member: &Mem'
DC C'Volume: &SYSLIB_VOLUME'
MEnd

Then the following small test assembly would generate information in the object text of the gener-
ated program about the macro library.

My_Job LIBINFO
End

&SYSCLOCK

&SYSCLOCK provides the date and time at which the current macro was invoked, as a string of
26 characters:

'YYYY-MM-DD HH:MM:SS mmmmmm'

where mmmmmm is measured in microseconds. &SYSCLOCK can be used only in macros, not in
open code.

Differences among &SYSTIME, &SYSCLOCK, and the CLOCKB and CLOCKD operands of
the AREAD statement are discussed on page 261.

258 A+ + : Using HLASM's Macro Facility

&SYSNEST

&SYSNEST provides the nesting level at which the current macro was invoked; the outermost
macro called from open code is at level 1.

For example, a macro might contain tests or MNOTE statements to indicate the nesting depth:

AIF (&SYSNEST LE 50).OK
MNOTE 12,'Macro nesting depth exceeds 50. Possible recursion?'
MEXIT

.OK ANOP

&SYSMAC

&SYSMAC provides the name of the macro currently being expanded, and of its entire call chain.
If &SYSMAC is used without any subscript, it returns the name of the macro (or open code) in
which it was used. If a subscript is provided, &SYSMAC(0) returns the same value as
&SYSMAC; &SYSMAC(1) returns the name of the macro that called this one; and so forth for
subscripts up to and including &SYSMAC(&SYSNEST), which returns 'OPEN CODE'. For values
of the subscript greater than &SYSNEST, a null string is returned.

For example, instructions to display a macro's call chain might look like this:

&J SetA &SYSNEST
&K SetA &SYSNEST-&J
.Loop ANop ,

MNOTE *,'Name at nesting level &J is &SYSMAC(&K)'
&J SetA &J.-1

AIf (&J ge 0).Loop

&SYSNDX

&SYSNDX has a unique value for every macro invocation in the program. It can be used as a
suffix for symbols generated in the macro, so that they will not “collide” with similar symbols
generated in other invocations. It is incremented by 1 each time a macro is invoked; its value is
constant within that macro, even if it invokes other inner macros.

For values of &SYSNDX less than or equal to 9999, the value will always be four characters long
(padded on the left with leading zeros, if necessary).

Macro
&L BDisp &Target Branch to non-addressable target
&L BAS 1,Add&SYSNDX Skip over constant
Off&SYSNDX DC Y(&Target-*) Target offset
Add&SYSNDX AH 1,Off&SYSNDX Add offset

BR 1 Branch to target
MEnd

Although the contents of &SYSNDX is always decimal digits and can be used in SETA
expressions, it is actually a character-valued variable.

&SYSLIST

&SYSLIST can be used to access positional parameters on a macro call (whether named or not).
&SYSLIST supports a very rich set of sublist and attribute capabilities, and is quite different from
the other system variable symbols.

&NameFld SETC '&SYSLIST(0)' Name field of macro call
&NArgs SETA N'&SYSLIST Number of arguments
&Arg_1 SETC '&SYSLIST(1)' Argument 1
&NArgs_1 SETA N'&SYSLIST(1) Number of sub-arguments
&Arg_2 SETC '&SYSLIST(2)' Argument 2

System (&SYS) Variable Symbols 259

SysVars-207System Variable Symbols with Varying Values

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

• The values of these variables can change during macro expansion

• &SYSSTMT: next statement number to be processed

• &SYSM_HSEV: highest MNOTE severity so far

• &SYSM_SEV: highest MNOTE severity in most recently invoked macro

Variable Symbols Whose Values May Vary Anywhere
Three system variable symbols have values that can vary in all contexts: &SYSSTMT, &SYSM_HSEV,
and &SYSM_SEV.

&SYSSTMT

&SYSSTMT provides the number of the next statement to be processed by the assembler.
Debugger data that depends on the statement number can be generated with this variable. For
example, suppose we have a macro which inserts information about the current statement number
into the object code of the program, and sets R0 to its address (so that a debugger can tell you
which statement was identified in some debugging activity). A macro like the following might be
used:

Macro
&L DebugPtN
 &L BAS 0,*+8 Addr of Statement Number in R0

DC AL4(&SYSSTMT) Statement number information
MEnd

 D DebugPtN
+D BAS 0,*+8 Addr of Statement Number in R0
+ DC AL4(00000527) Statement number information

&SYSM_HSEV and &SYSM_SEV

&SYSM_HSEV and &SYSM_SEV provide the severity codes generated by MNOTE statements
in macros called during the assembly. This can help a macro to determine that an inner macro
call may have detected some special condition requiring action by the caller, without having to set
global variables. Their values are returned as three numeric characters, such as 008.

&SYSM_SEV provides the highest MNOTE severity code for the macro most recently called
from this macro or from open code. &SYSM_HSEV provides the highest MNOTE severity
code for the entire assembly up to the point of reference to &SYSM_HSEV.

260 A+ + : Using HLASM's Macro Facility

SysVars-208System Variable Symbol Usage

© IBM 2012 Al l r ights reservedHLASM Macro Tutor ia l

An example, using many System variable symbols:

Header DC C'Identification: '
*
What_ASM DC C'Assembled by &SYSASM., Version &SYSVER.'
What_Sys DC C', on &SYSTEM_ID.'
Who_ASM DC C', in Job &SYSJOB., Step &SYSSTEP.'
When_ASM DC C', on &SYSDATC. at &SYSTIME..'
What_Ops DC C' Opcode table for assembly was &SYSOPT_OPTABLE..'
What_PRM DC C' &&SYSPARM value was ''&SYSPARM.''.'
What_In DC C' SYSIN file was ''&SYSIN_DSN.''.'
What_Obj DC C' SYSLIN (object) file was ''&SYSLIN_DSN.''.'

Example Using Many System Variable Symbols
You might want to insert information into the object code of a program describing its assembly
environment, in a form readable without “translation” from hex. This example shows one way
you can do this:

Header DC C'Identification: '
*
What_ASM DC C'Assembled by &SYSASM., Version &SYSVER.'
What_Sys DC C', on &SYSTEM_ID.'
Who_ASM DC C', in Job &SYSJOB., Step &SYSSTEP.'
When_ASM DC C', on &SYSDATC. at &SYSTIME..'
What_Ops DC C' Opcode table for assembly was &SYSOPT_OPTABLE..'
What_PRM DC C' &&SYSPARM value was ''&SYSPARM.''.'
What_In DC C' SYSIN file was ''&SYSIN_DSN.''.'
What_Obj DC C' SYSLIN (object) file was ''&SYSLIN_DSN.''.'

&SYSTIME, &SYSCLOCK, and the AREAD Statement
&SYSTIME provides the local time of the start of the assembly in HH/MM format. This “time
stamp” may not have sufficient accuracy or resolution for some applications.

There are two alternatives to the unvarying quality of &SYSTIME: &SYSCLOCK and the
AREAD statement; &SYSCLOCK is described on page 258.

You can use operands of the AREAD statement if a more accurate time stamp is required. The
current time can be obtained either in decimal or binary format.

This macro captures the clock reading in both decimal and binary formats:

System (&SYS) Variable Symbols 261

Macro
&Lab AREADCLK

LCLC &Dec,&Bin
&Dec Aread CLOCKD
&Bin Aread CLOCKB
&Lab DC C'&Dec' Decimal Clock

DC C'&Bin' Binary Clock
MEnd

A AREADCLK
+A DC C'13020700' Decimal Clock
+ DC C'04692700' Binary Clock

Thus, you can capture time values at three levels of granularity:

• &SYSTIME provides the time at which the assembly began

• &SYSCLOCK provides the time at which the macro expansion began

• AREAD provides the current time whenever it is executed.

262 A+ + : Using HLASM's Macro Facility

Comparing Ordinary and Conditional Assembly

Figure 138. Comparison of Ordinary and Conditional Assembly

Comparison Ordinary Assembly Conditional Assembly

Generality The “inner” language of instructions
and data definitions

The “outer” language that controls,
tailors, and generates the inner language

Usage A language for programming a
processor

A language for programming an assem-
bler and its inner language

Inputs Statements from primary input, library
(via COPY or macro call), and gener-
ated statements from macros and
AINSERT statements

Statements from primary input (and
records via AREAD), library (via
COPY and macro call), external func-
tions

Outputs Generated machine language object
code, object-file records (via REPRO,
PUNCH), listing, ADATA, terminal
messages

Ordinary assembly statements and
macro instructions, messages (via
MNOTE), records (via AINSERT)

Symbols Ordinary symbols (internal and external) Variable symbols, sequence symbols

Symbol declara-
tion

Ordinary symbols appear in the name
field of ordinary assembly statements
(except names in V-type address con-
stants); always explicitly declared

Sequence symbols appear in the name
field of any statement; variable symbols
are (a) user-declared (implicitly or
explicitly), (b) system, or (c) macro
parameters (both implicit)

Statement labels Ordinary symbols take the values of
locations in the ordinary assembly state-
ment stream, and other assigned values,
or are positional arguments in macro
calls

Sequence symbols denote positions in
the conditional assembly statement
stream

Symbol scope Internal and external; external symbols
persist in the object code beyond
assembly time

Variable symbols have local or global
scope; sequence symbols have local
scope; both discarded at assembly end

Symbol types and
values

Ordinary symbols have no types; values
are normally assigned from Location
Counter values or by EQU statements

Variable symbols have arithmetic,
boolean, or character types and values

Symbol attributes Ordinary symbols may have Program,
Length, Scale, Integer, and Assembler
attributes

Variable symbols have only the prop-
erty of maximum subscript (if dimen-
sioned), but their values may have
attributes

Expression evalu-
ation

Expressions in ordinary statements, and
in A-type and Y-type address constants

Expressions in conditional-assembly
statements

Expression opera-
tors

+, -, *, / +, -, *, /; internal arithmetic func-
tions; internal boolean functions;
internal character functions; external
arithmetic and character functions

Attribute Refer-
ences

L', I', S' T', L', I', S', D', K', N', O'

Comparing Ordinary and Conditional Assembly 263

/XRL/1

APAFOIL Processing Options

APAFOIL Oct. 6, 2000 Release 3.2

Runtime values:

DEVICE . 3820A
BIND (Odd, Even) . 1.00i, 1.00i
TWOPASS . NO
INDEX . YES

Foil Set: 1

Input File (Current) . HLA2VARS

Layout of Heading (FOILHD Tag or Default)
FOILHD . HEAD NULL NUMBER
FRAME . NONE

Layout of Body (LAYOUT Tag or Default)
FRAME . RULE
FRAMEWT . BOLD
RULE . SOLID
BORDER . NONE
RUBRICWT . LIGHT

Layout of Footing (FOILFT Tag or Default)
FOILFT . CONH NULL CONC
FRAME . NONE

Statistics:
Title Page . 0
Contents . 0
Parts . 6
Foils . 202
Notes . 0
Overflow . 0
Total Pages . 208

APAFOIL Messages:
Information . 0
Warning . 0
Error . 0

System Variables:
SYSVAR B . MIN
SYSVAR N . INCLUDE

/XRL/2

Table Definitions

id File Page References

BIFTHD HLA2CONM
31 31

BIFTHDT HLA2CONM
31 31

ATTRTBT HLA2MAC
87 87

ATTRTBR HLA2MAC
87 87, 87, 87, 87, 87, 87

ATTRTBC HLA2MAC
87

ATTRTBZ HLA2MAC
87 87, 87

Figures

id File Page References

CONDDCF HLA2CONM
9 1

CONDAET HLA2CONM
16 2

CONDMTT HLA2CONM
25 3

25
LEXBIFA HLA2CONM

27 4
27

LEXBIFC HLA2CONM
27 5

27
BIFTAB1 HLA2CONM

31 6
30

CONAGO1 HLA2CONM
44 7

44, 45
CONAGO2 HLA2CONM

46 8
46, 46

CONAF01 HLA2CONM
49 9

78, 115
CONAF02 HLA2CONM

50 10
115

CONAF11 HLA2CONM
51 11

51
MACG001 HLA2MAC

60 12
60, 67

MACG002 HLA2MAC
61 13

61
MACG02A HLA2MAC

62 14
62

MACG005 HLA2MAC
64 15

64
MACG0D5 HLA2MAC

65 16
65, 100

MACG003 HLA2MAC
67 17

67
MACG004 HLA2MAC

68 18
MACG0Z6 HLA2MAC

70 19
70

MACG007 HLA2MAC
71 20

MACG008 HLA2MAC
72 21

/XRL/3

MACG0X6 HLA2MAC
73 22

73, 76
MACG006 HLA2MAC

77 24
76

MCXP04A HLA2MAC
78 25

115
MACGN01 HLA2MAC

83 26
84

MACGN02 HLA2MAC
83 27

ATTRTBL HLA2MAC
87 28

MACGSC1 HLA2MAC
90 29

90
MACNDFF HLA2MAC

100 30
MACFSBK HLA2MAC

101 31
101

MCTXP02 HLA2MACT
112 32

111, 113
MCTXP03 HLA2MACT

114 33
187

MCTXP05 HLA2MACT
117 34

115, 116
MACMVC2 HLA2MACT

119 35
MCTXM01 HLA2MACT

121 36
MCTXMA1 HLA2MACT

122 37
MCTXP06 HLA2MACT

125 38
MCTXP07 HLA2MACT

126 39
125

MCTXP08 HLA2MACT
129 40

128
MCTXPA8 HLA2MACT

129 41
MACCOMT HLA2MACT

131 42
MCTXP21 HLA2MACT

134 43
133

MCTXPZ1 HLA2MACT
134 44

MCTXP22 HLA2MACT
136 45

136
MCTXP23 HLA2MACT

137 46
MCTXP20 HLA2MACT

138 47
137, 138

MCTXP2X HLA2MACT
139 48

138
MCTXB01 HLA2MACT

143 49
143

MCTXB02 HLA2MACT
144 50

MCTXB03 HLA2MACT
146 51

145
MCTXBA4 HLA2MACT

146 52
MCTXB04 HLA2MACT

147 53
164

MCTXB05 HLA2MACT
147 54

164

/XRL/4

MCTXBB4 HLA2MACT
148 55

MCTXBA5 HLA2MACT
148 56

MCTXB06 HLA2MACT
149 57

MCTXBA6 HLA2MACT
150 58

MCTXB07 HLA2MACT
150 59

MCTXBA7 HLA2MACT
150 60

MCTXBF1 HLA2MACT
154 61

MCTXB11 HLA2MACT
156 62

155
MCTXB12 HLA2MACT

158 63
MCTXBF3 HLA2MACT

161 64
161

MCTXB13 HLA2MACT
163 65

160, 162
MCTXB14 HLA2MACT

164 66
MCTBOF1 HLA2MACT

166 67
MCTXT21 HLA2MACT

167 68
166

MCTXB21 HLA2MACT
169 69

169, 172
MCTXB22 HLA2MACT

171 70
MCTBOF2 HLA2MACT

172 71
MCTUD01 HLA2MACT

175 72
177

MCTUD02 HLA2MACT
175 73

MCTUD0D HLA2MACT
176 74

176
LOCTRF1 HLA2MACT

179 75
MCTYCF1 HLA2MACT

181 76
189

MCTYCF2 HLA2MACT
182 77

184, 190
MCTYCF3 HLA2MACT

182 78
MCTYCF4 HLA2MACT

185 79
MACTYCX HLA2MACT

186 80
MCTYCFF HLA2MACT

188 81
188

MCTYCF5 HLA2MACT
190 82

MCTUD11 HLA2MACT
192 83

MCTUD1A HLA2MACT
192 84

192
MCTUD12 HLA2MACT

193 85
MCTUD1B HLA2MACT

194 86
193

MCTUD13 HLA2MACT
196 87

MCTUD14 HLA2MACT
196 88

MCTUD15 HLA2MACT
198 89

MCTUD16 HLA2MACT

/XRL/5

199 90
MCTUD18 HLA2MACT

200 91
MCTUD17 HLA2MACT

202 92
FMTPA01 HLA2MACT

205 93
FMTPA02 HLA2MACT

206 94
FMTPA03 HLA2MACT

207 95
FMTPA04 HLA2MACT

209 96
FMTPA05 HLA2MACT

211 97
FMTPA06 HLA2MACT

212 98
FMTPA07 HLA2MACT

213 99
215

FMTPA4A HLA2MACT
216 100

FMTPA90 HLA2MACT
219 101

FMTPA91 HLA2MACT
220 102

FMTPA92 HLA2MACT
220 103

MATRIX1 HLA2MACT
224 104

MATRIX2 HLA2MACT
224 105

FMTPA5A HLA2MACT
225 106

FMTPA5B HLA2MACT
225 107

FMTPA5C HLA2MACT
226 108

FMTPA5D HLA2MACT
226 109

FMTPA5E HLA2MACT
227 110

FMTPA5F HLA2MACT
227 111

FMTPA5G HLA2MACT
227 112

MCTFEX1 HLA2MACT
232 113

XAFNF00 HLA2XFUN
236 114

236
XAFNF01 HLA2XFUN

237 115
237

XAFNF02 HLA2XFUN
238 116

238
XAFNF03 HLA2XFUN

238 117
238

XAFNF04 HLA2XFUN
239 118

239
XAFNF05 HLA2XFUN

239 119
239

XAFNFA5 HLA2XFUN
240 120

240
XAFNFA6 HLA2XFUN

240 121
240

XAFNF06 HLA2XFUN
241 122

241
XAFNF07 HLA2XFUN

241 123
241

XAFNF08 HLA2XFUN
241 124

241
XAFNF10 HLA2XFUN

242 125

/XRL/6

242
XAFNF11 HLA2XFUN

243 126
243

XAFNF12 HLA2XFUN
243 127

243
XAFNF13 HLA2XFUN

244 128
244

XAFNF14 HLA2XFUN
244 129

244
XAFNF15 HLA2XFUN

245 130
245

XAFNF16 HLA2XFUN
245 131

246
XAFNF18 HLA2XFUN

246 132
246

XAFNF19 HLA2XFUN
246 133

246
XAFNF20 HLA2XFUN

247 134
247

XAFNF21 HLA2XFUN
247 135

247
XAFNF22 HLA2XFUN

247 136
247

SVARSUM HLA1SVAT
251 137

250
GLOSCAT HLA1GLOT

263 138
5

Headings

id File Page References

PART0 HLA2CONM
1 Conditional Assembly and Macros

CONDASL HLA2CONM
4 Part 1: The Conditional Assembly Language

CONDSS HLA2CONM
6 Evaluation, Substitution, and Selection

CONDVSY HLA2CONM
7 Variable Symbols

CONDDCL HLA2CONM
9 Declaring Variable (SET) Symbols

79
DIMVAR1 HLA2CONM

10 Subscripted Variable Symbols
CREVAR1 HLA2CONM

10 Created Variable Symbols
CONDASS HLA2CONM

12 Assigning Values to Variable Symbols: SET Statements
8

CONDSUB HLA2CONM
13 Substitution

CONDASA HLA2CONM
14 Evaluating Arithmetic Expressions: SETA

CONDAEQ HLA2CONM
16 SETA Statements vs. EQU Statements

CONDASB HLA2CONM
17 Evaluating and Assigning Boolean Expressions: SETB

52
CONDASC HLA2CONM

19 Evaluating and Assigning Character Expressions: SETC
7, 18, 52, 52, 54

CONDACC HLA2CONM
21 Character Expressions: String Concatenation

CONDACS HLA2CONM
22 Character Expressions: Substrings

CONDACL HLA2CONM

/XRL/7

24 Character Expressions: String Lengths
CONDMXT HLA2CONM

25 Conditional Expressions with Mixed Operand Types
55, 55

XCONIFN HLA2CONM
26 Internal Conditional-Assembly Functions

XCONIFA HLA2CONM
28 Arithmetic-Valued Functions Using Logical-Expression Format

CONDACF HLA2CONM
29 Character-Valued Functions Using Logical-Expression Format

21, 23, 52
CONDA2D HLA2CONM

32 Converting from Arithmetic Data to Character Value Types
21

CONDXF HLA2CONM
40 External Conditional-Assembly Functions

12
CONDSEL HLA2CONM

41 Statement Selection: Conditional Assembly Control Flow
CONDSEQ HLA2CONM

42 Sequence Symbols
ANOPST HLA2CONM

43 ANOP Statement
CONDSGO HLA2CONM

43 The AGO Statement
CONDSG2 HLA2CONM

44 The Extended AGO Statement
52

CONDSIF HLA2CONM
45 The AIF Statement

CONDSF2 HLA2CONM
46 The Extended AIF Statement

CONDAMN HLA2CONM
47 Displaying Symbol Values and Messages: The MNOTE State-

ment
44, 91

CONDSX0 HLA2CONM
48 Examples of Conditional Assembly

CONDSX1 HLA2CONM
48 Example 1: Generate Bytes with Values 1-N

CONDXSY HLA2CONM
51 Example 3: Generating System-Dependent I/O Statements

CONDODD HLA2CONM
52 Conditional Assembly Language Eccentricities

CALSPEC HLA2CONM
53 Conditional Assembly Language Special Topics

CONDSU2 HLA2CONM
53 Comments on Substitution, Evaluation, and Re-Scanning

CONDOPQ HLA2CONM
55 Logical Operators in SETA, SETB, and AIF Statements

52
MAC00 HLA2MAC

56 Part 2: Basic Macro Concepts
MACFAC HLA2MAC

57 What is a Macro Facility?
MACSUB1 HLA2MAC

57 Macros and Subroutines
MACBEN HLA2MAC

58 Benefits of Macro Facilities
MACBAS HLA2MAC

59 The Macro Concept: Fundamental Mechanisms
MACMTIN HLA2MAC

60 Text Insertion
MACMTPA HLA2MAC

61 Text Parameterization and Argument Association
MACMTSE HLA2MAC

62 Text Selection
MACNEST HLA2MAC

63 Macro Call Nesting
MDNEST HLA2MAC

65 Macro Definition Nesting
MACDEF HLA2MAC

67 The Assembler Language Macro Definition
MACRECX HLA2MAC

67 Macro-Instruction Definition Example
MACRCRL HLA2MAC

68 Macro-Instruction Recognition Rules
MACEXPN HLA2MAC

69 Macro Expansion, Generated Statements, and the MEXIT
Statement

MACCMTF HLA2MAC
70 Macro Comments and Readability Aids

MACGEN0 HLA2MAC

/XRL/8

71 Example 1: Define Equated Symbols for Registers
109, 110

MACPAAR HLA2MAC
72 Macro Parameters and Arguments

MACPARM HLA2MAC
73 Macro-Definition Parameters

MACARGS HLA2MAC
74 Macro-Instruction Arguments

MACPAAS HLA2MAC
76 Macro Parameter-Argument Association

73
MCXBYS1 HLA2MAC

78 Example 2: Generate a Sequence of Byte Values (BYTESEQ1)
109

MACAATS HLA2MAC
79 Macro Argument Attributes and Structures

15
MACARGT HLA2MAC

81 Macro-Instruction Argument Properties: Type Attribute
LISATTR HLA2MAC

81 Length, Integer, and Scale Attributes
DATTR HLA2MAC

82 Defined Attribute
114

MACARGC HLA2MAC
82 Macro-Instruction Argument Properties: Count Attribute

MACNATR HLA2MAC
83 Macro-Instruction Argument Properties: Lists and Number

Attributes
10

MACSBLS HLA2MAC
84 Macro-Instruction Argument Lists and Sublists

79
MACARGL HLA2MAC

86 Macro-Instruction Argument Lists and the &SYSLIST Variable
Symbol

76
ATRSUM1 HLA2MAC

87 Summary of Attribute References
80

MACGBL HLA2MAC
88 Global Variable Symbols

MACVSC HLA2MAC
89 Variable Symbol Scope Rules: Summary

9
MACDBGT HLA2MAC

91 Macro Debugging Techniques
MACDBGM HLA2MAC

91 Macro Debugging: The MNOTE Statement
MACMHLP HLA2MAC

92 Macro Debugging: The MHELP Statement
MACDBAC HLA2MAC

94 Macro Debugging: The ACTR Statement
MACDBLM HLA2MAC

95 Macro Debugging: The LIBMAC Option
MACDBPM HLA2MAC

96 Macro Debugging: The PRINT MCALL Statement
IBMMACS HLA2MAC

97 IBM Macro Libraries
MACSPEC HLA2MAC

97 Macro Special Topics
MACREC HLA2MAC

98 Macro-Instruction Recognition: Details
67

MACENCD HLA2MAC
98 Macro-Definition Encoding

MACNDFA HLA2MAC
100 Nested Macro Definitions

183
MACPACK HLA2MAC

101 Constructed Keyword Arguments
MACPUSE HLA2MAC

102 Macro Parameter Usage in Model Statements
CPATSYL HLA2MAC

103 Macro Argument Lists and Sublists: Details
SUBLINM HLA2MAC

104 Inner-Macro Sublists
MCT00 HLA2MACT

106 Part 3: Macro Techniques
MCT01 HLA2MACT

109 Macro Techniques Case Studies
MCTGEN1 HLA2MACT

110 Case Study 1: Defining Equated Symbols for Registers

/XRL/9

72, 109, 188
MCTXBYS HLA2MACT

115 Case Study 2: Generating a Sequence of Byte Values
50, 109

MACTMV2 HLA2MACT
118 Case Study 3: ‘MVC2’ Macro Uses Source Operand Length

109
MCTXSYL HLA2MACT

120 Case Study 4: Generate a List of Named Integer Constants
109

MCTARED HLA2MACT
123 Case Study 5: Using the AREAD Statement

109
MCTXMSG HLA2MACT

124 Case Study 5a: Creating Length-Prefixed Message Texts
109

MCTXMG1 HLA2MACT
125 Simplest Prefixed Message Text

MCTXMG2 HLA2MACT
125 More General Prefixed Message Text

MCTXARD HLA2MACT
128 Prefixed Message Text with the AREAD Statement

MCTBCMT HLA2MACT
130 Case Study 5b: Block Comments

109
MCTXRCR HLA2MACT

132 Case Study 6: Macro Recursion
109

MCTXFAC HLA2MACT
133 Recursion Example 1: Binary Factorial-Function Values

132
MCTXFIB HLA2MACT

135 Recursion Example 2: Fibonacci Numbers
132

MCTXIND HLA2MACT
137 Recursion Example 3: Indirect Addressing

132
MCTBIT0 HLA2MACT

140 Case Study 7: Macros for Bit-Handling Operations
MCTBIT HLA2MACT

140 Basic Bit Handling Techniques
MCTBH01 HLA2MACT

142 Case Study 7a: Bit-Handling Macros -- Simple Forms
109

MCTBH02 HLA2MACT
151 Case Study 7b: Bit-Handling Macros -- Advanced Forms

109, 145, 147
MCTBIT1 HLA2MACT

152 Bit-Handling “Micro Language” and “Micro-Compiler”
MCTBHA1 HLA2MACT

155 Declaring Bit Names
MCTIBHM HLA2MACT

160 Improved Bit-Manipulation Macros
MCTBHA2 HLA2MACT

160 Using Declared Bit Names in a BitOn Macro
MCTBHA3 HLA2MACT

165 Using Declared Bit Names in a BBitOn Macro
MCTUDT HLA2MACT

173 Case Study 8: Utilizing The Assembler's Data Types
109

MCTUDT1 HLA2MACT
174 Case Study 8a: Type Sensitivity with Simple Polymorphism

109
MCTUDT2 HLA2MACT

177 Shortcomings of Assembler-Assigned Types
LOKAHDT HLA2MACT

178 Symbol Attributes and Lookahead Mode
LOCTR HLA2MACT

178 The LOCTR Statement
MCTUDCB HLA2MACT

179 Case Study 8b: Instruction-Operand Type Checking
109

TYCHKB1 HLA2MACT
181 Instruction-Operand Type Checking

TYCHKB2 HLA2MACT
183 Instruction-Operand Type Checking (Generalized)

MACAINS HLA2MACT
183 The AINSERT Statement

54, 100
MCTUD03 HLA2MACT

187 User-Defined Assembler Type Attributes
MCTUD3A HLA2MACT

189 Instruction-Operand-Register Type Checking

/XRL/10

MCTUD3B HLA2MACT
191 Case Study 8c: Encapsulated Abstract Data Types

110
MCTUD04 HLA2MACT

195 Calculating with Date Variables
MCTUD05 HLA2MACT

197 Calculating with Interval Variables
MCTUDT3 HLA2MACT

201 Comparison Operators for Dates and Intervals
MCCASPA HLA2MACT

203 Case Study 9: Using Program Attributes
178, 187, 199

MCCASE9 HLA2MACT
231 Case Study 10: “Front-Ending” a Library Macro

110
MACTSUM HLA2MACT

232 Summary
CAFNAPP HLA2XFUN

234 External Conditional Assembly Functions
40

XCONAFX HLA2XFUN
235 External Conditional Assembly Functions

XCONAFB HLA2XFUN
236 SETAF External Function Interface

XCONAFA HLA2XFUN
237 Arithmetic-Valued Function Example: LOG2

XCONAFC HLA2XFUN
242 SETCF External Function Interface

XCONAFS HLA2XFUN
243 String-Valued Function Example: REVERSE

XCONAFI HLA2XFUN
248 Installing the LOG2 and REVERSE Functions

241
VARSYMS HLA1SVAR

249 System (&SYS) Variable Symbols
7, 9, 89, 126

SVAROVU HLA1SVAR
250 System Variable Symbols: Properties

VARSYMF HLA1SVA2
253 Variable Symbols With Fixed Values During an Assembly

VARSY01 HLA1SVA2
253 &SYSASM and &SYSVER

VARSY06 HLA1SVA2
253 &SYSTEM_ID

VARSY05 HLA1SVA2
254 &SYSJOB and &SYSSTEP

VARSY02 HLA1SVA2
254 &SYSDATC

VARSYX1 HLA1SVA2
254 &SYSDATE

VARSYX3 HLA1SVA2
254 &SYSTIME

VARSY08 HLA1SVA2
254 &SYSOPT_OPTABLE

VARSY09 HLA1SVA2
255 &SYSOPT_DBCS, &SYSOPT_RENT, and

&SYSOPT_XOBJECT
VARSYPA HLA1SVA2

255 &SYSPARM
VARSYOU HLA1SVA2

255 &SYS Symbols for Output Files
VARSYMC HLA1SVA2

256 Variable Symbols With Constant Values Within a Macro
VARSY11 HLA1SVA2

256 &SYSSEQF
VARSECT HLA1SVA2

256 &SYSECT
VARSY10 HLA1SVA2

257 &SYSSTYP
VARSYX2 HLA1SVA2

257 &SYSLOC
VARSY03 HLA1SVA2

257 &SYSIN_DSN, &SYSIN_MEMBER, and &SYSIN_VOLUME
VARSY04 HLA1SVA2

258 &SYSLIB_DSN, &SYSLIB_MEMBER, and
&SYSLIB_VOLUME

VARSYCK HLA1SVA2
258 &SYSCLOCK

261
VARSY07 HLA1SVA2

259 &SYSNEST
VARSYMX HLA1SVA2

259 &SYSMAC

/XRL/11

VARSNDX HLA1SVA2
259 &SYSNDX

126
VARSYLI HLA1SVA2

259 &SYSLIST
VARSYMV HLA1SVA2

260 Variable Symbols Whose Values May Vary Anywhere
VARSY12 HLA1SVA2

260 &SYSSTMT
VARSY13 HLA1SVA2

260 &SYSM_HSEV and &SYSM_SEV
48

VARSYMU HLA1SVA2
261 Example Using Many System Variable Symbols

VARSR04 HLA1SVA2
261 &SYSTIME, &SYSCLOCK, and the AREAD Statement

254, 258
COMPASM HLA1GLOT

263 Comparing Ordinary and Conditional Assembly
16

Index Entries

id File Page References

IXSBIFS HLA2CONM
26 (1) built-in functions

IXINTFS HLA2CONM
26 (1) internal functions

Footnotes

id File Page References

IFNSYN HLA2CONM
26 1

26
CNDLOOP HLA2CONM

42 2
42

SNOBOL4 HLA2MAC
58 3

58
BTSTRAP HLA2MAC

63 4
63

KYADA HLA2MAC
76 5

76
ERAHUM HLA2MAC

97 6
97

MACTSN4 HLA2MACT
106 7

106
MACTFTG HLA2MACT

106 8
106

MACALST HLA2MACT
107 9

107
MACSPRT HLA2MACT

107 10
107

BUSINES HLA2MACT
108 11

108
MACTIAD HLA2MACT

137 12
137

MACPRBS HLA2MACT
233 13

233
MACORTH HLA2MACT

233 14
233

HLA1GA HLA1SVA2

/XRL/12

254 *
254

Revisions

id File Page References

S105 HLA2VARS
1

S108 HLA2VARS
1

Spots

id File Page References

FDOUBLE HLA2CONM
38 (no text)

48
CONSTRG HLA2MAC

104 (no text)
103

Processing Options

Runtime values:
Document fileid ... HLA2MTH SCRIPT
Document type .. USERDOC
Document style .. HLA2STYL
Profile ... EDFPRF40
Service Level .. 0033
SCRIPT/VS Release ... 4.0.0
Date .. 12.07.03
Time .. 18:00:56
Device ... 3820A
Number of Passes ... 3
Index ... YES
SYSVAR B .. MIN
SYSVAR G .. INLINE
SYSVAR H ... NO
SYSVAR S ... OFF
SYSVAR T .. C
SYSVAR X .. Y

Formatting values used:
Annotation ... NO
Cross reference listing ... YES
Cross reference head prefix only ... NO
Dialog ... LABEL
Duplex .. SB
DVCF conditions file .. (none)
DVCF value 1 ... (none)
DVCF value 2 ... (none)
DVCF value 3 ... (none)
DVCF value 4 ... (none)
DVCF value 5 ... (none)
DVCF value 6 ... (none)
DVCF value 7 ... (none)
DVCF value 8 ... (none)
DVCF value 9 ... (none)
Explode ... NO
Figure list on new page .. NO
Figure/table number separation ... NO
Folio-by-chapter .. NO
Head 0 body text ... (none)
Head 1 body text ... (none)
Head 1 appendix text .. Appendix
Hyphenation .. YES
Justification .. NO
Language .. ENGL
Keyboard .. 395
Layout .. OFF

/XRL/13

Leader dots .. YES
Master index .. (none)
Partial TOC (maximum level) .. 4
Partial TOC (new page after) .. INLINE
Print example id's .. NO
Print cross reference page numbers .. YES
Process value ... (none)
Punctuation move characters ... (none)
Read cross-reference file ... (none)
Running heading/footing rule .. NONE
Show index entries ... NO
Table of Contents (maximum level) .. 4
Table list on new page .. YES
Title page (draft) alignment .. CENTER
Write cross-reference file .. (none)

Imbed Trace

Page 0 MYADDR SCRIPT
Page i HLAPUBS SCRIPT
Page viii HLA2VARS
Page viii APAFOIL
Page viii HLA2DATE
Page viii HLA2CONM
Page 43 HLA2CO01
Page 45 HLA2CO02
Page 48 HLA2CO03
Page 49 HLA2CO04
Page 55 HLA2MAC
Page 60 HLA2MA01
Page 60 HLA2MA01
Page 61 HLA2MA02
Page 61 HLA2MA02
Page 62 HLA2MA04
Page 62 HLA2MA04
Page 64 HLA2MA05
Page 64 HLA2MA05
Page 65 HLA2MA12
Page 65 HLA2MA12
Page 66 HLA2MA03
Page 67 HLA2MA03
Page 67 HLA2MA06
Page 71 HLA2MA10
Page 77 HLA2MA11
Page 89 HLA2MA14
Page 99 HLA2MA15
Page 100 HLA2MA15
Page 105 HLA2MACT
Page 111 HLA2MT01
Page 123 HLA2MA07
Page 124 HLA2MA07
Page 133 HLA2MT07
Page 143 HLA2MT04
Page 145 HLA2MT05
Page 162 HLA2MT06
Page 165 HLA2MA08
Page 165 HLA2MA08
Page 172 HLA2MA09
Page 233 HLA2XFUN
Page 248 HLA1SVAR
Page 251 HLA1SVAT
Page 253 HLA1SVA2
Page 262 HLA1GLOT

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

