
How A Commercial Software 
Product Is Architected

Session 11180

August 8, 2012

tom_harper_cw@bmc.com



Background

• Wrote first code in 1960 for 
IBM 1620 (fifty-two years ago)

• Coded in machine language 
(was no assembler yet)

• Have written products that 
have sold over one billion $

• Helped start two software 
companies (BMC and Neon 
Enterprise Software)

• Owner of eleven software 
patents



Conceptualizing The New Product

• Categories of new 
products
– Brand new; never 

been done before
• First spreadsheet

• First DBMS

– Redo of an existing 
product
• Faster SORT

• New IEBGENER



Market Changes

• In last thirty years, many 
development-type personnel 
now work for ISVs

• People in installations are 
primarily installers and 
diagnosticians

• To them, a new product is 
just work and risk

• Hard to even find Beta test 
sites any more



Brand New Products

• Best choice

• No competition

– In software, being first is 
everything

– Second is irrelevant

• Half of all new products fail

– Be ready to accept this

– Part of the business

• Hard work



Redo of Existing Products

• Somewhat less risk

• Primary competitor is inertia and bundling

• Performance is only one criteria

– Price (lower is not always perceived as better)

– Stability

– Risk

– Conversion effort

– Change control



Resources Required

• Hardware and software environment for 
development, testing, QA, and distribution

• Strong financial backing
– Most customers will not want to purchase from you 

unless you have a strong balance sheet
– Most developers seriously underestimate the time it 

takes to develop a product

• Legal and support infrastructure
• Software licenses
• Documentation
• Backup and recovery; offsite archive 



Resources Required

• The key idea code that the product is based on 
is seldom that large

• Bulk of the code is mundane

– Reports

– Messages

– License code checking

– Failure information

– Diagnostic tools



Legal Protections

• Open source?

• Trade secret?

• Patents?



Choosing A Language

• HL Assembler

– No restrictions

– No license issues

– Advanced MACRO facility

• Structured Programming

– Reduced APAR rate

– Long-preferred methodology



Language Choice

• Very controversial

• SAS has announced it will drop support of C

• Assembler always works in every z 
environment

• High-Level Assembler and Structured 
Programming Macros weaken other high-level 
language arguments



Technical Design Fundamentals

• Library Management System

– Allows for BUILDing and PROMOTEing

– Allows for multiple versions and releases

• How to deliver maintenance

– Cumulative

– Individual

– SMP/E

– IEBCOPY



Creating Building Blocks

• Encapsulate functions
– Perhaps require an INIT call which 

returns a token
– Token is address of a control block 

which is used for subsequent 
operations

– Termination call when finished

• Consider stacking PCs for some 
functions
– Can be slow
– Can be faster if you want to tolerate 

callers in any AMODE, ARMODE, 
programming state, etc.



Creating Building Blocks

• Functions should issue their own messages and 
issue return codes

• Any resources acquired should be released in 
case of an abend

• Macros should be used to invoke
• Optional tracing should be provided



Managing Storage

• Save areas and local working storage
– One STORAGE OBTAIN | RELEASE per unit of work
– Should step down and up to new | prior save area
– R13 should point to local working storage
– Provides macros to accomplish this

• Storage service (a primary building block)
– Should provide cushions to allow for recovery to run
– Storage owned by job step task



Managing Storage

• Don’t forget cell pools and data spaces
• Exploit subpools and keys
• Avoid key zero storage whenever possible
• Be aware of high and low private, and of backing 

storage
• Never do STORAGE OBTAIN|RELEASE in critical path 

code



Diagnostics

• Should be built-in day one

• CTRACE
– Whenever external facility is invoked

• First Failure Data Capture

• LOGREC

• System log

• SDUMP

• IPCS Formatting 



Organizing Your Code

• Understand what is done once and what is 
done in critical path



Coding Guidelines

• Write RENT, “baseless” code

• Have standard eye-catcher block in module 
which contains assembly date and time, fixes 
applied, z/OS level assembled on, who 
assembled, etc.

• Have standard eye-catcher in front of control 
blocks 



Documenting Code 

• Always place documentation in code

• Anywhere else gets separated and lost

• Include a log of changes

• For MACROs, follow guidelines similar to IBM 
newer MACROs.



Managing Code

• Consider a product for managing your source 
code, MACROs, LIST data sets, etc.

• SCLM is a good choice, and it is kind of free

– Requires PDSEs

– Performance is not a strong point

– Adequate function



Messages and Print Lines

• Externalize in a PDS

• Allow for symbolic substitution

• Allow of choice of date formats

• Allow for various substitution methods:
– Hex

– Numeric

– Character

– Date / Time

– Scaled numbers



About Performance

• Understand what performance metrics are 
important to your customers

– Elapsed time

– Minimization of CPU time

• Consider multiple TCBs/SRBs

• Consider generating code

• Instructions are free; cache lines are expensive



I/O

• IBM’s access methods are adequate in most cases

• For extremely performance-sensitive 
applications, consider a STARTIO driver

• Not difficult, but documentation is hard to come 
by

• More flexible

• Needs constant attention

• Needs another entire day of sessions



Authorized Programming

• Many functions require your code to be 
authorized, so often unavoidable

• Supervisor state in itself is not dangerous

– Key zero is dangerous, and should be avoided

– Ignorance is also dangerous; no known cure for 
stupid

– Protect your code from other idiots: Use PROTECT 
MACRO on your own code. 



Recovery Routines

• Important to gather information about failure

• Consider writing information to multiple 
places in case customer loses it:

– Console LOG

– LOGREC

– SDUMP

• Release storage cushions



Recovery Routines

• Display save area chains, linkage stacks

• Display module IDs, assembly dates and times, 
and fixes installed

• List options in effect

• List z/OS level and any other software levels

• List PSW, AMODE, ARMODE, condition code

• Determine service issued, if any

• List of BEAR register



Recovery Routines

• Build SYMREC Symptom String

• Build meaningful dump title for SDUMP

• Take SDUMP

– Retry SDUMP is address space is busy

– Print out SDUMP data set name

– Analyze SDUMP return code



Recovery Routines

• Release resources

– Latches in SRB mode

• Consider building in your debugging tool, such 
as XDC, based on presence of a DD statement 
in your JCL (not compensated or affiliated in 
any way with Colesoft) 



Design

• Design is all-critical
– Implications in development time

– Implications in support

– Implications in success

• No matter what
– Do not develop under time pressure

– Do it right the first time

– Having deadlines does not make code born any 
sooner 



Design

• Consult with other experts
• Try not to copy what has been done before

– Different criteria in effect years ago
– Don’t propagate poor design choices

• Do try and utilize existing services if they are 
stable
– z/OS System Logger (great track record)
– VSAM RLS (poor track record)



Design

• Control blocks are key

– Primary control block

• Always passed as parameter

• Always pointed to by same register

• Embed in initial module and change key

• Allows VCON access

– Make easy to access with DO loops

– Think carefully!

– Allow reserved space



Design

• Register assignments

– R14,R15,R0,R1 – Linkage registers

– R13 – Save area and local work storage

– R12 – Base register for literals

– R11 – Primary control block

– Remaining registers – other control blocks

• Avoid FP registers

• Be conscious of all 64-bits



Design

• Separate initialization | termination

• Only optimize critical path code

• Design is more critical to performance than 
compilers trying to optimize a poor design

• Remember, instructions are free; cache misses 
are expensive



Design

• Example of processing an IMS data base

• Prior designs used LRU buffer pool

• Basically, block-faulted through data base

• New design inverted IMS insertion algorithm

• Performance increased by a factor of six



Design

• Be aware of DASD and TAPE architecture

• Unit of transfer is a track

• Tape blocks are compressed and written as 
256K byte blocks

• Implement parallelism with multiple TCBs | 
SRBs

• Be aware of serialization



Design

• Serialization – Avoid!
– Better to have a dedicated control block per thread

– Roll up stats at end of process

– Especially avoid in critical path code 

– Cell pools use CS or CDS

• Services which provide tokens which provide 
work space without acquisition are fastest



Prototyping

• Before huge effort is invested, prototype

• Time to diagnose performance issues 



Team Staffing

• Select team members carefully

• Don’t select all “chiefs”

• Seldom are more than six people effective

• Remember “The Mythical Man-Month”

• Review all critical issues with at least one other 
person 



Post Mortem

• Was product successful?
– Why or why not?
– Customer evaluation and feedback
– Never-ending process
– Education
– New functions to be exploited


