
Using the HLASM Macro Facility to
Improve Assembler Language Programs

Ed Jaffe
Phoenix Software International

August 9, 2012
Session Number 11179

Macro Facility Overview
• The HLASM macro facility is extremely powerful,

especially when compared against the preprocessor
capabilities offered by other languages.

• Leveraging this power can simplify HLASM programs and
ease development/maintenance burdens.

• As powerful as the macro facility is, some assembler
programmers avoid its use or question its applicability for
"ordinary" HLASM programs.

• In my opinion, HLASM programming without using macros
is like going back in time half a century.

• Macros should be thought of as a fundamental and
necessary part of every assembler language
programmer’s toolset.

Using Macros
• The main use of macros is to insert assembler language

statements into a source program.
• You call a named sequence of statements (the macro

definition) by using a macro instruction, or macro call. The
assembler replaces the macro call by the statements from
the macro definition and inserts them into the source
module at the point of call.

• The process of inserting the text of the macro definition is
called macro generation or macro expansion. Macro
generation occurs during conditional assembly.

• The expanded stream of code then becomes the input for
processing at assembly time; that is, the time at which the
assembler translates the machine instructions into object
code.

Macro Definition
• The header statement: MACRO
• The macro prototype statement. This defines the name of

your macro and the parameters (if any) that it will accept.
• The macro body consisting of statements that are

generated when you call the macro; they are usually
interspersed with conditional assembly statements or other
processing statements including macro comments.

• The trailer statement: MEND

MACRO ,
&Lbl MVCLR &Fld,&Value

MVI &Fld,&Value Set field to value
MVC &Fld+1(L'&Fld.-1),&Fld (same)
MEND ,

Macro Invocation

16062 PRINT NOGEN
001B24 9240 B5A8 0005A8 16063 MVCLR WORKD,C' ' Set field to blanks
001B2E 92FF B5C5 0005C5 16066 MVCLR WORKE2,X'FF' Set field to x'FF'
001B38 924B A7F6 0007F6 16069 MVCLR EMRMSCMD,C'.' Set field to dots

16072 PRINT GEN
16074 MVCLR WORKD,C' ' Set field to blanks

001B42 9240 B5A8 0005A8 16075+ MVI WORKD,C' ' Set field to value
001B46 D206 B5A9 B5A8 0005A9 0005A8 16076+ MVC WORKD+1(L'WORKD-1),WORKD (same)

16077 MVCLR WORKE2,X'FF' Set field to x'FF'
001B4C 92FF B5C5 0005C5 16078+ MVI WORKE2,X'FF' Set field to value
001B50 D207 B5C6 B5C5 0005C6 0005C5 16079+ MVC WORKE2+1(L'WORKE2-1),WORKE2 (same)

16080 MVCLR EMRMSCMD,C'.' Set field to dots
001B56 924B A7F6 0007F6 16081+ MVI EMRMSCMD,C'.' Set field to value
001B5A D27E A7F7 A7F6 0007F7 0007F6 16082+ MVC EMRMSCMD+1(L'EMRMSCMD-1),EMRMSCMD

+ (same)

Location of Macro Definitions
• You can define macros in-line in your program or in a

macro library.
• In a macro library, the member name must match the

name defined in the macro prototype. If you want to define
macros this way, be sure to make the macro names
conform to member name rules.
• Example: macro names must be <=8 characters in length for

residency in z/OS PDS library.
• Otherwise macro names may be up to 63 characters long.

• In-line macros can be defined anywhere in your program
prior to first reference.

• In-line macros may be defined by another macro or within
a member brought into the program via COPY statement.

Macro Processing Statements
• Processing statements are handled during conditional

assembly, when macros are expanded, but they are not
themselves generated for further processing at assembly
time:
• AEJECT and ASPACE instructions – control listing of macro

definition
• AREAD instructions – read entire source statements into

macro SETC symbols
• AINSERT instructions – generate complete assembly source

statements after the macro generator finishes processing
• MEXIT instructions – exit from macro processing
• MNOTE instructions – generate a message
• Inner macro calls
• Conditional assembly instructions

Conditional Assembly Language
• The conditional assembly language contains most of the

features that characterize a programming language. For
example, it provides:
• Variables
• Data attributes
• Built-in functions
• Expression computation
• Assignment instructions
• Labels for branching
• Branching instructions
• Substring operators that select characters from a string

Conditional Assembly Language
• The conditional assembly language is not structured. Its

syntax is loosely-based on the original FORTRAN
language specification. /

• Structured programming constructs are made available for
“ordinary” assembler language coding using the Structured
Programming Macros in the IBM HLASM Toolkit or similar.
Unfortunately, such tools can not be used to structure the
conditional assembly language.

• FYI: Don Higgins’ z390 package provides a structured
macro coding facility called ZSTRMAC. It is a pre-
processor that emits input to HLASM. I have no personal
experience with this package, but it looks interesting.

http://www.z390.org/z390_ZSTRMAC_Structured_Macro_Support.htm

Conditional Assembly Variables
(SET Symbols)
• Symbols may be defined with either global or local scope.

• Symbols with global scope can be shared by macros and open
code.

• Symbols with local scope are used only within the current macro
invocation or in open code.

• SETA symbols are arithmetic; SETB symbols are logical (1=TRUE,
0=FALSE); SETC symbols are character strings.

• Symbols can be arrays.
• Substrings of SETC symbols may be processed.
• Symbols may be dynamically created from the values contained within

existing symbols. This can be used in all sorts of clever ways. The
common usage I've seen is similar to stem variables usage in Rexx.

• Numerous read-only system symbols are available to convey useful
information (e.g., the name of the current section is &SYSECT).

Some Basic SETA Examples
&I SETA 1 has value 1
&J SETA &I+1 has value 2
&K SETA &I+&J has value 3

&I SETA C'A' has value 193 (C'A')

&I SETA INDEX('ABC','B') has value 2

LCLA &A(10) define array w/10 elements
&I SETA 1 do i=1 to 10
.LOOP ANOP , .
&A(&I) SETA &I*&I a(i) = i**2
&I SETA &I+1 .

AIF (&I LE 10).LOOP end

Some Basic SETB Examples
&I SETB 1
&J SETB 0
&K SETB (&I AND &J) has value 0
&L SETB (&I OR &J) has value 1
&M SETB (NOT(&I OR &J)) has value 0

&I SETA C'A' has value 193 (C'A')
&J SETB (&I LT 100) has value 0

Some Basic SETC Examples
&C1 SETC 'ABC' has value ‘ABC’

&C1 SETC (3)'ABC' has value ‘ABCABCABC’

&C1 SETC 'ABC'(2,1) has value ‘B’

LCLC &C1(10)
&C1(1) SETC 'ABC'
&C2 SETC '&C1(1)' has value ‘ABC’
&C2 SETC '&C1(1)'(2,1) has value ‘A’

&C3 SETC LOWER('A') has value ‘a’

Conditional Assembly Instructions
Operation PerformedInstruction

Placeholder – no-operation.ANOP

Logical test and condition branchAIF

Unconditional branchAGO

Setting loop counterACTR

External function assignment of values to
variable symbols (SET symbols)

SETAF, SETCF

Assignment of values to variable symbols
(SET symbols)

SETA, SETB, SETC

Declaration of variable symbols
(global-scope and local-scope SET symbols)
and setting of default initial values

GBLA, GBLB, GBLC
LCLA, LCLB, LCLC

.* Set Long Branch/Jump Instructions
&JL SETC 'J' Set relative branches
&JLLK SETC 'JAS' (same)

AIF (&SYSALVL LT 2).BRJU Branch if short relative
&JL SETC 'JL' Set long relative branches
&JLLK SETC 'JASL' (same)
.BRJU ANOP ,

Conditional Assembly in Open Code
• While primarily found in macros, conditional assembly

statements also work in open code.
IEZDEB , Define DEB DSECT
AIF (D'DEBNmTrkHi).z17DEB

DEBNmTrkHi EQU DEBBINUM+1 High byte of track count
.z17DEB ANOP ,

* Popular Seconds Values
&SecsIn1Min SETA 1*60 1/60 hour = 1 min * 60 secs
&SecsIn15Min SETA 15*60 1/4 hour = 15 min * 60 secs
&SecsIn30Min SETA 30*60 1/2 hour = 30 min * 60 secs
&SecsIn1Hr SETA 60*60 1hr = 60 min * 60 secs
&SecsIn4Hrs SETA 4*60*60 4hrs = 4hr * 60 min * 60 secs
&SecsIn1Day SETA 24*60*60 1day = 24hr * 60min * 60sec
&SecsIn1Wk SETA 7*24*60*60 1wk = 7day * 24hr * 60min * 60sec
.
.
.

LG R1,0(,R2) Load TOD value
ALG R1,=FL8S12'&SecsIn1Hr.E6' Add 60 minutes
STG R1,0(,R2) Update TOD value

Breaching HLASM’s Blood-Brain Barrier
• It’s no surprise that SET symbols can be used to generate

values for ordinary assembler statements. This is what’s
expected from any pre-compile language.

• A surprising HLASM “feature” (inherited from older IBM
assemblers) allows a SET symbol to be set from an
already-defined ordinary symbol with an absolute value.

• This unexpected behavior is extremely useful!
• (If you don’t realize how awesome this is right now, keep

pondering and eventually it should become clear…)
STRUCT DC F'123'

DC F'456'
DC XL2'00'

STRUCTLN EQU *-STRUCT
&STRLEN SETA STRUCTLN

MNOTE *,'Length of structure is &STRLEN‘
+*,Length of structure is 10

Using a Macro as a Service Interface
• This is one of the two most recognized uses of a macro.
• Common services such as STORAGE, OPEN, CLOSE,

GET, PUT, etc. are all implemented using macros.
• This design has advantages over the typical positional

parameter CALL interfaces used to invoke services in
most languages.
• The actual byte-level interface need not be documented.

Therefore, the existing parameter list can be enhanced
and/or extended without changing the callers.

• With typical positional-parameter interfaces, you generally
add new parameters at the end, create a new entry point, or
pass a parameter structure to which you append your new
parameters.

Using a Macro as a Service Interface
• This macro call searches a z/OS log stream for a specific

time stamp and returns the block closest to the requested
time.

• Imagine how hideous this would be with a traditional,
positional-parameter CALL interface! (Is it just me?)

IXGBRWSE REQUEST=READBLOCK, Read block at lowest time stamp
SEARCH=(R5), ..Input time stamp
GMT=NO, ..Local time
RETBLOCKID=EMRLGBLK, ..Block ID return area
BUFFER=(4), ..Output buffer address
BUFFLEN=EMRLGBFL, ..Output buffer length
BLKSIZE=SUBSWKF2, ..Block size
STREAMTOKEN=EMRLGSTK, ..Stream token
BROWSETOKEN=EMRLGBTK, ..Browse token
TIMESTAMP=SUBSWKD1, ..Output time stamp
MODE=SYNCECB, ..Synchronous if possible
ECB=SUBSWKF1, ..ECB if not synchronous
ANSAREA=SUBSLGAA, ..Answer area address
ANSLEN==A(Ansaa_Len), ..Answer area length
MF=(E,SUBSW128) ..Parameter list work area

Using a Macro to Map a Structure
• This is one of the two most recognized uses of a macro.
• SYS1.MACLIB and SYS1.MODGEN on a z/OS system are

loaded with numerous examples of IBM-provided structure
mappings: (CVT, IHAASCB, IKJTCB, IRARASD, etc.)
• Warning! Modern IBM structure mappings are often created

programmatically by a translator that generates bilingual
mappings from PL/X source.

• As such, they provide poor examples of how to define useful
structure mappings in HLASM. The older mapping macros
are better but still not exemplary because they are…older. ☺

• Mapping macros are better than COPY because you can
use parameters to control if a DSECT is created, the prefix
of the fields, print options, etc.

Using a Macro to Map a Structure
PUSH PRINT @D6A
AIF ('&LIST' EQ 'YES').ASCBLST @D6A
PRINT OFF @D6A

.ASCBLST ANOP @D6A
SPACE 1
AIF ('&DSECT' EQ 'NO').ASCB10

ASCB DSECT
AGO .ASCB20

.ASCB10 ANOP
DS 0D

ASCB EQU *
.ASCB20 ANOP
ASCBEGIN DS 0D - BEGINNING OF ASCB
ASCBASCB DS CL4 - ACRONYM IN EBCDIC -ASCB-
ASCBFWDP DS A - ADDRESS OF NEXT ASCB ON ASCB READY
* QUEUE
ASCBBWDP DS A - ADDRESS OF PREVIOUS ASCB ON ASCB
* READY QUEUE
ASCBLTCS DS A - TCB and preemptable-class SRB @07C
* Local lock suspend service queue.
* Serialization: ASCB CML promotion
* WEB lock.
ASCBR010 DS 0D Reserved as of z/OS 1.12 @LLA
ASCBSUPC_PREZOS12 DS 0D - SUPERVISOR CELL FIELD @LLC
ASCBSVRB_PREZOS12 DS A - SVRB POOL ADDRESS. @LLC
ASCBSYNC_PREZOS12 DS F - COUNT USED TO SYNCHRONIZE SVRB POOL.

@LLC
ASCBIOSP DS A - POINTER TO IOS PURGE INTERFACE
* CONTROL BLOCK (IPIB)
* (MDC308) @Z40FP9A

Using a Macro To Add a New Instruction
• The MVC2 instruction works like MVC but uses the length

of the source operand rather than of the target operand.
MACRO ,

&LABEL MVC2 &TARGET,&SOURCE
PUSH PRINT,NOPRINT
PRINT OFF,NOPRINT
MVC &TARGET,&SOURCE
ORG *-6
POP PRINT,NOPRINT

&MVC2LEN SETA L'&SOURCE .Get source length
&I1 SETA INDEX('&TARGET','(') .Look for paren

AIF (&I1 GT 0).PAREN .Branch if paren
&LABEL MVC &TARGET.(&MVC2LEN),&SOURCE

MEXIT , .Exit
.PAREN ANOP ,
&C1 SETC '&TARGET'(1,&I1) .Get left side
&C2 SETC '&TARGET'(&I1+1,*) .Get right side
&LABEL MVC &C1.&MVC2LEN.&C2,&SOURCE

MEXIT , .Exit
MEND

Overriding Existing Instructions and
Defining In-line Macros Within a Macro
• For one of our larger products:

• We had a need to place program size into a field within the
program’s self-descriptive prefix.

• When we restructured to use only relative branch, we needed
to remove interspersed LTORGs and replace them with a
single LTORG in the ‘data’ LOCTR.

• Changing all of these programs would have been a time
consuming, menial, and error-prone task.

• We might have been able to write a program to read in the
existing source code and write out changed source code.

• Instead we opted to use an already-existing common
macro invocation at the top of the programs to define other
macros to achieve these objectives.

• We have since leveraged this useful infrastructure for
other things.

Overriding Existing Instructions and
Defining In-line Macros Within a Macro

.DEFINE ANOP ,
&C1 SETC '&LABEL'

POP PRINT,NOPRINT
PRINT &EJESDAT
EJESPEQU , Define Phoenix derived equates
PRINT &EJESSRC
PUSH PRINT,NOPRINT
PRINT MCALL,NOPRINT

.**
EJESEND OPSYN END Override END instruction *

MACRO , Define END macro *
&LABEL1 END &LABEL2 Macro prototype *

GBLB &GBLTORG Global LTORG flag *
GBLC &DATASEC Primary data section name *

EOMMARK LOCTR , Create location counter
DC 0D Align to doubleword

EOMPSIZE EQU *-&DATASEC Calculate total program size
&DATASEC LOCTR , Define primary section

ORG PROGSIZE Position to pgmsize field
DC A(EOMPSIZE) Define total program size
ORG ,
AIF (NOT &GBLTORG).EJESEN1 If not global LTORG *

* *
* Global Literal Pool *
* *

&SYSECT LOCTR , Set LOCTR for constants

EJESLTRG , Define literal pool
.EJESEN1 ANOP , EndIf not global LTORG *

AIF ('&LABEL2' EQ '').EJESEN2 If operand not null *
&LABEL1 EJESEND &LABEL2 Define end of program

MEXIT , Exit the macro *
.EJESEN2 ANOP , Else operand is null *
&LABEL1 EJESEND , Define end of program

MEXIT , Exit the macro *
.* EndIf operand not null *

MEND , End of macro *
.**

AIF ('<ORG' NE 'GLOBAL').DEFINE1
&GBLTORG SETB 1 Show global LTORG
.**
EJESLTRG OPSYN LTORG Override LTORG instruction *

MACRO , Define LTORG macro *
&LABEL LTORG , Macro prototype *

MEND , End of macro *
.**
.DEFINE1 ANOP ,

Using Macros To Define Tables
• Defining tables in assembler language is a time-

consuming and error prone process requiring considerable
manual effort; changes to the table structure can take a
very long time to implement and exhaustively test.

• We use macros to define our tables. The parameters are
provided as blank-delimited values that are AREAD by the
macro, parsed as appropriate, and emitted as DCs.

• Optional: We also generate the table mapping DSECT
from within the same macro. That way the code that
generates the table and the code that generates the
mapping are centralized.

Defining Tables The Old Way
• Manually-coded DCs are used to define the tables.
• This is a time-consuming and error-prone process.

* *
* Input Column Processing Table *
* *

DS 0F
DJIFLD DS 0CL16

DC AL1(EFLTDJJP,EJSVMJPR),AL2(EJSVAUTH-EJSDSECT)
DC A(DJJPX-*+4),A(0),AL2(EJHWJP),AL2(0)
DC AL1(EFLTDJJC,EJSVMJCL),AL2(EJSVAUTH-EJSDSECT)
DC A(DJJCX-*+4),A(0),AL2(EJHWJC),AL2(0)
DC AL1(EFLTDJSC,EJSVMSRV),AL2(EJSVAUTH-EJSDSECT)
DC A(DJSRVCX-*+4),A(0),AL2(EJHWSRVC),AL2(0)

DJIFLD# EQU (*-DJIFLD)/L'DJIFLD
DC F'-1'

Defining Tables The New Way (Via Macro)

* *
* Input Column Processing Table *
* *

DJ EIFGEN START

-*Name Len Id Auth1 Auth2 Case Help MTbl
- JP 8 DJJP V MJPR - - Up JP No JPRTY
- JC 8 DJJC V MJCL - - Up JC No JCLASS
- SRVC 8 DJSC V MSRV - - Up SRVC No SRVCLASS
- EIFGEN END
+ DC 0F
+DJIFLD DC 0CL16 Input column processing table
+ DC AL1(EFLTDJJP)
+ DC AL1(EJSVMJPR)
+ DC AL2(EJSVAUTH-EJSDSECT)
+ DC A(DJJPX-*+4)
+ DC XL4'00'
+ DC AL2(EJHWJP),AL2(0)
+ DC AL1(EFLTDJJC)
+ DC AL1(EJSVMJCL)
+ DC AL2(EJSVAUTH-EJSDSECT)
+ DC A(DJJCX-*+4)
+ DC XL4'00'
+ DC AL2(EJHWJC),AL2(0)
+ DC AL1(EFLTDJSC)
+ DC AL1(EJSVMSRV)
+ DC AL2(EJSVAUTH-EJSDSECT)
+ DC A(DJSRVCX-*+4)
+ DC XL4'00'
+ DC AL2(EJHWSRVC),AL2(0)
+DJIFLD# EQU (*-DJIFLD)/L'DJIFLD
+ DC XL4'FFFFFFFF'

Writing A Translator/Compiler
• We have a macro that reads in source code statements

using AREAD, translates that source code into assembler
language statements, and then uses AINSERT to generate
an equivalent assembler language routine as well as data
elements in various LOCTRs that are used to support the
execution of this special ‘language’.

• I really can’t go into detail about the nature of this code,
what it looks like, or why we went to so much trouble.

• Suffice to say, this was no simple undertaking. The results
have been spectacular!

• It simply would not have been possible without the
remarkable power of the HLASM macro facility.

Using Structured Programming Macros—Such
As Those From the IBM HLASM Toolkit
• This is a sample listing fragment showing SPM use. The

“flow” bars are produced by my FLOWASM HLASM exit.
. 58489 ***
. 58490 * Search for Matching Column Name *
. 58491 ***
.0000325C 9200 83FC 000003FC 58492 MVI SUBSWKH3,X'00' Zero field TID value
. 58493 DO , Do for column name search
.00003260 48E0 83F8 000003F8 58503 ¦ LH R14,SUBSWKH1 Get normalized length
.00003264 12EE 58504 ¦ DOEXIT LTR,R14,R14,NP Exit if invalid length
.0000326A A7EE 0008 00000008 58517 ¦ DOEXIT CHI,R14,GT,L'SUBSWKD1 Exit if too long
.00003272 D207 81C8 C4E8 000001C8 00003530 58530 ¦ MVC SUBSWKD1,=CL8' ' Blank out work field
.00003278 A7EA FFFF FFFFFFFF 58531 ¦ AHI R14,-1 Make relative to zero
.0000327C 44E0 C4DA 00003522 58532 ¦ EX R14,MCLCOMV2 Copy to SUBSWKD1
.00003280 43E0 6000 00000000 58533 ¦ IC R14,EFLLSTID Get list identifier
.00003284 A7EE 00C0 000000C0 58534 ¦ IF CHI,R14,LT,EFLLSTIB If tabular utility
.0000328C 06E0 58548 ¦ : BCTR R14,0 Make relative to zero
.0000328E 5810 C4F0 00003538 58549 ¦ : L R1,=A(JJTUFLDIDX) Point to index table
.00003292 A7F4 000E 000032AE 58550 ¦ ELSE , Else
.00003296 A7EA FF40 FFFFFF40 58558 ¦ : AHI R14,-EFLLSTIB Make relative to base
.0000329A 95F2 A00B 0000000B 58559 ¦ : IF CLI,EMRJES,EQ,EMRJES2 If running JES2
.000032A2 5810 C4F4 0000353C 58573 ¦ : | L R1,=A(J2TDFLDIDX) Point to index table
.000032A6 A7F4 0004 000032AE 58574 ¦ : ELSE , Else running JES3
.000032AA 5810 C4F8 00003540 58582 ¦ : | L R1,=A(J3TDFLDIDX) Point to index table
. 58583 ¦ : ENDIF , EndIf
. 58590 ¦ ENDIF , EndIf tabular utility
.000032AE 89E0 0003 00000003 58597 ¦ SLL R14,3 Point to proper entry
.000032B2 1EE1 58598 ¦ LA R14,0(R1,R14) (same)
.000032B4 98EF E000 00000000 58599 ¦ LM R14,R15,0(R14) Get offset & entry count
.000032B8 1EE1 58600 ¦ LA R14,0(R14,R1) Change offset into pointer
. 58601 ¦ DO FROM=(R15) Do for all entries
.000032BA D507 81C8 E000 000001C8 00000000 58614 ¦ : DOEXIT CLC,SUBSWKD1,EQ,0(R14) Exit if matching entry
.000032C4 A7EA 0009 00000009 58627 ¦ : LA R14,FLD_TblLen(,R14) Advance pointer
.000032C8 A7F6 FFF9 000032BA 58628 ¦ ENDDO , EndDo for all entries
.000032CC 12FF 58638 ¦ DOEXIT LTR,R15,R15,Z Exit if column not found
.000032D2 D200 83FC E008 000003FC 00000008 58651 ¦ MVC SUBSWKH3(1),8(R14) Copy field TID value
. 58652 ENDDO , EndDo for column name search

	Using the HLASM Macro Facility to Improve Assembler Language Programs
	Macro Facility Overview
	Using Macros
	Macro Definition
	Macro Invocation
	Location of Macro Definitions
	Macro Processing Statements
	Conditional Assembly Language
	Conditional Assembly Language
	Conditional Assembly Variables�(SET Symbols)
	Some Basic SETA Examples
	Some Basic SETB Examples
	Some Basic SETC Examples
	Conditional Assembly Instructions
	Conditional Assembly in Open Code
	Breaching HLASM’s Blood-Brain Barrier
	Using a Macro as a Service Interface
	Using a Macro as a Service Interface
	Using a Macro to Map a Structure
	Using a Macro to Map a Structure
	Using a Macro To Add a New Instruction
	Overriding Existing Instructions and Defining In-line Macros Within a Macro
	Overriding Existing Instructions and Defining In-line Macros Within a Macro
	Using Macros To Define Tables
	Defining Tables The Old Way
	Defining Tables The New Way (Via Macro)
	Writing A Translator/Compiler
	Using Structured Programming Macros—Such As Those From the IBM HLASM Toolkit

