I’m Running IPv6: How Do I Access???
Share Session 11165

Laura Knapp
WW Business Consultant
Laurak@aesclever.com
What is IPv6

Updated version of the Internet Protocol (IPv4)
Defined in RFC 1752

New features

- Larger address space
- Encapsulation
- Class of service for audio, video, etc.
- Multicast support
- Authentication
- Encryption
- Automatic configuration/reconfiguration
- Support for non-IP protocols
IPv6 Technology Scope

<table>
<thead>
<tr>
<th>IP Service</th>
<th>IPv4 Solution</th>
<th>IPv6 Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addressing Range</td>
<td>32-bit, Network Address Translation</td>
<td>128-bit, Multiple Scopes</td>
</tr>
<tr>
<td>Auto configuration</td>
<td>DHCP</td>
<td>Serverless, Reconfiguration, DHCP</td>
</tr>
<tr>
<td>Security</td>
<td>IPSec</td>
<td>IPSec Mandated, works End-to-End</td>
</tr>
<tr>
<td>Mobility</td>
<td>Mobile IP</td>
<td>Mobile IP with Direct Routing</td>
</tr>
<tr>
<td>Quality-of-Service</td>
<td>Differentiated Service, Integrated Service</td>
<td>Differentiated Service, Integrated Service</td>
</tr>
<tr>
<td>IP Multicast</td>
<td>IGMP/PIM/Multicast BGP</td>
<td>MLD/PIM/Multicast BGP, Scope Identifier</td>
</tr>
</tbody>
</table>

IPv6 Transition Paths – ISP Focus
IPv6 in the Enterprise

- **Pure Dual Stack**
 - IPv4/IPv6 Host
 - Internet
 - Edge
 - Agg + Services
 - Phy/Virt. Access
 - Compute
 - SLB64 / NAT64 Boundary
 - Dual Stack Hosts

- **Conditional Dual Stack**
 - IPv4/IPv6 Host
 - Internet
 - Edge
 - Agg + Services
 - Phy/Virt. Access
 - Compute
 - IPv6
 - IPv4
 - Mixed Hosts

- **Translation as a Service**
 - IPv4-only Hosts
 - Multi Tenant
 - Core
 - Agg + Services
 - Phy/Virt. Access
 - Compute
 - Storage

Types of IPv6 Node Types

IPv4 only node – a node running only IPv4
IPv6/IPv4 node – a node running dual stack
IPv6 only node – a node running only IPv6
IPv6 node – node running IPv6 and it may also run IPv4
IPv4 node – node running IPv4 and it may also run IPv6
IPv6 with IPv4 Compatible Address - Depricated

Dynamic tunneling of IPv6 over an IPv4 infrastructure

Carry a **public** IPv4 address in the lower 32 bits
Bit 16 is 0000
IPv4 address 131.107.41.17 is ::0000:131.107.41.17

Host A (IPv4 address of 131.107.41.17) uses IPv4-compatible addresses to send IPv6 traffic to Host B (IPv4 address of 157.60.15.93), the source and destination addresses for the IPv4 and IPv6 headers are

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source address in IPv6 header</td>
<td>::131.107.41.17</td>
</tr>
<tr>
<td>Destination address in IPv6 header</td>
<td>::157.60.15.93</td>
</tr>
<tr>
<td>Source address in IPv4 header</td>
<td>131.107.41.17</td>
</tr>
<tr>
<td>Destination address in IPv4 header</td>
<td>157.60.15.93</td>
</tr>
</tbody>
</table>
IPv6 Mapped Address

Dynamic tunneling of IPv6 over an IPv4 infrastructure for IPv4 nodes that are not IPv6 compatible

IPv6 address used to represent an IPv4 device – JAVA uses this extensively

The device is not IPv6 capable

Internal representation only – never used as source or destination address of an IPv6 packet

Embeds an IPv4 address in lower 32 bits

Bit 16 is FFFF

IPv4 address 10.0.1.170 would be ::FFF:10.0.1.170
IPv6 Transition Methods: Tunneling

Tunneling (aka encapsulation using protocol 41)

Automatic Tunneling

6to4, TOREDO, ISATAP, Tunnel Broker
Transition Method: Dual Stack

Applications

TCP/UDP

IPv4
IPv6

Ethernet,
IPv6 Design Motto

Dual Stack or Tunnel where you must!

Go Native where you can!
IPv6 Tunneling

IPv4/v6
IPv4 Cloud
IPv4
IPv6 host
IPv4 host
IPv4/6 host
IPv4 host
Uh-Oh!
IPv4 host
IPv4 host
IPv6 host
IPv4 host
IPv6 Tunneling Options

- **router to router**
 - IPv6/IPv4
 - IPv6/IPv4
 - IPv4 Network

- **host to router tunnel**
 - IPv6/IPv4
 - IPv4 host

- **host to host**
 - IPv4/6 host
 - IPv4/6 host

- **router to host**
 - IPv6/IPv4
 - IPv4/6 host
IPv6 Tunneling Flowchart: End Node IPv6 Address is IPv4 Compatible Address

- **End node address is IPv4-compatible IPv6 address**
 - **Destination local?**
 - Yes: Send direct with destination address set to IPv6 format
 - No: IPv4 router available?
 - Yes: Send IPv6 encapsulated packet to IPv4 router; IPv6 destination addresses to the end node; IPv4 address set to low-order 32 bits of end node
 - No: IPv6 router available?
 - Yes: Send direct to IPv6 router with destination address set to IPv6 format
 - No: Destination unreachable
IPv6 Tunneling Flowchart

End Node is IPv6 ONLY Address

End node address is IPv6-only address

Destination local? Yes

Send direct with destination address set to IPv6 format

No

IPv6 router available? No

Send direct to IPv6 router with IP destination set to final destination in IPv6 format

IPv6 router available? Yes

Send IPv6 datagram encapsulated in IPv4 packet. IPv6 destination address and IPv4 destination address is the configured IPv4 address of the tunnel endpoint.

Configured tunnel and IPv4 router available? No

Destination unreachable

Configured tunnel and IPv4 router available? Yes
IPv6 Tunnel Flowchart: IPv4 ONLY Address

End node address is IPv4

Destination local?

Yes

Send direct with destination address set to IPv4

No

IPv4 router available?

Yes

Send IPv4 packet; destination address set to the IPv4 address of the end node

No

Destination unreachable
6to4 Tunneling

- Automatic IPv6 packet transit over an IPv4 network
- Interconnects isolated IPv6 nodes and networks
- IPv4 is treated as a unicast point-to-point link layer
- Public relay servers allow 6to4 networks to communicate with native IPv6 networks
- The 6to4 tunnel endpoint must have a public IPv4 address

Functions
- Assigns a block of IPv6 address space to any host or network that has a global IPv4 address.
- Routes traffic between 6to4 and "native" IPv6 networks
6to4 Details

- Inter-domain tunneling using IPv4 address as IPv6 site prefix IPv6 using IPv4 as a virtual link-layer
 - IPv6 VPN over IPv4 Internet Automatic tunneling approach – 6to4 routers advertise
 - Uses globally unique prefix comprised of the unique 6to4 TLA and the globally unique IPv4 address of the exit router (2002:WWXX:YYZZ::/48)

- 6to4 Relay is the gateway between the IPv6 and IPv4 worlds
 - No NAT can exist in the path
 - 6to4 Relay may be far away from end node
 - Security issues related to an open relay
6to4 Example

Host A and Host B
- native IPv6 packet
- packets sent via 6to4 router in site 1

Host A and Host
- Host a sends IPv6 packet to 6to4 Router Site 1
- 6to4 Router Site 1 encapsulates IPv6 packet in IPv4 and sends to 6to4 Router Site 2
- 6to4 Router Site 2 removes the IPv4 header and forwards IPv6 packet to Host C
6to4 Relay Router

With the promulgation of RFC 3068, the list that used to be here is no longer necessary. Everyone using 6to4 should now set their default router to 2002:c058:6301:: which is a special magic anycast address for the nearest (in BGP terms, anyhow) Relay Router

http://bgpmon.net/6to4.php
6to4 Router Tunnel Configuration

hostname IPv6HI
interface Ethernet 0
 ip address 200.168.100.1 255.255.255.0
 ipv6 address 2002:c8a8:6401:1::1/64
interface Tunnel 0
 no ip address
 ipv6 unnumbered Ethernet 0
 tunnel source Ethernet 0
 tunnel mode ipv6ip 6to4
 ipv6 route 2002::/16 Tunnel0

hostname IPv6MP
interface Ethernet 0
 ip address 200.168.200.2 255.255.255.0
 ipv6 address 2002:c8a8:c802:2::2/64
interface Tunnel 0
 no ip address
 ipv6 unnumbered Ethernet 0
 tunnel source Ethernet 0
 tunnel mode ipv6ip 6to4
 ipv6 route 2002::/16 Tunnel0
6to4 Issues

6to4 can fail or perform poorly due to a variety of reasons:

- Inbound/outbound black holes (routers or firewalls filtering protocol 41, ICMP etc.)
- Lack of working return 6to4 relay
- Circuitous/Asymmetric path with large round trip time
- Path MTU failures due to encapsulation overhead
- Privacy concerns with 3rd party relay routers
- See RFC 6343: Advisory Guidelines for 6to4 Deployment
IPv6 Tunnel – ISATAP
Intra-Site Automatic Tunnel Addressing Protocol

Automatic tunneling inside an enterprise
Nodes must be dual stack
Does not require the use of IPv4 Multicast
Creates a virtual IPv6 link over an IPv4 network
RFC [RFC5214]
ISATAP Functions

Generates a link-local IPv6 address from an IPv4 address
192.0.2.143 would use fe80:0000:0000:0000:0200:5efe:192.0.2.143 as its link-local IPv6 address

Performs ‘Neighbor Discovery’ on top of IPv4 address auto configuration of nodes, discovery of other nodes on the link, determining the Link Layer addresses of other nodes, duplicate address detection, finding available routers and Domain Name System (DNS) servers, address prefix discovery, and maintaining reachability information about the paths to other active neighbor nodes (RFC 4861).[1]

Implementation
Windows, Linux and some CISCO devices
ISATAP Example

When Host A and Host B start their IPv6 protocol stack they are automatically configured with the ISATAP address shown.

These are on the same IPv4 subnet.

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPv6 Source Address</td>
<td>FE80::5EFE:10.40.1.29</td>
</tr>
<tr>
<td>IPv6 Destination Address</td>
<td>FE80::5EFE:192.168.41.30</td>
</tr>
<tr>
<td>IPv4 Source Address</td>
<td>10.40.1.29</td>
</tr>
<tr>
<td>IPv4 Destination Address</td>
<td>192.168.41.30</td>
</tr>
</tbody>
</table>
ISATAP using a Router

Use of Link-Local ISATAP address allows IPv6/IPv4 hosts to communicate who are on the same logical IPv4 subnet.

To communicate outside a logical subnet a ISATAP router must be used.

ISATAP router will send router advertisement with prefixes.
ISATAP Setup for Linux

First set up a router:

- 192.0.2.1 as its ISATAP router address with the prefix 3ffe:ffff:1234:5678::/64 assigned to its clients

To set up the interface:

```
# ip tunnel add is0 mode isatap local 192.0.2.1 ttl 64
# ip link set is0 up
# ip addr add 3ffe:ffff:1234:5678::5efe:192.0.2.1/64 dev is0
```

Setup RALVD to advertise to ISATAP clients

Same as Ethernet interface definition except Unicast Only is set ON

Configure a client

```
# ip tunnel add is0 mode isatap local V4ADDR_NODE v4any V4ADDR_RTR ttl 64
# ip link set is0 up
```

The clients solicit the router information and auto-configure

```
# ip tunnel add is0 mode isatap local 192.0.40.25 v4any 192.0.2.1 ttl 64
# ip link set is0 up
```
Teredo (aka IPv4 NAT)

- 6to4 tunnels requires the tunnel end point to be public IPv4 address…..so for many that means the NAT device…Many NAT devices cannot be upgraded

- Teredo encapsulates IPv6 in UDP/IPv4 datagrams.
 - Diagnoses UDP (port 3544) over IPv4 (UDPv4) connectivity and discovers the kind of NAT
 - assigns a globally-routable unique IPv6 address to each host using it;
 - encapsulates IPv6 packets inside UDPv4 datagrams for transmission over an IPv4 network (this includes NAT traversal);
 - routes traffic between Teredo hosts and native (or otherwise non-Teredo) IPv6 hosts.
Toredo Details

Addressing scheme for Toredo clients

<table>
<thead>
<tr>
<th>Bits</th>
<th>0 - 31</th>
<th>32 - 63</th>
<th>64 - 79</th>
<th>80 - 95</th>
<th>96 - 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>32 bits</td>
<td>32 bits</td>
<td>16 bits</td>
<td>16 bits</td>
<td>32 bits</td>
</tr>
<tr>
<td>Description Prefix</td>
<td>Teredo server IPv4</td>
<td>Flags</td>
<td>Obfuscated UDP port</td>
<td>Obfuscated Client public IPv4</td>
<td></td>
</tr>
</tbody>
</table>

2001:0000:4136:e378:8000:63bf:3ff:fdd2 refers to a Toredo client:

- using Teredo server at address 65.54.227.120 (4136e378 in hexadecimal),
- located behind a cone NAT (bit 64 is set)
- using UDP mapped port 40000 on its NAT (in hexadecimal 63bf xor ffff equals 9c40, or decimal number 40000)
- whose NAT has public IPv4 address 192.0.2.45 (3fffdd2 xor ffffffff equals c000022d, which is to say 192.0.2.45)
Toredo Relays

Teredo anycast relays

Below you’ll find a list of Autonomous systems operating a Toredo relay server in the last 4 weeks:
Teredo relays are routers announcing the prefix 2001::/12

<table>
<thead>
<tr>
<th>OriginAS</th>
<th>AS description</th>
<th>first seen</th>
<th>last seen</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS29432</td>
<td>TREX-AS TREX Tampere Region Exchange Oy</td>
<td>2009-05-05</td>
<td>2012-02-24</td>
</tr>
<tr>
<td>AS28917</td>
<td>FIORD-AS JSC "TRC FIORD"</td>
<td>2011-01-30</td>
<td>2012-02-23</td>
</tr>
<tr>
<td>AS6939</td>
<td>HURRICANE - Hurricane Electric, Inc.</td>
<td>2009-04-03</td>
<td>2012-02-24</td>
</tr>
<tr>
<td>AS44450</td>
<td>CAIRNEY-AS Cairney Network</td>
<td>2011-02-17</td>
<td>2012-02-22</td>
</tr>
<tr>
<td>AS12659</td>
<td>NL-BIT BIT BV</td>
<td>2008-11-01</td>
<td>2012-02-21</td>
</tr>
<tr>
<td>AS25192</td>
<td>CZNIC-AS CZNIC, z.s.p.o.</td>
<td>2011-03-28</td>
<td>2012-02-21</td>
</tr>
<tr>
<td>AS1101</td>
<td>IP-EEND-AS IP-EEND BV</td>
<td>2009-03-12</td>
<td>2012-02-24</td>
</tr>
<tr>
<td>AS1257</td>
<td>TELE2</td>
<td>2008-10-11</td>
<td>2012-02-24</td>
</tr>
<tr>
<td>AS29259</td>
<td>DE-1ABG-TELEPORT 1ABG Telegraph, DE</td>
<td>2006-06-01</td>
<td>2012-02-23</td>
</tr>
<tr>
<td>AS12816</td>
<td>MIWN-AS Leibniz-Rechenzentrum Muenchen</td>
<td>2007-10-01</td>
<td>2012-02-24</td>
</tr>
<tr>
<td>AS65518</td>
<td>-Private Use AS-</td>
<td>2011-11-15</td>
<td>2012-02-07</td>
</tr>
<tr>
<td>AS12476</td>
<td>ASTER-CITY-CABLE-AS ASTER Sp. z.o.o.</td>
<td>2011-03-28</td>
<td>2012-02-08</td>
</tr>
<tr>
<td>AS12573</td>
<td>WIDEKS ion-ip B.V. (trading as WideXS)</td>
<td>2009-02-24</td>
<td>2012-02-12</td>
</tr>
</tbody>
</table>
Teredo Issues

Cannot work through some types of NAT (e.g., Symmetric)
• NAT detection and traversal mechanisms employed have a significant impact on network performance
• Possible issues with inoperable Teredo servers and relays
• Privacy concerns with 3rd party servers and relays
• Security concerns have been expressed:
IPv6 Translations

NAT-PT (Network Address Translation and Protocol Translation)

Translates by mapping each IPv6 address onto one from a pool of IPv4 addresses

- Upside: easy to implement and understand
- Downside: Limits simultaneous access to multiple services with a network
 - Breaks end-end networking
 - Single point of failure

NAPT-PT (Network Address Translation plus Port Translation)

Protocol gateway translates the IPv4/IPv6 network addresses and also maps port across boundaries

- Upside: Easy to implement, adds support for more simultaneous sessions
- Downside: Breaks end-end networking, single point of failure

SIIT (Stateless IP/ICMP Translation)

IP packets and ICMP messages are translated between IPv4 and IPv6 with temporary assignments of IPv4 addresses creating a one-one mapping

- Upside: Does not require state detail to be maintained
- Downside: Does not save on IP addresses, single point of failure
Identifying Tunneled Traffic

6to4 uses well known prefix 2002::/16
• Teredo uses 2001::/32
• Both use value 41 (IPv6 encapsulation) in the IPv4 protocol field
• 6to4 encapsulates IPv6 packets directly in IPv4
• Teredo is encapsulated in UDP inside IPv4
• 6to4 commonly uses well-known anycast relay routers (192.88.99.0/24)
• There are also public Teredo servers and relays

• Note: blindly blocking tunneled traffic may cause more harm than good
IPv6 Tunneling: Tunnel broker

- Tunnel Brokers use a web-based service to create a tunnel
- Connects an isolated host to IPv6 net of provider operating the tunnel broker
- Tunnel information is sent via http-ipv4
 - Tunnel managed by ISP
 - Sends scripts/configs to Dual Stack Router
What a Tunnel Broker Provides

Automation of configured tunnels

Tunnel Setup Protocol (TSP)
Client sends request for tunnel
Broker is based on policies
Broker sends tunnel information
Broker configures its tunnel endpoint
Client then configures its tunnel endpoint
Client receives stable IPv6 address and prefix

Well known free services Freenet6, Hurricane Electric, XS26, among others
20 different tunnel brokers exist
Clients for Windows, BSD, Linux, Solaris, etc.
Some IPv6 Tunnel Brokers

- Hurricane Electric: www.tunnelbroker.net
- Freenet6: www.hexago.com
- Consulintel: tb.consulintel.euro6ix.org
- Sixxs: www.sixxs.net
- 6fei: www.6fei.com.cn
- Netnam: tunnelbroker.netnam.vn
- Aarnet: broker.aarnet.net.au
- Internode: www.internode.on.net
- Saudia Arabia: www.ipv6.org.sa/tunnel_broker
Why Use a Tunnel Broker

Bring IPv6 to the public
Advocate the use of IPv6 properly to end users (company and individual)

Gain a user base, and thus:
- Gain expertise on the matter with a live network
- Collect invaluable feedback from the field
- Present cases and bug reports to vendors

Companies
- Enabling engineers to take a look at the operational tasks in IPv6
- Stimulating provision: *top-down* from ISP to end user

- Private individuals
 - Gaining a higher educational level of Internet users
 - Creating demand: *bottom-up* from end user to ISP
Hurricane Electric Network

Tunnel Server Status

<table>
<thead>
<tr>
<th>Asia</th>
<th>Tunnel Server</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>tserv19.bkg1</td>
<td>Hong Kong, HK</td>
<td>Up</td>
</tr>
<tr>
<td>tserv20.bkg1</td>
<td>Hong Kong, HK</td>
<td>Up</td>
</tr>
<tr>
<td>tserv25.ssm1</td>
<td>Singapore, SG</td>
<td>Up</td>
</tr>
<tr>
<td>tserv22.hyo1</td>
<td>Tokyo, JP</td>
<td>Up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Europe</th>
<th>Tunnel Server</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>tserv11.am1</td>
<td>Amsterdam, NL</td>
<td>Up</td>
</tr>
<tr>
<td>tserv26.bor1</td>
<td>Berlin, DE</td>
<td>Up</td>
</tr>
<tr>
<td>tserv6.ft1</td>
<td>Frankfurt, DE</td>
<td>Up</td>
</tr>
<tr>
<td>tserv10.ft1</td>
<td>Frankfurt, DE</td>
<td>Up</td>
</tr>
<tr>
<td>tserv5.lon1</td>
<td>London, UK</td>
<td>Up</td>
</tr>
<tr>
<td>tserv17.lon1</td>
<td>London, UK</td>
<td>Up</td>
</tr>
<tr>
<td>tserv10.par1</td>
<td>Paris, FR</td>
<td>Up</td>
</tr>
<tr>
<td>tserv27.prag1</td>
<td>Prague, CZ</td>
<td>Up</td>
</tr>
<tr>
<td>tserv24.stock1</td>
<td>Stockholm, SE</td>
<td>Up</td>
</tr>
<tr>
<td>tserv28.waw1</td>
<td>Warsaw, PL</td>
<td>Up</td>
</tr>
<tr>
<td>tserv23.zh1</td>
<td>Zurich, CH</td>
<td>Up</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>North America</th>
<th>Tunnel Server</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>tserv7.ash1</td>
<td>Ashburn, VA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv13.ash1</td>
<td>Ashburn, VA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv9.ch1</td>
<td>Chicago, IL, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv8.dal1</td>
<td>Dallas, TX, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv1.ft1</td>
<td>Fremont, CA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv2.ft1</td>
<td>Fremont, CA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv3.ft1</td>
<td>Fremont, CA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv29.ft1</td>
<td>Fremont, CA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv15 lax1</td>
<td>Los Angeles, CA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv12.mia1</td>
<td>Miami, FL, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv16.mia1</td>
<td>Miami, FL, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv4.nyc4</td>
<td>New York, NY, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv14.sea1</td>
<td>Seattle, WA, US</td>
<td>Up</td>
</tr>
<tr>
<td>tserv21.bor1</td>
<td>Toronto, ON, CA</td>
<td>Up</td>
</tr>
</tbody>
</table>
Tunneling Issues

Latency

Where are the tunnel endpoints

Distant 6to4 relays

Broken Teredo servers
AES Sessions

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Day</th>
<th>Time</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>11918</td>
<td>Performance factors in Cloud Computing</td>
<td>Tuesday August 7</td>
<td>3:00 PM</td>
<td>Grand Ballroom Salon A</td>
</tr>
<tr>
<td>11156</td>
<td>IPv6 Basics</td>
<td>Wednesday August 8</td>
<td>8:00 AM</td>
<td>Grand Ballroom Salon A</td>
</tr>
<tr>
<td>11895</td>
<td>Network Problem Diagnosis with Packet Traces</td>
<td>Wednesday August 8</td>
<td>9:30 AM</td>
<td>Platinum Ballroom Salon 9</td>
</tr>
<tr>
<td>11165</td>
<td>I'm Running IPv6 How Do I Access?</td>
<td>Wednesday August 8</td>
<td>4:30 PM</td>
<td>Grand Ballroom Salon A</td>
</tr>
<tr>
<td>11164</td>
<td>IPv6 Deep Dive</td>
<td>Thursday August 9</td>
<td>3:00 PM</td>
<td>Grand Ballroom Salon A</td>
</tr>
<tr>
<td>11161</td>
<td>Managing an IPv6 Network</td>
<td>Friday August 10</td>
<td>8:00 AM</td>
<td>Grand Ballroom Salon A</td>
</tr>
<tr>
<td>11162</td>
<td>Home Networking with IPv6</td>
<td>Friday August 10</td>
<td>11:00 AM</td>
<td>Grand Ballroom Salon A</td>
</tr>
</tbody>
</table>
QUESTIONS?

laurak@aesclever.com
www.aesclever.com
650-617-2400
References
Microsoft links:
IPv6 Source/Dest Address selection process -
Microsoft Infrastructure Planning and Design Guides -
Microsoft Exchange: Understanding IPv6 Support in Exchange 2010 -
Cisco links:
Cisco Validated Design -
IPv6 Addressing Plan from RIPE:
RIPE IPv6 Address Planning Guide -
http://www.ripe.net/training/material/IPv6-for-LIRs-Training-Course/IPv6_addr_plan4.pdf
IPv6 References

Deploying IPv6 in Campus Networks:
• Deploying IPv6 in Branch Networks:
• CCO IPv6 Main Page:
http://www.cisco.com/go/ipv6
• Cisco Network Designs:
http://www.cisco.com/go/designzone
• ARIN IPv6 Wiki:
http://www.getipv6.info/index.php/Main_Page
• World IPv6 Day (June 8, 2011):
http://isoc.org/wp/worldipv6day/
• IPv6 at IBM
• IBM IPv6 Compliance
• Security for IPv6 Routers
www.nsa.gov/ia/_files/routers/I33-002R-06.pdf
IPv6 References

http://www.ietf.org/

http://www.6ren.net

http://www.ipv6forum.com

http://arin.net

http://www.internet2.edu

http://www.ipv6.org

http://ipv6.or.kr/english/natpt.overview

http://www.research.microsoft.com/msripv6

http://www.ipv6.org.uk

Internetworking IPv6 with Cisco Routers - ISBN 0-07-022831-1