
Dramatically Reduce the Cost of
Sequential File Accesses in CICS

Stephen Reid

Antares Computing Pty Ltd

March 15, 2012

Session Number 11103

2

Agenda

• Background

• Requirements

• Solution

• Implementation

• Refinements and Extensions

• Making the Solution Universally Applicable

• Questions

3

Background

• It all started with 9/11

• FBI mandate to screen all financial transactions

• 15 million SWIFT transactions per day

• Typically ~50 fields of ~100 characters, per transaction

• Need to check each field against every suspect name

• Fuzzy match on 20,000 names initially – and growing!

• Benchmark showed impossible with normal access methods

• Asked to design/develop a super efficient data access

• >500% faster than required access speed

• Fuzzy match algorithm a story in itself – for another time . . .

4

Requirements

• Read the “Next Record” with minimum machine instructions

• Allow multiple (unlimited) simultaneous Read accesses

• Avoid “Below-the-Line” storage overheads

• Avoid Open/Close overheads (x15 million)/day

• (Allow flexibility in Record Length)

5

Possible Extra Requirements (not for FBI)

• The following functions could introduce Threadsafe issues:

 (colour-coded blue in subsequent slides)

• Support real-time Updates, Additions, and Deletions (ESDS)

• Ensure any changes are controlled and secure

• Ensure data is always Current

• Prevent “Double Updates”

6

Solution

• Main Memory ! (20,000 X 100 bytes = only 2M)

• Allocate a Linked List of Record “Cells” Above the 16M Line

• Store Control Information in a CICS Table (32 byte CSECT)

• Make Control Table “Resident”, so never freed

• Resident means it occupies only 32 bytes, not 4K

• Preload the file during PLTPI

• Access Method only involved once at CICS Startup

• Subsequent “READ” of each Record just moves its address

• If CICS dies, PLTPI simply reloads the file on restart

• Changes performed through a single common routine

7

Implementation

• Define a PLTPI program to LOAD the Control Table and

READ all the records into the Linked List

• Each program that wants to READ the “file” just LOADs the

Control Table and runs the Linked List

• All Updates, Additions and Deletions CALL a common

subroutine to perform the function (for ESDS, not QSAM)

• Updates ENQ on the RBA, and update in place

• Additions write to the end of the file, and add the new cell to

the end of the Linked List

• Deletions free the cell for subsequent Additions, and use

CONTROL access on the ESDS to physically update the CI

8

Implementation

The following Control Table is defined for each Linked List:

 TITLE 'CONTROL TABLE FOR LINKED LIST OF SWIFT MESSAGE FIELDS.'

BLACKLST CSECT

* DEFINITION OF THE CONTROL TABLE FOR THE LINKED LIST OF 'BLACK NAMES'.

* IT SHOULD BE DEFINED TO CICS AS RES=YES SO IT IS NEVER FREED,

* IS LOADED ONLY AT CICS STARTUP, AND OCCUPIES ONLY 32 BYTES.

BLACKLST RMODE ANY

BLACKLST AMODE 31

TABLNAME DC CL8'BLACKLST' TABLE NAME EYECATCHER FOR DUMP

HEADPTR DC XL4'FF000000' ADDRESS OF FIRST CELL IN ALLOCATED CHAIN

TAILPTR DC XL4'FF000000' ADDRESS OF LAST CELL IN ALLOCATED CHAIN

THISPTR DC XL4'FF000000' ADDRESS OF CURRENT CELL IN THE CHAIN

FREEPTR DC XL4'FF000000' ADDRESS OF FIRST AVAILABLE FREE CELL

CELLLEN DS F'100' LENGTH OF EACH CELL'S DATA AREA

CELLNUM DS F'0' NUMBER OF CURRENTLY ALLOCATED CELLS

 END

9

Implementation

BLACKLST head tail this free 0100 0005

next 0000 RBA1 record1

next prev RBA2 record2

next prev RBA3 record3

next prev RBA4 record4

0000 prev RBA5 record5

next 0000

0000 prev

Control Table

Free Chain Allocated Chain

Reclen NumCells Eyecatcher Pointer Pointer Pointer Pointer

10

Implementation

Then it is defined in the application program as follows:

LINKAGE SECTION.

01 Filename-CTRL. <-(For example)

 05 List-Name PIC X(8). <-(useful in a dump)

 05 Head-PTR POINTER.

 05 Tail-PTR POINTER.

 05 This-PTR POINTER.

 05 Free-PTR POINTER.

 05 Cell-Len PIC S9(8) COMP.

 05 Cell-Num PIC S9(8) COMP.

11

Implementation

And for each Linked List, the Cell is defined as:

01 This-Cell.

 05 Next-PTR POINTER.

 05 Prev-PTR POINTER.

 05 This-RBA PIC S9(8) COMP. <- for ESDS only

 05 This-Data.

 10 Whatever is needed.

12

Implementation

So the program simply performs the following:

 EXEC CICS LOAD

 PROGRAM (Filename)

 SET (ADDRESS OF Filename-CTRL)

 END-EXEC

Do not move any values to any of the fields in Filename-CTRL

These will all be pre-initialized by the PLTPI program.

13

Implementation

Then “Read” and process each record as follows:

 SET ADDRESS OF This-Cell TO Head-PTR

 PERFORM UNTIL ADDRESS OF This-Cell IS NULL

 Process This-Data

 ,

 ,

 SET ADDRESS OF This-Cell TO Next-PTR

 END-PERFORM

We can also process the List in reverse (LIFO) order by using

Tail-PTR and Prev-PTR instead of Head-PTR and Next-PTR

14

Refinements and Extensions

• If an ESDS is to be updated then define the dataset profile

with CONTROL access so CI can be manipulated directly

ESDS Control Interval

Fixed Length Records:

Variable Length Records:

15

Refinements and Extensions

Record1 Record2 Record3 Record4 Record5 Record6 Free Space 6 100 600

0 100 200 300 400 500 600 2038 2041 2044

 RDF2 RDF1 CIDF

Record1 Record2 Record3 Record4 Record5 Free Space 100 80 120 80 100 480

0 100 180 300 380 480 2029 2032 2035 2038 2041 2044

 RDF5 RDF4 RDF3 RDF2 RDF1 CIDF

16

Refinements and Extensions

• If an ESDS is to be updated then define the dataset profile

with CONTROL access so CI can be manipulated directly

• Since ESDSs are not officially recoverable, any changes

must be logged if forward or backward recovery is required

• Since all records are available to all tasks, to ensure

consistency, we should move our record to working-storage

if we execute any CICS commands during our use of it **

• If we DON’T execute any CICS commands within the loop

described on the previous slide, then an occasional

SUSPEND command would avoid a possible runaway task

• Use 64 bit addressing and put the DATA above the bar,

just keep the linked list of ADDRESSES below the bar

17

Refinements and Extensions

For 64 bit, the Control Table defines a Linked List of Addresses,

and the records are moved down below the bar as required.

So each Cell becomes:

01 This-Cell.

 05 Next-PTR POINTER.

 05 Prev-PTR POINTER.

 05 This-RBA PIC S9(8) COMP. <- for ESDS only

 05 This-Len PIC S9(8) COMP. <- length of data

 05 This-Addr PIC X(8). <- 64 bit Address

 05 Curr-PTR POINTER. <- 0 if not below_

with the data defined as:

01 This-Data.

 05 Whatever is needed.

18

Refinements and Extensions

And we “Read” and process each record as follows:

Note: This is NOT Threadsafe!

 SET ADDRESS OF This-Cell TO Head-PTR

 PERFORM UNTIL ADDRESS OF This-Cell IS NULL

 IF Curr-PTR IS NULL

 THEN CALL MoveDown USING ADDRESS OF This-Cell

 END-IF

 SET ADDRESS OF This-Data TO Curr-PTR

 Process This-Data

 SET ADDRESS OF This-Cell TO Next-PTR

 END-PERFORM

19

Refinements and Extensions

To make this Threadsafe we need to avoid any possibility of

more than one task accessing anything at the same time:

 SET ADDRESS OF This-Cell TO Head-PTR

 PERFORM UNTIL ADDRESS OF This-Cell IS NULL

 CALL MoveDown USING ADDRESS OF This-Cell,

 ADDRESS OF This-Data

 Process This-Data

 CALL FreeUp USING ADDRESS OF This-Data

 SET ADDRESS OF This-Cell TO Next-PTR

 END-PERFORM

20

Refinements and Extensions

And then comes the tricky bit !

BLACKLST head31 head64 free31 100 20

next RBA1 len1 64bit addr

next RBA2 len2 64bit addr

next <=31 copy Record1 Data

0000 <=31 copy Record2 Data

Control Table

64bit List 31bit List

MaxLen MaxTask Eyecatcher Pointer Pointer Pointer Pointer

next prev 0000

31bit Free List (initially MaxTasks)

next prev <=64 Record2 Copy

31bit Copy List

Next copy of this Record (usually 0)

21

Making the Solution Universally Applicable

• Define ESDS in CICS FCT (CSD) with CONTROL access

• Assemble & Link the Corresponding CSECT into DFHRPL

• Define that “Program” in CICS PPT (CSD) as RESIDENT

• Define the Linked-List Loading Program in PLTPI

• Filename is passed as a Parameter to Loading Program

• Everything is defined by the File-specific Control Table

• Functional Routines are all generic

• If you would like any help with any of these techniques,

please call me on +61-414-SPREID or +1-925-452-6456,

or email me at StephenPReid@yahoo.com

22

Questions?

