
Which Table (Space) Type and Page Size
Shall I Choose for DB2 on z/OS?

John Iczkovits
IBM

iczkovit@us.ibm.com
March 15, 2012

11032

2

• Title: Eenie Meenie Miney Mo, With Which Table (Space)
Type and Page Size Shall I Choose for DB2 on z/OS?

• Abstract: Choosing the correct DB2 table (Space) type is
very confusing. Should I go with a segmented table space,
a UTS (if so, a PBG or PBR), HASH, or maybe good old
classic partitioned? How about the page size? I now have
a choice of 4K, 8K, 16K, or 32K for my table space and/or
index. Should I choose a multi or single table option?
Should I compress the object? Choosing the data's correct
type and size the first time is essential to avoid costly
outages. Come learn about best practices in choosing the
correct types and settings for your data.

3

Confusion Corner!
• There are many combinations to choose from when deciding how your data will be housed. For example:

• What type of Tables and table space?
• Segmented
• Classic partitioned
• UTS PBR (Partitioned By Range)
• UTS PBG (Partitioned By Growth)
• UTS HASH
• XML
• LOB
• Etc.

• What type of index?
• NPSI
• DPSI
• PI
• Unique
• Index on expression
• Etc.

• How large should the objects be?
• Should the objects be partitioned?
• Should the objects be compressed?
• What should the relationship between table space and index attributes be?
• How many indexes if any?
• What page size for the table? How about the indexes?
• Etc. etc. etc.
• There is no “one size fits all” answer. Much of what we are going to discuss may help you decide

what works best for a specific set of objects, but ultimately you must do one very important thing –
TEST, TEST, and TEST some more!

4

First, what is a space map?

• Space map pages are real pages that exist in both table spaces and
indexes

• Space maps can be added as pages are preformatted
• For DB2 9 and 10, up to 16 cylinders are preformatted at one time
• HASH is the exception. HASH space is all formatted when created

and all of the space map pages created at CREATE time.
• The number of pages a space map covers is outlined in the Diagnosis

Guide and Reference
• When using MEMBER CLUSTER:
• Classic partitioned - each space map page covers 199 pages
• UTS – each space map page covers 10 segments

• Space maps do not point to specific rows or RIDs. They contain the
status of a page.

5

Table space definition – TRACKMOD
• Applies to both sequential or random insert
• DB2 keeps track of changed pages in the space map page
• It is used by incremental COPY to efficiently determine

which pages to be copied i.e., avoid scanning every page
• <YES> – DB2 keeps track of updated data pages

• Is default prior to V10
• Dirty bit on the space map page is updated when the data page is

changed.

• <NO> – is recommended if do not require incremental
COPY

• DB2 does not keep track of updated pages
• DB2 does not track changed pages in the space map pages. DB2

uses the LRSN value in each page to determine whether a page has
been changed.

• Less space map page updates which will improve performance
• Less data sharing overhead
• Incremental copy can still be used, but can run significantly slower
• Can be altered via ALTER TABLESPACE DDL

• The default can be controlled for implicitly created table spaces by
zparm (IMPTKMOD) in V10

6

Past Table Spaces Options

• Past table space options
• Simple

• Multi table, interleaved
• Very simple space map

• Simple table spaces can not
be created (deprecated in DB2 9)

• Segmented
• Multi table, no page sharing
• Better space maps
• Good with mass deletes

and inserts
• 64GB

• Partitioned
• One table per table space
• 128TB maximum for 32K objects
• Does not have the internal space map like that of a segmented table space to

allow for mass deletes.

Part.

Seg.

Simple

<MC>Single
deletes

key1 key2

128T

No MCMass
deletes

64G

<MC>Single
deletes

64G

Part.

Seg.

Simple

<MC>Single
deletes

key1 key2

128T

Single
table

No MCMass
deletes

64G

<MC>Single
deletes

64G

Multitable

hs hshshshs hshss

hshshshshs

hshshs

*MC = Member Cluster

Multitable

7

FAQ – What does maximum of 64G mean?
• For simple and segmented objects:

• Each data set can grow to 2GB
• When the 2GB maximum is reached, a new data set is automatically

created for DB2 managed data sets. User must still use IDCAMS DEFINE
when data is user managed.

• Each table can create up to 32 data sets of data. The LLQ (data set Low
Level Qualifier) starts with A001, successive data sets add one to the LLQ
value when created (i.e. A001, A002 … A032).

• 64GB = 2GB per data set * 32 data sets total
• For partitioned objects:

• Each data set can grow to 64GB
• NOTE! With DB2 10 APAR PM42175, partitions can grow to 128GB and 256GB

with a smaller number of total partitions.
• Data sets grow based on PRIQTY, SECQTY, DSSIZE, PIECESIZE (some

indexes), and sliding secondary.
• Data sets > 4GB must be SMS managed, with Data Class EF (Extended Format)

and EA (Extended Addressability) on
• Best practice – EF/EA all DB2 VSAM and sequential data sets with the

exception of temporary (&&) data sets
• Total size for one table with multiple data sets:

• 4K page – 16TB
• 8K page – 32TB
• 16K page – 64 TB
• 32K page – 128TB

8

Universal Table Spaces

• Universal Table Spaces
• Combination of segmented with partitioning options (hybrid approach)

• Better space management
• Support of mass deletes / TRUNCATE
• One table per table space

• Two options:
• Range-partitioned (PBR)

• All the features of classic partitioning
• Table controlled partitioning only
• Using partition column
• Partitioned and segmented

• Partition-by-growth (PBG)
• Partitions added as space is needed
• No partitioning key
• Partitioned and segmented
• New concept!

• DROP / CREATE to migrate existing page sets. ALTER allowed under
some circumstances starting in DB2 V10.

9

Universal Table Spaces – Partitioned By
Growth

• Partition By Growth (PBG)
• Single-table table space, where each partition contains a

segmented page set (allows segmented to increase from 64GB to
128 TB with 32K pages)

• Eliminates need to define partitioning key and assign key ranges
• Partitions are added on demand

• A new partition is created when a given partition reaches DSSIZE
• See the SQL Reference for DSSIZE rules given the page size &

number of partitions
• Up to MAXPARTITIONS

• Retains benefits of Utilities and SQL parallelism optimizations (child
tasks) for partitioned tables

• Not used for query parallelism for partition pruning
• SEGSIZE defaults to 4 in DB2 9, 32 in DB2 10
• LOCKSIZE defaults to ROW for implicitly created tables, otherwise

it defaults to ANY

New
Concept!

10

Universal Table Spaces
• What kind of Table Space will be created? (* optional)

CommentsMAXPARTITIONSNUMPARTSSEGSIZECREATE
TABLESPACE...

Partitioning TS prior to V9
*SEGSIZE 0 will create
classic partitioned and
CM8 behavior is same as
V8 NFM

Classic

Partitioned TS

Single table TS
*SEGSIZE will default to
32.

UTS PBR

Default for CM9 and NFM
with implicitly created TS.
Single table TS.
*SEGSIZE will default to
32.

Optional to
indicate # of initial
partitions

UTS PBG

*SEGSIZE is optional.
Default for explicitly
created TS & implicitly
created TS for CM8.
SEGSIZE defaults to 4.

Segmented

*

*

*

*

11

1
1

Single-Table

Simple

Table Space

Single-Table

Segmented

Table Space

Classic Partitioned

Table Space

Range-Partitioned

UTS PBR

Partition-By-Growth

UTS PBG

Improved availability in DB2 10 ALTER + REORG

Page size

Data set size

Segment size

Member cluster

Pending ALTER, then online
REORG to make changes

LOB INLINE LENGTH, default

VERSIONING

ACCESS CONTROL

MASK, PERMISSION

TRIGGER SECURED

FUNCTION SECURED

TIMESTAMP precision, time zone

MAXPARTITIONS

INDEX page size ADD active log MODIFY DDF ALIAS

INCLUDE cols BUFFERPOOL PGSTEAL NONE

12

DSNZPARM for SEGSIZE Default
• When SEGSIZE is NOT specified
• DB2 10 – The picture changes considerably

• If ZPARM DPSEGSZ = 0
• If MAXPARTITIONS is not specified

• If NUMPARTS is not specified
• SEGSIZE 4 for segmented table space

• If NUMPARTS is specified
• Classic partitioned table space

• If MAXPARTITIONS is specified
• With or without NUMPARTS being specified

• partition-by-growth table space w/ SEGSIZE = 32

• If ZPARM DPSEGSZ > 0 (a greater than zero value)
• If MAXPARTITIONS is not specified

• If NUMPARTS is not specified
• SEGSIZE 4 for segmented table space

• If NUMPARTS is specified
• Partitioned by range-partitioned table space w/ SEGSIZE = DPSEGSZ

• If MAXPARTITIONS is specified
• With or without NUMPARTS being specified

• partition-by-growth table space w/ SEGSIZE = DPSEGSZ

DB2 9
Default SEGSIZE 4

13

Partition -by-growth Table Space

�Associated SYSTABLESPACES columns
• MAXPARTITIONS =max number of partitions
• PARTITIONS =actual number of partitions
• TYPE =G

�Only single-table table space
�Universal table space organization: although the table space is

partitioned, the data within each partition is organized according to
segmented architecture

� Incompatible with ROTATE PARTITION

explicit specification

implicit specification

CREATE TABLESPACE …
MAXPARTITIONS integer

CREATE TABLE …
PARTITIONED BY SIZE EVERY
integer G

14

How Partition -By-Growth Works

�The table space starts with one partition, additional
partitions will be added on demand until the maximum
partition is reached.

Partitioned Table Space (parts added on demand)

Max
part n

Part 1 Part 2

15

• SQL CREATE TABLESPACE statement for PBG
CREATE TABLESPACE TS1 IN DB1

MAXPARTITIONS 55

SEGSIZE 64

DSSIZE 2G

LOCKSIZE ANY;

� A new key word MAXPARTITIONS - specifies the
maximum # of partition for a table space.

� Maxpartitions can be changed by ALTER TABLESPACE
• Keep in mind that ALTER MAXPARTITIONS may require

down time because it needs to physically close the datasets

Makes PBG

Partition -By-Growth CREATE

Partition size

16

PBG WARNING!

• Be careful when setting MAXPARTITIONS. Although you
can ALTER the value to a higher number, you cannot
decrease it to less partitions!

• See Willie Favero’s Blog:
• http://it.toolbox.com/blogs/db2zos/be-careful-how -you-

define-your-partitionbygrowth-universal-table-space -
50164

17

Partition -By-Growth Create

�SQL CREATE TABLE statement for PBG

CREATE TABLE Mytable
PARTITION BY SIZE EVERY integer G;

where integer ≤≤≤≤ 64

�Only available when you don’t specify a table space
name on the CREATE TABLE

�Table space is implicitly created
� mG specifies DSSIZE of the table space

18

More on Implicitly Created PBG

• Implicitly created table space defaults to PBG
• It defaults to row locking for implicitly created tables, otherwise ANY
• The LOCKMAX defaults to SYSTEM
• Default value for MAXPARTITIONS = 256
• Default SEGSIZE = 4 if not specified on DDL

• In DB2 Version 10, the default SEGSIZE value for universal table
spaces has changed from 4 to 32

• New DSNZPARM – DPSEGSZ (default 32) on DSN6SYSP macro
• DPSEGSZ affects the SEGSIZE default chosen
• DPSEGSZ becomes available in DB2 10 new function mode (NFM)

• Default DSSIZE = 4G if not specified on DDL
• Note: DSSIZE and SEGSIZE require a DROP to change, no

ALTER option
• DB2 10 has ALTER DSSIZE/SEGSIZENote

N
ot

e

19

Partition -By-Growth Space Search

�No more space in the partition…
• Search forward to next partition if there is one
• Search backward to previous partitions

Part 1 Part 2

Target part

Part 3 New part 4

Then add a new part

Note: If there is any restricted DBET state of any part during
the backward space search, a new part will not be added.

20

Additional Characteristics of PBG

• PBG is partitioned according to space requirements
• A partition is allocated when one is needed due to growth

• Each partition has a one-to-one correspondence to a
VSAM data sets and MUST be DB2-managed

• No partitioning key to bound the data within a table space,
so no PI index

• Only non-partitioned indexes can be created
• No data-partitioned secondary index (DPSI)

• Only single table allowed per table space
• can not totally replace segmented table space

21

PBG – Additional Function Limitations

• No partition key range can be defined
•

• No ALTER ROTATE PART
• No ALTER Stogroup
• No LOAD PART
• No user-directed define partition

• Required to use UNLOAD/LOAD instead of DSN1COPY for
copying data between table space if source table space has
more than 1 partition

DB2 10 allows a partition to be added
up to the value of MAXPARTITIONS

Note

No ALTER ADD PARTX

22

Note

Practical Applications for PBG

• When no obvious partitioning column exists
• When a table requiring > 64G

• Lift 64G size limitation of segmented table space
• Increase overall size of table space on demand

• Space on Demand
• Large table space and manage utilities at a data subset is

needed
• Partition level utility

• There’s a need for CLONE table
• HASH table use (added in DB2 10)

23

• MYTH: Inserting the same number of rows into a PBG
data set will take more space than a segmented table
space.

• FACT: Generally the amount of space should be the same
• For verification, you can compare DB2 Catalog numbers, as

well as the HI-U-RBA portion of IDCAMS LISTCAT.

24

�SQL CREATE statement
CREATE TABLESPACE PRB_TS1 IN UTS_DB1

NUMPARTS 3
SEGSIZE 64
LOCKSIZE ANY;

�Create a partitioned table space and just add the SEGSIZE clause =
Range-partitioned table space

• Range-partitioned table space is now DEFAULT in DB2 10
• Classic partitioned table spaces still supported

• Create classic by specifying SEGSIZE 0 on CREATE

N
ot

e
Create Range-partitioned UTS

Makes it PBR

25

Create Table in Range-partitioned UTS

CREATE TABLE MyTable
(C1 CHAR(4),

C2 VARCHAR(20),
C3 INTEGER)

PARTITION BY (C1)
(PARTITION 1 ENDING AT (‘DDDD’),

PARTITION 2 ENDING AT (‘HHHH’),
PARTITION 3 ENDING AT (‘ZZZZ’))

IN UTS_DB1.PRB_TS1 ;

• Must use table-controlled partitioning

26

PBR – Additional Function Limitations

• No index-controlled partitioning definition

CREATE UNIQUE INDEX TBIX1 ON MyTable
(C1)
CLUSTER

(PARTITION 1 ENDING AT (‘DDDD’),
PARTITION 2 ENDING AT (‘HHHH’),
PARTITION 3 ENDING AT (‘ZZZZ’))

BUFFERPOOL BP0
CLOSE YES;

Example of invalid way to create partition range:

27

PBR – Additional Function Limitations

• No index-controlled partitioning definition

CREATE UNIQUE INDEX TBIX1 ON MyTable
(C1)
CLUSTER

(PARTITION 1 ENDING AT (‘DDDD’),
PARTITION 2 ENDING AT (‘HHHH’),
PARTITION 3 ENDING AT (‘ZZZZ’))

BUFFERPOOL BP0
CLOSE YES;

Example of invalid way to create partition range:

SQLCODE = -662
A PARTITIONED INDEX
CANNOT BE CREATED ON A
NON-PARTITIONED,
PARTITION-BY-GROWTH, OR
RANGE-PARTITIONED
UNIVERSAL TABLE SPACE

28

Converting index-controlled partitioning
to table-controlled partitioning

• DB2 UDB for z/OS Version 8: Everything You Ever
Wanted to Know, ... and More SG24-6079
• 3.6.3 Converting to table-controlled partitioning

• Read other articles on the web for some additional best
practices

29

Range-partitioned Practical Applications

• When a partitioned table space and a partitioning key is
required

• When better performance than classic partitioned table
space is required – especially for mass deletes

• Parallelism and partition-independence capabilities
• When a CLONE table is required
• HASH table use (added in DB2 10)

Note

30

Fastest Available in DB2 V9: Index
access

ITEMNO Unique Index
5 levels

Data
Pages

2 pages need disk I/O:
1 index leaf page
1 data page

6 page access:
5 Index pages
1 Data page

Page in buffer pool

Page is read from
disk

Query:

Without HASH access

31

Fastest Available In DB2 V10: Hash
Access

Query:

Data
Pages

Page in buffer pool

Page is read from
disk

1 data page access

1 data page disk I/O
(Possibly in buffer pool)

•Key finds the row without index
•Reduced:

•Page visits
•CPU time
•Elapsed time

-Trade-off: extra space used

Unique Key Value

Rid

32

Hash Access Candidates
• Candidate Tables

• For queries needing single row access via the unique key
• Queries having equal predicates on keys
• With known and static approximate size of data
• Having large N-level indexes

• Not for Tables

• Needing sequential processing

• Frequently updated

• Either using BETWEEN or > and <

• Follow-up

• Run REBIND with EXPLAIN option and query the PLAN_TABLE to check access path

• SYSTABLESPACESTATS.REORGHASHACCESS
• Number of times data is read using hash access in the last time interval

• Check LASTUSED & REORGINDEXACCESS on overflow and other indexes to
validate HASH access

• PM25652 adds REORG recommendations to DSNACCOX

33

CREATE TABLESPACE JOHNIHAS
USING STOGROUP SYSDEFLT
PRIQTY 720000
SECQTY 7200
DSSIZE 1G
MAXPARTITIONS 3
LOCKSIZE ANY
CLOSE NO
BUFFERPOOL BP0
FREEPAGE 0
PCTFREE 0;

CREATE TABLE JOHNIHASH
(FNAME CHAR(20) NOT NULL,
LNAME CHAR(20) NOT NULL,
MNAME CHAR(20) NOT NULL)
ORGANIZE BY HASH UNIQUE
(LNAME,FNAME)
HASH SPACE 1G

IN DSNDB04.JOHNIHAS;

PBG

DB2A10.DSNDBD.DSNDB04.JOHNIHAS.I0001.A001
DB2A10.DSNDBD.DSNDB04.JOHNIHAS.I0001.A002

DB2A10.DSNDBD.DSNDB04.JOHNIHAS.I0001.A001

ALLOCATION
SPACE-TYPE------CYLINDER HI-A-RBA------ 1074216960
SPACE-PRI-----------1000 HI-U-RBA------ 1073479680
SPACE-SEC-------------10

DB2A10.DSNDBD.DSNDB04.JOHNIHAS.I0001.A002

ALLOCATION
SPACE-TYPE------CYLINDER HI-A-RBA------- 737280000
SPACE-PRI-----------1000 HI-U-RBA-------- 11796480
SPACE-SEC-------------10

Index created by DB2 for HASH:
DB2A10.DSNDBC.DSNDB04.JOHN1WMZ.I0001.A001
ALLOCATION

SPACE-TYPE------CYLINDER HI-A-RBA---------- 737280
SPACE-PRI--------------1 HI-U-RBA---------- 737280
SPACE-SEC--------------1

Preformat 1G

Preformat more

Preformating 1G is just for the data, more
Space is required for DB2 overhead.

Partition 3 is not created until required.
HASH must be UTS

(PBG or PBR)

34

UTS – the wave of the future!
• Simple table spaces are deprecated

starting in DB2 9
• Segmented table spaces can still be

used
• Classic partitioned may eventually be

deprecated
• UTS is the wave of the future

• Most of the DB2 Catalog and
Directory in DB2 10 are UTS after
ENFM

• DB2 work files (DSNDB07 or
equivalent) are PBG starting in DB2
10

• Most performance problems and
other inhibitors with UTS were fixed
in DB2 10

• PBGs are very easy to create and
use. DB2 handles the heavy lifting

• Certain data sets, such as for
CLONE tables and HASH tables
require UTS

• With DB2 10, converting (ALTER)
single table simple tables space,
segmented, or classic partitioned are
all to UTS

35

FAQ – Should all of my data sets be UTS?

• It depends
• If the data set is small and does not need to be partitioned,

segmented is a good way to go
• Locking - No LOCKSIZE TABLE (uses partitioned table

space locking scheme)
• There were some CPU concerns in DB2 9 for UTS objects

that were resolved in DB2 10. Test and verify results.
• There is a performance issue in DB2 9 and 10 for large

sequential insert throughput using row level locking with
PBGs. PBRs do not run into this problem. Even a lower
level of throughput, PBG still outperformed segmented.

36

FAQ: How many tables should I have in
my table space

• UTS and classic partitioned only allow one table per table
space

• Segmented tables allow for multiple tables per table space
• Generally create only one table per table space
• For small tables that are not frequently updated, multiple

tables per table space can still be an option
• Large tables or ones with more frequent updates should only

have one table per table space
• NOTE! When more than one table exists in a table space,

with DB2 10 ALTER cannot convert the table space to PBG.
Only single table table spaces can be converted to PBG.

37

Index sizes
• Common Problem: 99% of the customers that I talk to do not use

indexes > 4K
• Starting with DB2 9, indexes can now be 4K, 8K, 16K, or 32K.
• Only indexes > 4K can be compressed
• Dictionaryless, software managed index compression at the page level.
• Indexes are compressed at write time, decompressed at read time. They

are uncompressed in the buffer pools.
• Compression of indexes for BI workloads

• Indexes are often larger than tables in BI
• Solution provides page-level compression

• Data is compressed to 4 KB pages on disk
• 4K indexes cannot be compressed

• 32/16/8 KB pages results in 8x/4x/2x disk savings
• No compression dictionaries – compression on the fly

• DSN1COMP can be used for indexes as well starting with DB2 9
• Index compression is strictly for disk cost savings, not performance

38

Index Compression Versus Data
Compression
• There are differences between index and data compression

25 to 75% (3)10 to 90%‘Typical’ Comp Ratio
In Accounting and/or
DBM1 SRB

In AccountingCPU Overhead (4)

No (2)YesComp Dictionary

NoYesComp in Log

NoYesComp in Buffer Pool

YesYesComp in DASD

Page (1)RowLevel

IndexData

1. No compression or decompression at each insert or fetch; instead, it is done at I/O time
2. LOAD or REORG not required for compression; compression on the fly
3. Based on very limited survey and usage
4. CPU time impact under study – sensitive to index BP Hit Ratio, larger index BP recommended, higher impact

on relatively unique indexes with long keys

39

Table space compression
• Data compression, unlike index compression can result in

performance improvements.
• When do you compress a table space?

• Compression requires CPU cycles. Is your LPAR or CEC running at
100% busy? Can it afford extra cycles for compression?

• Compression information resides above the 2GB bar. Make sure
there is enough real memory to house the information.

• Do not compress small table spaces. It is not worth the tradeoff of
CPU.

• DSN1COMP on the object or image copy of the object provides
potential savings. What is your magic number for compression
saving? Mine is generally a liberal 40%. For some people the magic
number is 50%, 60%, etc.

• Starting in DB2 10, you can compress table space on the fly without
requiring REORG. Do you know if your data set will compress well
without knowing exactly what your data will look like?

40

INDEX FAQ
• When do I use indexes >4K?

• When indexes have high number of split pages
• When less index levels and more RIDs per page are important

• How do I tell from the RTS (Real Time Statistics) if page splits are a problem?
• ((REORGLEAFFAR*100)/NACTIVE)>10

• Calculates the ratio of index page splits in which the higher part of the split page
was far from the location of the original page to the number of active pages.
REORG when > 10%.

• RRILeafLimit when running RTS Stored Procedures DSNACCOR or
DSNACCOX

• For potentially more stale statistics, you can also use the DB2 Catalog
sysibm.sysindexpart column FAROFFPOSF

• Before using an index > 4K for page splits, test using variations on
FREEPAGE and PCTFREE which at times can greatly reduce the number of
page splits.

• There can be dramatic performance degradation when choosing the wrong page size.
TEST, TEST, and TEST again! Test with different variations in page size.

41

Large Index Page Size

• Available in V9 NFM
• Potential to reduce the number of index leaf page splits,

which are painful especially for GBP-dependent index (data
sharing)
• Reduce index tree lotch contention
• Reduce index tree p-lock contention

• Potential to reduce the number of index levels
• Reduce the number of getpages for index traversal
• Reduce CPU resource consumption

• Possibility that large index page size may aggravate index
bufferpool hit ratio for random access

41

42

FAQ – I know what my table space size
is, is my index the same size?

• For NPSI, user can specify the index PIECESIZE. Review the SQL
manual, PIECESIZE in DB2 10 can reach the equivalent of 256GB.

• For partitioned index (DPSI), DB2 uses a formula to calculate the
index piece size based on the table spaces DSSIZE. PIECESIZE
cannot be specified for DPSI.

• For indexes for segmented table spaces, same as the allocation for
the table space – maximum of 2GB per data set * 32 data sets = 64GB
total.

• PIECESIZE used to be used commonly to reduce the size of indexes
and therefore create more index data sets to avoid disk contention.
PIECESIZE now allows for very large data sets. Does it make sense to
worry about more index data sets in today’s virtualized disk world?

43

Table and Index page sizes

• MYTH: Index page sizes must always match table page
sizes

• FACT: Index page sizes are independent of table page
sizes
• Larger index page sizes provide benefit for large number of

page splits and reducing leaf pages
• Tables can be at one page size and indexes at different

pages sizes
• Compressing the table does not require that the index be

compressed as well

44

CREATE TABLESPACE JOHNIPBG USING STOGROUP
SYSDEFLT

PRIQTY 72000
SECQTY 7200
DSSIZE 64G
MAXPARTITIONS 3
LOCKSIZE ANY
COMPRESS YES
CLOSE NO
BUFFERPOOL BP0
FREEPAGE 0
PCTFREE 0
SEGSIZE 32;

CREATE TABLE JOHNITB
(FNAME CHAR(20) NOT NULL,
LNAME CHAR(20) NOT NULL,
MNAME CHAR(20) NOT NULL)
IN DSNDB04.JOHNIPBG;

CREATE INDEX JOHNIIX1
ON JOHNICZ.JOHNITB

(FNAME)
USING STOGROUP SYSDEFLT

PRIQTY 72000
SECQTY 7200
PIECESIZE 16G
CLOSE NO
COMPRESS NO
BUFFERPOOL BP8K0
FREEPAGE 0
PCTFREE 0;

CREATE INDEX JOHNIIX2
ON JOHNICZ.JOHNITB

(FNAME)
USING STOGROUP SYSDEFLT

PRIQTY 72000
SECQTY 7200
CLOSE NO
COMPRESS NO
BUFFERPOOL BP32K
FREEPAGE 0
PCTFREE 0;

CREATE INDEX JOHNIIX3
ON JOHNICZ.JOHNITB

(LNAME)
USING STOGROUP SYSDEFLT

PRIQTY 72000
SECQTY 7200
CLOSE NO
COMPRESS NO
BUFFERPOOL BP8K0
FREEPAGE 0
PCTFREE 0;

CREATE INDEX JOHNIIX4
ON JOHNICZ.JOHNITB

(LNAME)
USING STOGROUP SYSDEFLT

PRIQTY 72000
SECQTY 7200
CLOSE NO
COMPRESS NO
BUFFERPOOL BP32K
FREEPAGE 0
PCTFREE 0;

CREATE INDEX JOHNIIX5
ON JOHNICZ.JOHNITB

(LNAME)
USING STOGROUP SYSDEFLT

PRIQTY 72000
SECQTY 7200
CLOSE NO
COMPRESS YES
BUFFERPOOL BP32K
FREEPAGE 0
PCTFREE 0;

PBG

compress

4K

64G

16G

No compression

8K

No compression

32K

No compression

No compression

compress

32K

8K

32K
4G - default

4G - default

4G - default

4G - default

45

16

32

32

32

32

80

Cylinders
used

YES

NO

NO

NO

NO

YES

COMPRESS

230686727425228810332768BP32KJOHNIIX4

11796480737280001004096BP32KJOHNIIX5

23592960737280001008192BP8K0JOHNIIX3

230686727425228810332768BP32KJOHNIIX2

23592960737280001008192BP8K0JOHNIIX1

58982400737280001004096BP0JOHNIPBG

HI-U-RBAHI-A-RBACylinders
allocated

CISIZEBPObject

0.75

5

5

5

5

12

Cylinders
used

YES

NO

NO

NO

NO

YES

COMPRESS

32440327425228810332768BP32KJOHNIIX4

552960737280001004096BP32KJOHNIIX5

3162112737280001008192BP8K0JOHNIIX3

32440327425228810332768BP32KJOHNIIX2

3162112737280001008192BP8K0JOHNIIX1

8372224737280001004096BP0JOHNIPBG

HI-U-RBAHI-A-RBACylinders
allocated

CISIZEBPObject

Objects before REORG

Objects after REORG

NOTE – 32K objects have space + 2.2%. This is not true for compressed 32K
Index objects as they are allocated as 4K objects

46

76Y512512JOHNIPBG

PAGESAVECOMPRESSCARDTSNAME

671088644BP0JOHNIPBG

DSSIZEPGSIZEBPOOLNAME

Y+0.72000
00000000
000E+05

419430432BP32K3129JOHNIIX5

N+0.72512
00000000
000E+05

419430432BP32K295JOHNIIX4

N+0.72000
00000000
000E+05

41943048BP8K03380JOHNIIX3

N+0.72512
00000000
000E+05

419430432BP32K295JOHNIIX2

N+0.72000
00000000
000E+05

167772168BP8K03380JOHNIIX1

COMPRESSSPACEFPIECESIZEPGSIZEBPOOLNLEVELSNLEAFNAME

systablepart

systablespace

sysindexes

Page splits not shown as inserts were all sequential

47

Table Space Sizes
• MYTH: Increasing my table and index page sizes will always help in regards to space

and performance
• FACT: Table sizes can be 4K, 8K, 16K, or 32K

• The maximum size for simple and segmented table spaces is 64G
• The maximum size for UTS, partitions, XML, or LOB depends on the table space

size and number of partitions (see next page)
• Row length determines how much data is stored on each page
• Table space pages can only hold 255 rows maximum. Indexes do not have this

restriction.
• When locking on the space map becomes an issue, fewer rows per page can be the

result and some rows can be out of clustering order.
• When locking becomes an issue, fewer rows per page can be specified in the DDL
• Increasing the page size does not necessarily provide more space because of the

255 row per page limitation. Much of the data set can have wasted space as the
table size increases.

• Changing from a 4K to a 32K partitioned table space will increase the total size for a table
from 16TB to 128TB, but may not add the capability to add many more rows because of the
255 row inhibitor.

• There can be dramatic performance degradation when choosing the wrong page
size. TEST, TEST, and TEST again! Test with different variations in page size.

• Data set waste is also a problem with regards to buffer pools
• Generally disk throughput increases as page size increases. 16K and 32K are

treated the same as they have the same physical block size (16K).

48

Data Page Size

• Assuming insert only workload, use large data page size
for sequential inserts to
• Reduce # Getpages
• Reduce # Lock Requests
• Reduce # CF requests
• Get better space use

48

49

Maximum size of a partition table

4K

8K

16K

32K

16TB

32TB

64TB

128TB

50

CREATE TABLESPACE JOHNI###
USING STOGROUP SYSDEFLT
PRIQTY 72000
SECQTY 7200
LOCKSIZE ANY
CLOSE NO
FREEPAGE 0
PCTFREE 0

-- BUFFERPOOL BP0
-- BUFFERPOOL BP8K0
-- BUFFERPOOL BP16K0

BUFFERPOOL BP32K0;

CREATE TABLE JOHNI###
(FNAME CHAR(20) NOT NULL,
LNAME CHAR(20) NOT NULL,
MNAME CHAR(20) NOT NULL)
IN DSNDB04.JOHNI###;

CREATE TABLE JOHNI###
(FNAME CHAR(200) NOT NULL,
LNAME CHAR(200) NOT NULL,
MNAME CHAR(200) NOT NULL)
IN DSNDB04.JOHNI###;

DDL for illustration of 4K, 8K, 16K, 32K and row sizes of 60 bytes vs. 600 bytes

51

606349920 86512512180018000JOHNI600

667251245512512180018000JOHNI132

6672000 71512512180018000JOHNI116

667200071512512180018000JOHNI18K

60631961694512512180018000JOHNI232

60633120091512512180018000JOHNI216

60633120091512512180018000JOHNI28K

667200057512512180018000JOHNITS1

AVGROWLENSPACEPERCACTIVECARDSQTYPQTYTSNAME

systablepart

Table size based on rows with 60 bytes vs. 600 bytes

52

• PERCACTIVE: Percentage of space occupied by active
rows, containing actual data from active tables. This value
is influenced by the PCTFREE and the FREEPAGE
parameters on the CREATE TABLESPACE statement and
by unused segments of segmented table spaces.

53

6086089985419512512JOHNI600

6868992010512512JOHNI132

68681002136512512JOHNI116

6868994271512512JOHNI18K

608608999671512512JOHNI232

60860810019712512512JOHNI216

60860810039424512512JOHNI28K

6868998687512512JOHNITS1

AVGROWLENRECLENGTHPCTPAGESNPAGESCARDTSNAME

systables

Table size based on rows with 60 bytes vs. 600 bytes

606874804BP0JOHNI600

66226632BP32KJOHNI132

66288016BP16K0JOHNI116

6657608BP8K0JOHNI18K

606998832BP32KJOHNI232

6062070016BP16K0JOHNI216

606414008BP8K0JOHNI28K

66144004BP0JOHNITS1

AVGROWLENNACTIVEPGSIZEBPOOLNAME

systablespace

54

Difference between NACTIVE in SYSTABLESPACE on previous page and NPAGES in
SYSTABLES on this page:

NACTIVE - Number of active pages in the table space. A page is termed active if it is
formatted for rows, even if it currently contains none.

NPAGES - Total number of pages on which rows of the table appear.

PCTPAGES - Percentage of active table space pages that contain rows of the table.
A page is termed active if it is formatted for rows, regardless of whether it contains any.
If the table space is segmented, the percentage is based on the number of active pages
in the set of segments assigned to the table. This example was of a segmented table
space.

55

3583180804863583180804864096608BP0JOHNI600

74252288103742522881033276868BP32KJOHNI132

4718592064737280001001638468BP16K0JOHNI116

471859206473728000100819268BP8K0JOHNI18K

454

460

460

80

Cylinders
Used

608

608

608

68

AVGRECLEN

33914880033914880046016384BP16K0JOHNI216

32728678432728678445432768BP32KJOHNI232

3391488003391488004608192BP8K0JOHNI28K

58982400737280001004096BP0JOHNITS1

HI-U-RBAHI-A-RBACylinders
Allocated

CISIZEBPObject

Table size based on rows with 60 bytes vs. 600 bytes

56

Final Thoughts

• Table spaces and indexes are not created equal. What works for one
object may not work for another.

• There are many combination of options available
• Table spaces and indexes do not need to look alike, they do not

necessarily require the same attributes.
• Choose the right type of table space and index up front
• Larger pages sizes do not necessarily provide much more space for

your data set. Test performance implications of 4K vs. 8K vs. 16K vs.
32K. At times 16K might be the right choice, at times, 32K.

• Compare space savings vs. performance
• Compress your data sets for the right reasons
• Most important of all – TEST, TEST, and verify your TE STs

57

Critical UTS related APARS!

• PM51093
• PM45458
• PM55070
• PM56535
• PM58114

58

Before making you final choice, read on
the web:

• DB2 for z/OS Optimizing Insert Performance – Parts 1 & 2 by John Campbell
& Frances Villafuerte

• DB2 for z/OS Universal Table Spaces:
The Whole Story by Willie Favero

• Realizing the Full Performance Potential of
High Performance FICON with DB2 for z/OS by Jeff Berger

• Blogs:
• Robert Catterall’s blog: http://robertsdb2blog.blogspot.com/2010/12/reorg-

and-db2-for-zos-partition-by.html

• Willie Favero’s blog: http://it.toolbox.com/blogs/db2zos/be-careful-how-
you-define-your-partitionbygrowth-universal-table-s pace-50164

