
COBOL – VSAM Reporting using Java
on Tomcat and ITEXT

Ramanathan Perinkolam

Tata Consultancy Services

Date of Presentation (12-March 2012)

Session Number (10982)

2

Agenda

• Objective and Scope

• Technical Environment – JZ/OS, ITEXT, TOMCAT

• Traditional Architecture

• Re-engineered Architecture

• Data Slicing in Re-engineering approach

• Enriched Graphical Representation of Report

• Traditional vs. Re-engineered – MIPS Usage

• Inference

• ROI

• References

• IBM Centre of Excellence – An Overview

3

Objective and Scope

 Objective:
 To Modernize a COBOL-VSAM Reporting Solutions using Java running on Tomcat/

zOS and iText.

 Scope:

• Install Tomcat on zOS

• Re-engineer COBOL Reporting Components to Java with access to VSAM
enabled using JZOS on Tomcat

• Build Data Slicing functionality in Java as per the needs of the customer

• Integrate Java components with iText API with enriched Graphical Representation

 of reports

• Comparison in MIPS Consumption between Traditional Approach and

 Re-engineered approach

4

Technical Environment

• Enterprise Cobol for Z/OS 4.1

• IBM Java 1.5 on Z/OS

• Apache Tomcat V6 to be installed on Z/OS

• Apache Tomcat V6 to be installed on Distributed System to communicate with the

 Apache Tomcat running on Mainframe.

• iText V5.0 API to be added in the Java Program which is running in the distributed

 System

5

Introduction – JZOS, ITEXT
• JZOS:

 JZOS is a part of IBM Java sdk’s for z/OS. This Java programs enables access methods
for accessing MVS assets like sequential files, partitioned datasets, VSAM files and DB2
(through JDBC).

• iText :

• iText is a free and open source library for creating and manipulating PDF files in
Java.

• Versions of iText up to 2.1.7 were distributed under the Mozilla Public License or
the LGPL and supported generating reports in RTF and HTML formats.

• Latest version 5.0.0 (released Dec 7, 2009) is distributed under the Affero General
Public License version 3.

• iText is predominantly used for

• Generate dynamic documents from XML file or databases

• Use PDF's many interactive features

• Add bookmarks, page numbers, watermarks, barcodes, etc.

• Automate filling out PDF forms

• Add digital signatures to a PDF file and many more

- 6 -

Introduction – Apache TOMCAT

Apache tomcat for z/OS:

Features:

• Latest version of Tomcat on Z/OS is 6.0.18.

• Additional Dovetailed Technologies developed JARs are included to enhance Tomcat on

z/OS

• A Tomcat Security Realm for authenticating users and roles using SAF(RACF

• The JCL provided allows Tomcat to run as a batch job or started task using the IBM

Java SD

• The configuration includes support for DB2 JDBC type-2 and type-4 Datasource

connections.

System Requirements:

• One of the following Java SDKs:

• IBM 31 or 64-bit SDK for z/OS, Java Technology Edition, V5, SR3 or later

• IBM 31 or 64-bit SDK for z/OS, Java Technology Edition, V6

• 10 MB of HFS or zFS file system space, plus any space required for your web

applications.

Licensing:

• Apache Tomcat is a pure-Java implementation of the Java Servlet and JavaServer

Pages technologies and is licensed under the Apache Version 2.0 Open source license.

- 7 -

Introduction – Apache TOMCAT

Apache TOMCAT Security Features:

The Configuration File in Apache Tomcat Provides following Security Features

TOMCAT – users.xml

It enables the user to set the User id and Password for Security roles

Web.xml

It contains Session Tracking using a JSESSIONID that is generated in random with a

sequences of ID’s which are not reproducible. This prevents a remote user from hijacking

a client’s session.

Server.xml

It enables to configure to Hyper Text Transfer Protocol – Secure Connection.

- 8 -

COBOL – VSAM Reporting – Traditional
Architecture

COBOL VSAM
PS File

Records corresponding to

selected date range and

State is read from VSAM file

COBOL writes into

a PS File based on

the condition

Z/OS

 Scenario :

• COBOL Program Reports CardNo Transaction Data based on Inputs (Data Range and / or State)

passed via the JCL to the program

• The COBOL Program reads data from the Transaction master File(VSAM)

• The Program scans through the complete file and extracts records based on the selected date range

and the state

• The Selected records are formatted and written as report into the PS file which is transferred to the

distributed environment for analysis

JCL

Date range and state

selected through SYSIN

 Card

- 9 -

COBOL – VSAM Reporting – Traditional
Approach
 Scenario

JCL in which date range and state are specified through SYSIN

State and the data range which is

given as input to COBOL

- 10 -

COBOL – VSAM Reporting – Traditional
Approach

State and the data range which is

given as input to COBOL

VSAM

Records corresponding

to selected date range

and State is read from

VSAM file

COBOL writes

into a PS File

based on the

condition

Scenario

COBOL Report generated in a PS File based

- 11 -

Java on Tomcat/zOS using iText –
Reengineered Architecture

State and the data range which is

given as input to COBOL

VSAM

Records corresponding

to selected date range

and State is read from

VSAM file

COBOL writes

into a PS File

based on the

condition

OMVS

Tomcat

JVM

JZOS

Z/OS

vsam

Report. txt

Distributed System

Java

Tomcat

slicing
slicing

JSP

iText API

Report. pdf Report. html Report. Rtf

http Request

Response

Client Client Client

Browser Browser Browser

http Request http Request http Request

1

2

3
4

JSP
5

6

Java on Tomcat/zOS using iText –
Reengineered Approach

1. The browser from the client side makes a http request to the Tomcat Server running on the
distributed system .

2. JSP page invokes the Java component.

3. The Java Component in-turn makes a http request to the Tomcat Server running on
Mainframe.

4. JZOS running in the Tomcat fetches the records from the VSAM.

5. The fetched records are then passed to the Java running in the distributed system in XML
format.

6. The Java program performs the slicing operation on the fetched records .

7. The records are then generated in the form of PDF,HTML,RTF using iText API .

Java on Tomcat/zOS using iText –
Reengineered Approach
The browser from the client side makes a http request to the Tomcat Server

running on the distributed system .

State

Date Range

Http request made to

the Tomcat Server

Java on Tomcat/zOS using iText –
Reengineered Approach

Declarations

for Reading

VSAM file

JZOS

Syntax for

reading

VSAM file

VSAM Cluster

 na

me

The fetched records are then passed to the Java running in the distributed system .

Fetched Records

Data Slicing in Re-engineered Approach

First level filter

disabled

Click to slice

based on the

amount

Amount

range is

specified

Both filters

disabled

Click to

generate

PDF Report

Data Slicing in Re-engineered Approach

Enriched Graphical representation of Report in

Reengineered approach

Enriched Graphical representation of Report in

Reengineered approach

Case 1 : Fixed Date Range and Variable State name

Case 2 : Variable Date Range and Fixed State name

Case 3 : Fixed Date Range and Fixed State name

Reporting Run(s)

Measurement

Window

 (min)

 Java COBOL

CP (sec) Zaap (sec) CP (sec)

Case 1 600 15 16 142 144

Case 2 600 15 17 146 144

Case3 600 15 16 140 144

Average 16.33 142.66 144

Average per Run 0.027 0.237 0.24

Traditional vs Re-engineered Approach - MIPS

Inference :

• Re-engineered UI which allows the user to perform multi-level slicing on
the date range and state.

• Modernized Graphical Report Representation using iText for various
Data-Slices

• Re-engineering the application layer and retaining only the Data Access
Layer (VSAM) on the Mainframe is expected to significantly offload the
MIPS to zAAP Speciality Engines and reduce the CP MIPS Footprint .
Expected offload to Speciality Engines (89.72 %) and reduction of MIPS
Footprint (88.65 %)

• The CP Time in COBOL Varies according to the number of Steps executed
through JCL and accordingly there will be MIPS Reduction for Java

Inference

ROI

References :
Tomcat Download

http://dovetail.com/downloads/tomcat/index.html

Tomcat installation

http://dovetail.com/docs/tomcat/install.html

Tomcat installation doc

http://dovetail.com/docs/tomcat/install.html

Dovetail tomcat forum

http://dovetail.com/forum/

iText download

http://itextpdf.com/download.php

iText forum

http://support.itextpdf.com/forum

References

Alternate Approach for ZAAP utilization in

Mainframe

Approach – “To Be” Process for zAAP Utilization
Alternate Approach for ZAAP utilization in

Mainframe

Procedure for invoking Java methods from Cobol

Steps followed to execute java from procedural Cobol:

1. Create java classes and methods to wrap the file and

MQ operations functionality using java API (Reusable
component).

2. Create Object Oriented Cobol (OOCobol) program that
uses invoke statements to create java objects and to
execute java methods. This OOCobol program should be
compiled with DLL option (Reusable component).

3. Create a wrapper procedural Cobol program that calls
the OOCobol program. Any program calling a program
compiled with DLL option should be linked with
DYNAM(DLL) option and can only use static call to
invoke the DLL(Reusable component).

4. In the procedural Cobol program that has the file and
MQ operations, those calls will be replaced by the calls
to the wrapper procedural Cobol program passing
parameters specific to the operation.

Alternate Approach for ZAAP utilization in

Mainframe

Initial POC Details

The Proof of Concept was executed for the below scenarios.

1. To compare the MQPUT Cobol call against the wrapper call executing MQPUT

in java method

2. To compare the READ Cobol Statement for a VSAM file against the wrapper

call executing READ in java method

3. To compare the READ Cobol Statement for a tape file against the wrapper call

executing READ in java method

4. To compare the READ Cobol Statement for a sequential file (PS) against the

wrapper call executing READ in java method

The charts below presents the results of the tests executed for the above four

scenarios.

Alternate Approach for ZAAP utilization in

Mainframe – Proof of Concept

Initial POC Results

50.4

137.72

18.65 17.86
9.53

50.41

12.3 8.33

3.93

4.5

2.56 1.94

MQPUT READ VSAM READ TAPE READ PS

0

40

80

120

160

JAVA Normalized zAAP
CPU secs

JAVA Normalized CPU sec
(on CP)

COBOL Normalized zAAP

CPU secs

COBOL Normalized CPU
sec (on CP)

Un-normalized CPU time for the Tests

Normalized CPU time for the Tests

Alternate Approach for ZAAP utilization in

Mainframe – Proof of Concept Results

Technology Trends – Way ahead for Customers
Technology Consumption Reduction

• Reduce License Cost, Automate IT Op

• Leverage Specialty Engines workloads.

• Investment on Application Re-engg,

 System tuning.

Enterprise Modernization

• Modernize Candidate Applications : Code

 generators, Unsupported, Multiple run time

 Environments.

Competency

Effective use of Alliance for

Training needs and getting

abreast with latest in technology

High Availability and Real Time

• Parallel Sysplex Implementation

• Next Generation (VSAM-Db2)

• 59% - W/Services

• 31% - Java in m/f

IT Optimization and Consolidation

• LPAR/ Vendor Consolidation

• SW Stack Consolidation

• Server Consolidation

Virtualization

• Migrate non critical Batch

• Use z/Linux Private Cloud

Legacy Integration

• Usage of Web Services to merge

 disparate systems.

• 54% Midrange –

 Legacy Integration

• 8% Port to LINUX

Others

• BI – Leverage Cognos

• Application Co-location

7

7

7

7

6

1

CITI

AMEX

JPMC

BOA

LTSB

Others

Thank You

