
DFSMS Basics: VSAM

Transactional VSAM (TVS) 
Basics and Implementation

Enhancing your RLS applications through 
transactional processing

David LeGendre, dlegendr@us.ibm.com

 Session : 10968



2

Copyright / Legal

NOTICES AND DISCLAIMERS

Copyright © 2012 by International Business Machines Corporation.
No part of this document may be reproduced or transmitted in any form without written permission from IBM Corporation. 
Product data has been reviewed for accuracy as of the date of initial publication.  Product data is subject to change without notice.  This 
information could include technical inaccuracies or typographical errors.  IBM may make improvements and/or changes in the product(s) 
and/or programs(s) at any time without notice.
Any statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals 
and objectives only.
References in this document to IBM products, programs, or services does not imply that IBM intends to make such products, programs or 
services available in all countries in which IBM operates or does business.  Any reference to an IBM Program Product in this document is not 
intended  to state or imply that only that program product may be used.  Any functionally equivalent program, that does not infringe IBM’s 
intellectually property rights, may be used instead.  It is the user’s responsibility to evaluate and verify the operation of any non-IBM product, 
program or service.

The information provided in this document is distributed "AS IS" without any warranty, either express or implied.  IBM EXPRESSLY 
DISCLAIMS any warranties of merchantability, fitness for a particular purpose OR NONINFRINGEMENT. IBM shall have no responsibility to 
update this information.  IBM products are warranted according to the terms and conditions of the agreements (e.g., IBM Customer 
Agreement, Statement of Limited Warranty, International Program License Agreement, etc.) under which they are provided.  IBM is not 
responsible for the performance or interoperability of any non-IBM products discussed herein.

The provision of the information contained herein is not intended to, and does not, grant any right or license under any IBM patents or 
copyrights.  Inquiries regarding patent or copyright licenses should be made, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY  10504-1785
U.S.A.



3

Trademarks

DFSMSdfp, DFSMSdss, DFSMShsm, DFSMSrmm, IBM, IMS, MVS, MVS/DFP, 
MVS/ESA, MVS/SP, MVS/XA, OS/390, SANergy, and SP are trademarks of 
International Business Machines Corporation in the United States, other countries, or 
both.

AIX, CICS, DB2, DFSMS/MVS, Parallel Sysplex, OS/390, S/390, Seascape, and z/OS 
are registered trademarks of International Business Machines Corporation in the United 
States, other countries, or both.  

Domino, Lotus, Lotus Notes, Notes, and SmartSuite are trademarks or registered 
trademarks of Lotus Development Corporation.  Tivoli, TME, Tivoli Enterprise are 
trademarks of Tivoli Systems Inc. in the United States and/or other countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the 
United States, other countries, or both.  UNIX is a registered trademark in the United 
States and other countries licensed exclusively through The Open Group. 

Other company, product, and service names may be trademarks or service marks of 
others.



4

Introduction

Transactional VSAM is an excellent tool through which 
varying types of RLS workloads can be managed and 
distributed.  This presentation is aimed at introducing the 
product, the problems that it solves and what steps are 
needed to get it implemented in most common 
environments. 



5

Agenda

• Transactional VSAM Overview
• Brief History of RLS

• RLS access and setup
• RLS & CICS

• Transactions Recovery and Logs
• Examples of successful and unsuccessful transactions
• RLS recoverable data sets
• Logging and component interaction



6

Agenda

• Setup and Use

• Requirements

• System settings

• Data set level

• Application

• Other Considerations

• Performance

• Restart

• References

• Additional Resources

• Example of TVS startup

• Forward Recovery (howto)

• Display, vary and SHCDS command reference



7

TRANSACTIONAL VSAM

Design Objective:

Enhance VSAM Record Level Sharing (RLS) to provide data 
recovery capabilities for any application exploiting VSAM 
RLS.

Recovery Capabilities include:
• Transactional Recovery
• Data set recovery

VSAM RLS becomes a “Transaction-alized" access 
method, hence "Transactional VSAM" (TVS).



8

TVS Overview

Transactional VSAM allows any job that uses RLS 
(such as batch jobs) to be recoverable

Implications:
• Cross-system record-level serialization through RLS
• Recoverable subsystems (such as CICS) need not come 

down to allow other RLS activity (such as batch) (24x7 avail)
• Fully able to interact with other recoverable regions



Brief history of RLS

A simplified overview



10

Quick Background - RLS

• Problem:

• One data set, many users, many systems

• Serialization of concurrent access is complex
• Data can get lost

• Data sets can be broken

• Previous solutions:

• Homegrown methods via GRS, CBUF, etc

• CICS AOR / FOR (Function Shipping)

• RLS solution:

• VSAM: Record Level Sharing
• All access goes through SMSVSAM ASID

• Plex-wide serialization through locks in the CF

Data
Set

Record

PUT

UPD



11

RLS Access

App 1 App 2 App 3 App n

System 1 System n

SMSVSAM

DATA SET



12

Typical RLS Setup
LPAR 1

S
M

S
V

S
A

M

CF
APPn

RPL

DASD

APP2

APP1
RPL

RPL

Lock Str

Cache

Cluster

locks

CIs

LPAR n

S
M

S
V

S
A

M

APPn

RPL

APP2

APP1

RPL

RPL

locks

CIs

CIs

CIs



13

Quick Background – RLS & CICS

• New Problem:
• Any recoverable data set open is READ ONLY to

non-recoverable access (RLS and non-RLS)
• Ex. CICS through RLS and “batch” using RLS

• Common Solutions:
• Quiesce current activity
• Move CICS activity to a different file
• Schedule a “Batch Window”

• TVS Solution:
• Non-recoverable jobs using TVS become

recoverable, registered regions
• Jobs using TVS can run with CICS 
• TVS Manages Recovery

Data
Set

Record

PUT

UPD

lock



14

What is TVS?

• “Transaction-alizes” VSAM data set access
• Groups updates into atomic units
• Commit and backout

• A Bridge between Recoverable and Non-Recoverable 
access to VSAM data sets
• Recoverable : CICS and other Commit Protocol applications
• Non-recoverable : Batch jobs

• Net result: Recoverable and (formerly) non-recoverable 
applications can access the same data set simultaneously 
while maintaining data consistency.



15

RLS Access with TVS

Recoverable
App 1

NON-CICS
With TVS

“Batch” TVS CICS n

System 1 System n

SMSVSAM

DATA SET



16

Metaphor

Team 1 (Recoverable 1)

Team 4 (Recoverable 4)Team 6 (Batch 2)

Shared Basketball Court (RLS data set)

Team 5b (Batch 1 TVS)

Team 2 (Recoverable 2)Team 5 (Batch 1)

Team 3 (Recoverable 3)

Team 6a (Batch 2 TVS) Team 6b (Batch 2 TVS)

Team 5a (Batch 1 TVS)

Team 1 (Recoverable 1) Team 2 (Recoverable 2)

Team 5a (Batch 1 TVS) Team 5b (Batch 1 TVS)



Transactions, Recovery and Logs

Concepts that drive TVS



18

Transactions
and Transactional Recovery

• A Transaction or Unit of Recovery* is 
a set of updates or changes that act 
as one unit of processing

• Atomic update
• All or nothing

• Commit
• Finalizes a set of updates
• Creates a new syncpoint

• Backout
• Removes a set of updates
• Based on logged changes

*Referred to in TVS as a UR

One 
Transaction

Step A

Step B

Step C

Another
Transaction

Step A

Step B

Step C

Step D



19

6. Transaction 
complete!

Coffee in Hand!

Transaction Example

Buying a cup of coffee:

Series of steps to complete :

1. You order

2. They name 
the price

3. You pay

4. Change 5. Coffee!



20

Transaction: Episode 2
Redesigning a masterpiece:

1..  A decision is made to add 
new special effects.

2.. A list of changes 
is generated.

3. Changes are 
rendered.

(Shoots 1st) (Shoots in self defense)

4.The new 
version is 
released!



21

Recovery (Backward)

• If there is a failure:
• Locks will be held to maintain integrity (RETAINED locks)
• Read the log file to retrieve unmodified data
• Restore data to unmodified state
• Release the serialization

• If a BACKOUT fails:
• Log the backout failure in another log (the SHUNTLOG)
• Maintain serialization on the modified data (RETAINED locks)



22

Transaction Example

Buying a cup of coffee:

Series of steps to complete :

1. You order

2. They name 
the price

3. You pay

4. Change 5. Coffee!

6. Transaction 
complete!

Coffee in 
Hand!



23

Transaction: Episode 2
Redesigning a masterpiece:

1..  A decision is made to add 
new special effects.

2.. A list of changes 
is generated.

3. Changes are 
rendered.

(Shoots 1st) (Shoots in self defense)

4.The new 
version is 
released!
Someone catches the
mistake(s) before release!

Everything is 
reloaded from 
original backups.

The list of changes is 
burned for good 
measure.

The list of changes is 
burned for good 
measure.



24

Data Set Recovery Types

• BACKWARD:
• Allows the last update or set of updates to be reversed
• 'UNDO' type operation
• Uses atomic updates / transactions
• Uses logs to store changes

• FORWARD:
• Allows utilities to rebuild a file from backup
• Uses logs to store forward-changes



25

Recoverable Data Sets (when using 
RLS)

NON-RECOVERABLE
• Cannot recover
• LOG(NONE) or undefined
• Changes are not logged
• Changes cannot be undone
• R/W from all regions

RECOVERABLE

• Can do transaction recovery

• LOG(UNDO) – backward 

• Changes are logged

• Changes can be backed out

• Read ONLY for non-RLS access

• LOG(ALL) – backward & 
forward recovery

Recoverable data sets are data sets that support backout 
(and potentially forward recovery) when opened by a 
recoverable region (such as CICS or TVS)



26

Data
Set

10

8

44-a

TVSApplication / UR

A Technical Example – successful

2

6

1. Read UPD record 4 Lock record 4

Log unmodified rec 4

2. Modify record 4

3. PUT modified 4-a

4. Insert record 7 PUT Lock record 7

Log unmodified data

5. Commit Update logs

Release locks

Write record 7

Write record 4-a

6. End of Transaction!

8

10

8

7

10



27

Data
Set

TVS

4

Application / UR

A Technical Example – Failure!

2

6

1. Read UPD record 4 Lock record 4

Log unmodified rec 4

2. Modify record 4

3. PUT modified 4-a

4. Insert record 7 PUT Lock record 7

Log unmodified data

5. Backout

Update logs

8

108

10

4-a

Write record 7

Write record 4-a

6. End of Transaction!

Retrieve logged data

Restore data

Release locks

2

6

4

8

10



28

Logging

• Data Set updates are written to the LOG
• For UNDO, stores ‘before’ picture of data
• For ALL, stores both 'before' and 'delta' changes

• TVS, RRS, CICS all take advantage of it in different ways
• TVS uses System LOGGER (IXLOGR)
• Uses LOGSTREAMS

• Defined in the LOGR portion of the coupling facility policy 
(CFRM)



29

TVS Logs

• Undo Log (required) – Primary System Log
• One per image
• Holds the changes made by URids on that system
• Used for backout

• Shunt Log (required) – Secondary System Log
• One per image
• Holds URs that TVS cannot complete (I/O error, etc)
• Holds Long-running URs (moved from Undo log)

• Forward Recovery Logs (optional)
• Plex-wide logs
• Shared between CICS and TVS
• Assigned to data sets during data set allocation (LOGSTREAMID)

• Log of Logs (optional)
• Holds tie-up records and file-close records
• Used by recovery applications such as CICSVR



30

TVS Component Interaction

Three basic functions necessary for transactional recovery:

• Resource locking (VSAM RLS)
• Serialized access to changed resources
• At the record level
• Uses the coupling facility

• Resource Recovery Logging (LOGGER)
• Keep track of backward changes (UNDO)
• Keep track of forward changes (REDO / FR)

• Two-phase commit and backout protocols (RRS)
• Ensures atomic operation (transactions)
• COMMIT
• BACKOUT



31

The Overall Flow

• As TVS comes up:
• Registers with SMSVSAM as a recoverable subsystem

• Dynamically connect to the BACKOUT and SHUNT logs

• When a request is issued (GET/PUT/etc):
• Register transaction with RRS and get a Unit of Recovery ID (URID)

• Hold record-level serialization for the duration of URID

• Log the unmodified data via IXLOGR to the backout log, and optionally the change in the 
forward recovery log

• When a COMMIT is issued:
• Commit can be issued

• Explicitly (via RRSCMIT)
• Implicitly during end-of-task

• Release the locks

• Log the successful COMMIT



Setup

Hardware / Software changes to enable TVS



33

System Requirements

• Hardware:
• Coupling Facility
• At least one z/OS LPAR (monoplex or parallel sysplex)

• Software:
• z/OS 1.4 or higher (current lowest release is z/OS 1.11)
• z/OS VSAM RLS (SMSVSAM) implemented
• z/OS Transactional VSAM (separately priced feature)
• z/OS RRMS implemented (RRS)
• z/OS System Logger implemented
• CICS VSAM Recovery (CICSVR) utility (optional)



34

Overview of Setup

1. Modify IGWSMSxx PARMLIB

2. Define CFRM and LOGR policies

3. Change IDCAMS DEFINE Statements

4. Change Application (optional)

Success!



35

Required Parmlib Configuration

• IGDSMSxx Parmlib Member
(Note: this does not include RLS/SMSVSAM parameters)

• SYSNAME(sysname1,sysname2,…)
• Systems on which TVS is to run
• Same order as TVSNAME

• TVSNAME(nn1,nn2,..)
• TVS instance names
• Suffix added to “IGWTV”
• Same order as SYSNAME

• TV_START_TYPE(COLD|WARM,COLD|WARM,…)
• Type of startup
• Same order as SYSNAME & TVSNAME
• COLD – deletes any information in UNDO & SHUNT logs and starts
• WARM – reads the UNDO & SHUNT log and performs any actions needed

SYS1 SYS2 SYS3

001 002 003

WARM COLD WARM



36

Parmlib Configuration (Optional)

• LOG_OF_LOGS(logstreamid)
• Specifies LOG of LOGS logstream
• Used for forward recovery tie-up records

• MAXLOCKS(nnn,iii)
• Specifies when to issue warning messages about the number of held locks

• AKP(nnn,nnn,…) - Activity Keypoint Trigger
• Helps TVS maintain the UNDO and SHUNT logs
• Removes entries that are no longer needed (URID no longer in use)
• Defaults to 1000

• QTIMEOUT(nnn|300)
• Number of seconds to wait before QUIESCE EXITS assume that the QUIESCE will not 

complete



37

Logger Configuration

• Update the CFRM Policy to 
contain list structures for the 
LOGS

• Update the LOGR Policy to 
contain the SMSVSAM logs

//POLICY  EXEC PGM=IXCMIAPU
//SYSIN DD *     
  DEFINE STRUCTURE
       NAME(LOG_IGWLOG_001)
       LOGSNUM(10)
       MAXBUFSIZE(64000)
       AVGBUFSIZE(2048)

//POLICY  EXEC PGM=IXCMIAPU
//SYSIN DD *     
  DEFINE LOGSTREAM
  NAME(IGWTV001.IGWLOG.SYSLOG)
  STRUCTURENAME(LOG_IGWLOG_001) 
       LS_SIZE(1180)
       STG_DUPLEX(YES)
       DUPLEXMODE(COND)
       HIGHOFFLOAD(85)
       LOWOFFLOAD(15)
       DIAG(YES)



38

Data Set Allocation

• Add the following to 
IDCAMS define:
• LOG( )

• NONE – non-recoverable data set. Any 
RLS application can read/write

• UNDO – Recoverable data set requiring 
backout logging. Can be opened for 
read/write by any RLS Recoverable 
Subsystems (CICS or TVS)

• ALL – Recoverable data set requiring 
backout and forward recovery logging. 
Can be opened for read/write by any 
RLS Recoverable Subsystem

• LOGSTREAMID(logs_id)
• Logstream ID for any data set 

defined with LOG(ALL)

DEFINE CLUSTER (
         NAME(recoverabledataset) -  
         RECORDSIZE(100 100) - 
         STORCLAS(storclasname) -  
         FSPC(20 20) -  
         LOG (ALL) -       
         SHAREOPTIONS(2 3) -              

                 
         LOGSTREAMID(logs_id)-    
         CISZ(512) -                 
         KEYS(06 8) INDEXED -  
       ) - 
       DATA(
         NAME(recoverabledataset.DATA) -  

                    
         VOLUME(volser) - 
         TRACKS (1,1)) -                  

       
       INDEX(
         NAME(recoverableds.INDEX) -      

              
         VOLUME(volser) - 
         TRACKS (1,1))



39

Application Changes

• Data sets will be accessed via TVS when:
• Any RLS access for recoverable data set

• Via ACB:
• ACB MACRF=(RLS,OUT) for recoverable data set
• ACB MACRF=(RLS,IN), RLSREAD=CRE

• Via DD:
• //ddname DD DSN=recoverable.dsn,DISP=SHR, 
RLS=(CR|NRI) and ACB MACRF=(OUT)

• //ddname DD DSN=recoverable.dsn,DISP=SHR, 
RLS=(CRE) and ACB MACRF=(IN)



40

Application Changes (cont)

• Recommendations:
• RLS Applications using TVS should be modified to include:

• SSRCMIT – commit
• SSRBACK – backout

• SSRCMIT and SSRBACK will either COMMIT or BACKOUT the UR 
provided by SMSVSAM on behalf of the application
• Can be EXPLICIT – add command to your job
• Can be IMPLICIT – will run during end-of-task if you don’t add it.

• Periodic explicit COMMIT/BACKOUT will release the locks in a timely 
fashion. Failure to do so may hold up other jobs.

• High-Level Language Support:
• PLI, C & C++, COBOL, Assembler



41

Application Example (Commit)

Explicit Commit:
//ddname  DD  DSN=Recoverabledatasetname,DISP=SHR,RLS=CRE 
//step1   EXEC  PGM=vsamrlspgm   
Begin JOB Step   ------------------------------------- No locks held
OPEN  ACB MACRF=(NSR,OUT)
(UR1)
GET UPD record 1-------------------------------------- Obtain an exclusive lock on record 1
PUT UPD  record 1 ------------------------------------ Lock on record 1 remains held
GET repeatable read record n-------------------------- Obtain a shared lock on record n
PUT ADD record n+1------------------------------------ Obtain an exclusive lock on record n+1
GET UPD record 2 ------------------------------------- Obtain an exclusive lock on record 2
PUT UPD record 2 ------------------------------------- Lock on record 2 remains held
Call SRRCMIT ----------------------------------------- Commit changes, all locks released .
CLOSE 
End of JOB Step

Implicit Commit:
//ddname  DD  DSN=Recoverabledatasetname,DISP=SHR,RLS=CRE 
//step1   EXEC  PGM=vsamrlspgm   
Begin JOB Step --------------------------------------- No locks held
OPEN  ACB MACRF=(NSR,OUT)
(UR1)
GET UPD record 1-------------------------------------- Obtain an exclusive lock on record 1
PUT UPD  record 1 ------------------------------------ Lock on record 1 remains held
GET repeatable read record n-------------------------- Obtain a shared lock on record n
PUT ADD record n+1------------------------------------ Obtain an exclusive lock on record n+1
GET UPD record 2 ------------------------------------- Obtain an exclusive lock on record 2
PUT UPD record 2 ------------------------------------- Lock on record 2 remains held
CLOSE ------------------------------------------------ All Locks are retained 
End of JOB Step  (normal)----------------------------- Commit changes release all locks



42

Application Example (Backout)

Explicit Backout
//ddname  DD  DSN=Recoverabledatasetname,DISP=SHR,RLS=CRE 
//step1   EXEC  PGM=vsamrlspgm   
Begin JOB Step --------------------------------------- No locks held
OPEN  ACB MACRF=(NSR,OUT)
(UR1)
GET UPD record 1-------------------------------------- Obtain an exclusive lock on record 1
PUT UPD  record 1 ------------------------------------ Lock on record 1 remains held
GET repeatable read record n-------------------------- Obtain a shared lock on record n
PUT ADD record n+1------------------------------------ Obtain an exclusive lock on record n+1
GET UPD record 2 ------------------------------------- Obtain an exclusive lock on record 2
PUT UPD record 2 ------------------------------------- Lock on record 2 remains held
Call SRRBACK ----------------------------------------- Undo changes, all locks released .
CLOSE 
End of JOB Step

Implicit Backout
//ddname  DD  DSN=Recoverabledatasetname,DISP=SHR,RLS=CRE 
//step1   EXEC  PGM=vsamrlspgm   
Begin JOB Step --------------------------------------- No locks held
OPEN  ACB MACRF=(NSR,OUT)
(UR1)
GET UPD record 1-------------------------------------- Obtain an exclusive lock on record 1
PUT UPD  record 1 ------------------------------------ Lock on record 1 remains held
GET repeatable read record n-------------------------- Obtain a shared lock on record n
PUT ADD record n+1------------------------------------ Obtain an exclusive lock on record n+1
GET UPD record 2 ------------------------------------- Obtain an exclusive lock on record 2
PUT UPD record 2 ------------------------------------- Lock on record 2 remains held
--------------------------------------- Cancel --------------------------------------------------------
End of JOB Step (abnormal) --------------------------- Undo changes release all locks



Other Considerations

Additional items worth mentioning



44

Performance Considerations

• TVS Does Add Overhead
• Increased code path length
• Cross-address space access to SMSVSAM server
• Loss of base VSAM NSR chained sequential I/O
• Loss of base VSAM LSR deferred write
• New overhead of record locking 
• New overhead of CF cache access
• Logging (for previous RLS-only work)



45

Performance Considerations

• Commit Regularity
• Too frequent can add unnecessary overhead
• Too infrequent can cause delays due to lock contention

Updates between Commit

Job Runtimes

Job Runtimes Related to  Commit Frequency



46

Performance Considerations

• “Parallelizing” the Workload
• Spreading out the work reduces individual overhead and increases overall efficiency
• Several TVS streams can work simultaneously



47

Restart Considerations

• Restarting applications that use TVS 
must be done from the last COMMIT point

• Restarting from the beginning could result 
in data integrity problems

• A checkpoint / restart type system should be 
implemented to determine restart point of the application



48

Maintenance and References – PSP 
Bucket

• The TVS PSP bucket is on the web at:

• http://www14.software.ibm.com/webapp/set2/psearch/sea
rch?domain=psp

• 'Search for: SMSVSAM'
• Maintenance organized by release

• Upgrade ZOSV1R11, Subset DFSMS 
• Upgrade ZOSV1R12, Subset DFSMS 
• Upgrade ZOSV1R13, Subset DFSMS 



49

Summary

• Transactional VSAM allows:
• Concurrent access with recoverable regions (such as CICS)
• Full data set recovery through logging and atomic updates

• Eliminates the “Batch Window”
• Requires minimal changes to existing jobs
• Provides plex-wide consistency
• Overall, provides a more effective way to integrate 

recoverable and non-recoverable workloads 
(ex. CICS and NON-CICS such as batch)



50

References:

• DFSMStvs Planning and Operating Guide, SC26-7348
• DFSMStvs Overview and Planning Guide, SG24-6971
• VSAM Demystified, SG24-6105
• MVS Initialization and Tuning Reference, SA22-7592
• MVS System Commands, SA22-7627



Additional Resources



52

Recoverable Regions

• Recoverable Subsystems are applications capable of:
• Transactional recovery (backward recovery)
• Data set recovery (forward recovery)
• Data set changes are logged
• Also called a Resource Manager
• An example of an IBM recoverable region is CICS, IMS, DB2

• A Recoverable Subsystem Manager is capable of:
• Managing transactional recovery between one or more recoverable subsystems
• Recoverable Subsystems register with manager
• Uses ‘Units of Recovery’ (UR, transaction)
• Also called a Syncpoint Manager
• An example of an IBM Recoverable Subsystem is the z/OS Recoverable 

Resource Manager (RRS)



53

Example of TVS startup:

IGW865I TRANSACTIONAL VSAM INITIALIZATION HAS STARTED. 
IGW414I SMSVSAM SERVER ADDRESS SPACE IS NOW ACTIVE. 327
IGW467I DFSMS TVSNAME PARMLIB VALUE SET DURING 510                     
        SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1                
        TVSNAME: IGWTV001                                                      
        CURRENT VALUE: ENA-ED  1                                               
IGW467I DFSMS TRANSACTIONAL VSAM UNDO LOG PARMLIB VALUE SET DURING 513 
        SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1                
        UNDO LOGSTREAM NAME:  IGWTV001.IGWLOG.SYSLOG                           
        CURRENT VALUE: ENA-ED  1                                               
IGW467I DFSMS TRANSACTIONAL VSAM SHUNT LOG PARMLIB VALUE SET DURING 514
        SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1                
        SHUNT LOGSTREAM NAME:  IGWTV001.IGWSHUNT.SHUNTLOG                      
        CURRENT VALUE: ENA-ED  1                                               
IGW467I DFSMS TRANSACTIONAL VSAM ACTIVITY KEY POINT PARMLIB VALUE 516  
        SET DURING SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1     
        CURRENT VALUE: 200                                                     
IGW467I DFSMS TRANSACTIONAL VSAM TVS_START_TYPE 517                    
        PARMLIB VALUE SET DURING                                               
        SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1                
        TVSNAME VALUE:  IGWTV001                                               
        CURRENT VALUE: WARM  1 
IGW467I DFSMS TRANSACTIONAL VSAM LOG_OF_LOGS PARMLIB VALUE SET DURING 524                              

                                    
        SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1              
        LOG_OF_LOGS LOGSTREAM NAME: IGWTVS1.LOG.OF.LOGS                      
        CURRENT VALUE: ENA-ED  1 



54

Example of TVS startup:

IGW860I TRANSACTIONAL VSAM HAS SUCCESSFULLY REGISTERED WITH RLS 
IGW876I TRANSACTIONAL VSAM INITIALIZATION WAITING FOR RRS
ATR201I RRS COLD START IS IN PROGRESS.
ASA2011I RRS INITIALIZATION COMPLETE. COMPONENT ID=SCRRS            
IGW877I TRANSACTIONAL VSAM INITIALIZATION RESUMING AFTER WAIT FOR RRS
IGW848I 02182011 11.45.28 SYSTEM UNDO LOG IGWTV001.IGWLOG.SYSLOG 553
        INITIALIZATION HAS STARTED 
IXC582I STRUCTURE TVS_LOG001 ALLOCATED BY SIZE/RATIOS. 566
          PHYSICAL STRUCTURE VERSION: C75A333B 5A6E2E32           
          STRUCTURE TYPE:             LIST                        
          CFNAME:                     FACIL02                     
          ALLOCATION SIZE:         12 M                           
          POLICY SIZE:          12000 K                           
          POLICY INITSIZE:          0 K                           
          POLICY MINSIZE:           0 K                           
          IXLCONN STRSIZE:          0 K                           
          ENTRY COUNT:            873                             
          ELEMENT COUNT:         7567                             
          ENTRY:ELEMENT RATIO:           1 :      9               
        ALLOCATION SIZE IS WITHIN CFRM POLICY DEFINITIONS         
IXL014I IXLCONN REQUEST FOR STRUCTURE TVS_LOG001 567      
        WAS SUCCESSFUL.  JOBNAME: IXGLOGR ASID: 0017              
        CONNECTOR NAME: IXGLOGR_SYSTEM1 CFNAME: FACIL02



55

Example of TVS startup:

IXL015I STRUCTURE ALLOCATION INFORMATION FOR 568          
        STRUCTURE TVS_LOG001, CONNECTOR NAME IXGLOGR_SYSTEM1      
         CFNAME     ALLOCATION STATUS/FAILURE REASON              
         --------   ----------------------------------------      
         FACIL02    STRUCTURE ALLOCATED CC001800                  
         FACIL01    PREFERRED CF ALREADY SELECTED CC001800 
IXG283I STAGING DATASET IXGLOGR.IGWTV001.IGWLOG.SYSLOG.SYSTEM1
        ALLOCATED NEW FOR LOGSTREAM IGWTV001.IGWLOG.SYSLOG            
        CISIZE=4K, SIZE=442368 
IGW474I DFSMS VSAM RLS IS CONNECTING TO 576                           
        TRANSACTIONAL VSAM  LOGSTREAM IGWTV001.IGWLOG.SYSLOG                  
        SYSTEM NAME:              SYSTEM1                                     
        TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV001                           
IGW848I 02182011 11.45.29 SYSTEM UNDO LOG IGWTV001.IGWLOG.SYSLOG 577  
        INITIALIZATION HAS ENDED                                              
IGW848I 02182011 11.45.29 SYSTEM SHUNT LOG IGWTV001.IGWSHUNT.SHUNTLOG 
        INITIALIZATION HAS STARTED                                            
IXG283I STAGING DATASET IXGLOGR.IGWTV001.IGWSHUNT.SHUNTLOG.SYSTEM1 585
        ALLOCATED NEW FOR LOGSTREAM IGWTV001.IGWSHUNT.SHUNTLOG                
        CISIZE=4K, SIZE=442368                                                
IGW474I DFSMS VSAM RLS IS CONNECTING TO 587                           
        TRANSACTIONAL VSAM  LOGSTREAM IGWTV001.IGWSHUNT.SHUNTLOG              
        SYSTEM NAME:              SYSTEM1                                     
        TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV001                           
IGW848I 02182011 11.45.29 SYSTEM SHUNT LOG IGWTV001.IGWSHUNT.SHUNTLOG 
        INITIALIZATION HAS ENDED



56

Example of TVS startup:

IGW848I 02182011 11.45.29 LOG OF LOGS IGWTVS1.LOG.OF.LOGS 589         
        INITIALIZATION HAS STARTED
IXG283I STAGING DATASET IXGLOGR.IGWTVS1.LOG.OF.LOGS.SYSTEM1 595       
        ALLOCATED NEW FOR LOGSTREAM IGWTVS1.LOG.OF.LOGS                       
        CISIZE=4K, SIZE=442368 
IGW474I DFSMS VSAM RLS IS CONNECTING TO 597                           
        TRANSACTIONAL VSAM  LOGSTREAM IGWTVS1.LOG.OF.LOGS                     
        SYSTEM NAME:              SYSTEM1                                     
        TRANSACTIONAL VSAM INSTANCE NAME:  IGWTV001                           
IGW848I 02182011 11.45.30 LOG OF LOGS IGWTVS1.LOG.OF.LOGS 598         
        INITIALIZATION HAS ENDED                                              

IGW865I TRANSACTIONAL VSAM INITIALIZATION IS COMPLETE.                
IGW886I 0 RESTART TASKS WILL BE PROCESSED DURING TRANSACTIONAL VSAM   
        RESTART PROCESSING                                                    
IGW866I TRANSACTIONAL VSAM RESTART PROCESSING IS COMPLETE.            
IGW467I DFSMS TRANSACTIONAL VSAM QTIMEOUT PARMLIB VALUE SET DURING 602
        SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1               
        CURRENT VALUE: 400  1                                                 
IGW467I DFSMS TRANSACTIONAL VSAM MAXLOCKS PARMLIB VALUE SET DURING 603
        SMSVSAM ADDRESS SPACE INITIALIZATION ON SYSTEM: SYSTEM1               
        CURRENT VALUE: 100  50  1 



57

Key TVS Startup Messages:

IGW865I TRANSACTIONAL VSAM INITIALIZATION HAS STARTED. 
IGW414I SMSVSAM SERVER ADDRESS SPACE IS NOW ACTIVE. 327

IGW860I TRANSACTIONAL VSAM HAS SUCCESSFULLY REGISTERED WITH RLS 

IGW848I 02182011 11.45.28 SYSTEM UNDO LOG IGWTV001.IGWLOG.SYSLOG 553
        INITIALIZATION HAS STARTED
IGW848I 02182011 11.45.29 SYSTEM UNDO LOG IGWTV001.IGWLOG.SYSLOG 577  
        INITIALIZATION HAS ENDED                                              
IGW848I 02182011 11.45.29 SYSTEM SHUNT LOG IGWTV001.IGWSHUNT.SHUNTLOG 
        INITIALIZATION HAS STARTED                                            
IGW848I 02182011 11.45.29 SYSTEM SHUNT LOG IGWTV001.IGWSHUNT.SHUNTLOG 
        INITIALIZATION HAS ENDED

IGW865I TRANSACTIONAL VSAM INITIALIZATION IS COMPLETE.                
IGW886I 0 RESTART TASKS WILL BE PROCESSED DURING TRANSACTIONAL VSAM   
        RESTART PROCESSING                                                    
IGW866I TRANSACTIONAL VSAM RESTART PROCESSING IS COMPLETE.



58

Recovery (Forward)

• To Recover a data set with retained locks:
• Stop any current transactions
• DELETE recoverable.dataset
• Restore backup copy
• Apply committed changes since last backup
• Restart access (Retry SHUNTED work)

• CICSVR automates this process 
(does not retry shunted work)



59

Recovery (Forward)

• To Recover a data set with retained locks, take following steps
• SHCDS FRSETRR(recoverabledataset) – sets the FR indicator
• SHCDS FRUNBIND(recoverabledataset)- unbinds the retained locks, 

allowing delete
• DELETE recoverabledataset
• <Restore backup copy>
• <apply committed changes since last backup (must set 
ACBRECOV)>

• SHCDS FRBIND(recoverabledataset) – reattach retained locks
• SHCDS FRRSETRR – re-enable access to dataset                      
                        

• SHCDS LISTSHUNTED SPHERE(recoverabledataset)- display information 
about shunted work               

• SHCDS RETRY SPHERE(recoverabledataset)- retry the syncpoint

• CICSVR automates this process (does not retry shunted work)



60

Display Commands

• D SMS,TRANVSAM[,ALL]
D SMS,TRANVSAM
RESPONSE=SYSTEM1                                                     
 IEE932I 006                                                         
 IGW800I 22.48.15 DISPLAY SMS,TRANSACTIONAL VSAM                     
                                                                     
 DISPLAY SMS,TRANSACTIONAL VSAM - SERVER STATUS                      
  System   TVSNAME  State   Rrs    #Urs     Start     AKP    QtimeOut
  -------- -------- ------ ----- -------- --------- -------- --------
  SYSTEM1  IGWTV001 ACTIVE REG          0 WARM/WARM      200      400
                                                                     
 DISPLAY SMS,TRANSACTIONAL VSAM - LOGSTREAM STATUS                   
  LogStreamName              State      Type       Connect Status    
  -------------------------- ---------- ---------- --------------    
  IGWTV001.IGWLOG.SYSLOG     Enabled    UnDoLog    Connected         
  IGWTV001.IGWSHUNT.SHUNTLOG Enabled    ShuntLog   Connected 



61

Display Commands

• D SMS,TRANVSAM[,ALL]

• Displays information about the instance of TVS on a system

• State: Status of TVS (init, active, quiescing, quiesced, disabling, disabled)

• RRS: TVS status with respect to resource recovery services

• #Urs: Number of active units of recovery

• Start: How TVS started
• Cold start: The log data was not read, any old data was discarded
• Warm start: The log data was read and processed

• AKP: Number of logging operations between keypoints

• QtimeOut: The quiesce timeout value (in seconds)

• All logs known to this instance of TVS including the log of logs if used

• The status of all known logs associated with the TVS instance



62

Display Commands

• D SMS,LOG(logstreamid | ALL)
• Shows information about the logs currently in use by TVS

• Status of the log stream (failed or available)
• Type of log (undo, shunt, forward recovery, log of logs)
• Job name and URID of the oldest unit of recovery using the log
• A list of all TVS instances that are using the log

• Useful for determining why a log stream is increasing in size

• D SMS,SHUNTED[,SPHERE(sphere) | URID(urid | ALL)]
• Shows shunted work across the plex in three possible ways

• Neither sphere or urid: List of systems in the plex and number of shunted 
URIDs

• Sphere: List of shunted work for the sphere for all systems in the plex
• URID: List of shunted work for the unit of recovery (or for ALL units of 

revoery) for all systems in the plex



63

Display Commands

• D SMS,URID(urid | ALL)
• Displays information about the unit of recovery

• Age of the UR
• Name of the job and jobstep associated with the UR
• Status of UR
• Usir ID associated with JOB

• Does not include information about shunted work

• Does not include information about URs in restart

• D SMS,JOB(jobname)
• Displays information about a job using TVS

• Current jobstep
• URID for the job
• Status of the UR



64

Vary Commands

• V SMS,TRANVSAM(xxx|ALL),Q|D|E
• Sets the state of the specified TRANSVSAM instance

• Q: Quiesce
• TVS completes any URs that are in progress
• New URs are rejected
• Completed when last data set open to TVS is closed

• D: Disable
• TVS immediately stops URs that are in progress
• Some backout / commit requests in progress may complete
• New URs are rejected
• When last TVS dataset is closed, locks are retained

• E: Enable
• TVS begins accepting new URs for processing
• Reverses the effects of Q and D



65

Vary Commands

• V SMS,LOG(logstreamid),Q|D|E

• Enables/disables a given log stream

• Quiescing TVS undo / shunt log = quiesce TVS processing

• Disabling TVS undo / shunt log = disable TVS processing

• Q: Quiesce

• TVS completes in progress URs using log stream

• No new URs accepted which require log stream

• If undo / shunt log, quiesce completes when all TVS data sets are closed

• If forward recovery log, quiesce completes when all TVS data sets open for output are closed

• D: Disable

• TVS immediately stops using the log stream

• Can prevent completion of commit or backout for URs 

• URs can be shunted providing there is no need for the disabled log

• If undo / shunt log, no further work is done, all OPENs and VSAM R/M requests are failed

• If forward recovery log, any new OPENs requiring the log fail

• E: Enable

• Enables TVS to begin accepting new units of recovery for log stream

• If work was left incomplete, TVS completes work during restart

• Reverses effects of Q and D



66

SHCDS Commands

• SHCDS commands provide a myriad of capabilities:
• List information kept by SMSVSAM / TVS about 

subsystems and data sets
• LISTDS(base-cluster)

• Assigned coupling facility cache structure name

• Subsystem type and status (active for batch / active or failed for online)

• Whether the sphere is recoverable or nonrecoverable

• State of the data set (Retained locks, lost locks, forward recovery required, etc)

• LISTSUBSYS(subsystem | ALL)

• Subsystem status (active for batch / active or failed for online)

• Summary showing whether the subsystem's shared datasets have lost or retained locks

• When subsystem is active: shows # of held locks, waiting lock requests, retained locks

• When subsystem is failed: shows # of retained locks

• LISTSUBSYSDS(subsystem | ALL)

• Sharing protocol (online / batch)

• Status (active / failed)

• Recovery information for each shared data set (retained / lost locks, forward recovery required, etc)



67

SHCDS Commands

• SHCDS commands provide a myriad of capabilities:
• List information kept by SMSVSAM / TVS about 

subsystems and data sets
• LISTRECOVERY(base-cluster)

• Lost / Retained locks

• Non-RLS update permitted

• Forward recovery required
• LISTALL

• Lists all information related to recovery for subsystems and spheres accessed in 
RLS mode

• LISTSHUNTED [SPHERE(base-cluster) | URID(urid | ALL)]

• Contains information about shunted work due to inability to complete syncpoint for 
a data set or UR
• URID

• Data set name

• Job and jobstep associated with UR

• Whether UR will be committed or backed out during retry



68

SHCDS Commands

• SHCDS commands provide a myriad of capabilities:
• Control Forward Recovery

• FRSETRR(base-cluster)

• Sets the forward recovery required indicator

• Access is prevented until forward recovery is complete

• FRUNBIND(base-cluster)

• Unbinds the retained locks prior to restoring or moving a data set

• FRBIND(base-cluster)

• Use after BLDINDEX to rebind assocaited locks to a restored dataset

• FRRESETRR(base-cluster)

• Use after forward recovery is complete and after locks are re-bound

• Allows access to newly recovered data set by applications other than forward recovery application

• FRDELETEUNBOUNDLOCKS(base-cluster)

• Allows deletion of locks in the rare case where forward recovery is not possible

• Allow NON-RLS update – use sparingly
• PERMITNONRLSUPDATE, DENYNONRLSUPDATE

• Reset various information about subsystems or RLS

• Handling SHUNTED work:
• RETRY, PURGE



69

SHCDS Commands

• SHCDS commands provide a myriad of capabilities:
• Allow NON-RLS update – use sparingly

• PERMITNONRLSUPDATE

• Allows a data set with pending recovery to be opened in non-RLS mode

• Used when critical batch updates are needed and recovery can't first be completed
• DENYNONRLSUPDATE

• Reverses the effect of PERMITNONRLSUPDATE

• Reset various information about subsystems or RLS

• Handling SHUNTED work:
• RETRY [SPHERE(base-cluster) | URID(urid)]

• Retries the syncpoint

• Use when data set can be restored to a state consistent with logs
• PURGE [SPHERE(base-cluster) | URID(urid)]

• Discards the log entries and releases associated locks

• Use when data set is damaged and can not be restored to a consistent state
• e.g. Use on a data set that has been restored from backup that predates updates



70

SHCDS Commands Example

__________________________________________________________
                              ISPF Command Shell                              
Enter TSO or Workstation commands below:                                      
                                                                              
===>   SHCDS LISTDS('recoverabledataset*')                                                 

                      
----- LISTING FROM SHCDS ----- IDCSH02 --------------------------------------------------

 DATA SET NAME----recoverabledataset                                        
   CACHE STRUCTURE----CACHE01                                         
   RETAINED LOCKS---------YES   NON-RLS UPDATE PERMITTED---------NO   
   LOST LOCKS--------------NO   PERMIT FIRST TIME----------------NO   
   LOCKS NOT BOUND---------NO   FORWARD RECOVERY REQUIRED--------NO   
   RECOVERABLE------------YES                                         
 
                                                                    
                            SHARING SUBSYSTEM STATUS                  
   SUBSYSTEM    SUBSYSTEM         RETAINED        LOST         NON-RLS UPDATE 
   NAME         STATUS            LOCKS           LOCKS        PERMITTED      
   ---------   --------------   ---------------- ----------   ----------------
   IGWTV001    ONLINE--FAILED    YES                    NO               NO             
 *** 



71

Command Quick Links

• Display Commands:
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieag100/d3sms.htm

• Vary Commands:
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieag100/v1tranv.htm

• SHCDS Commands:
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.idat300/shcds.htm



72

Command Quick Links

• Display Commands:
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieag100/d3sms.htm

• Vary Commands:
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.ieag100/v1tranv.htm

• SHCDS Commands:
http://publib.boulder.ibm.com/infocenter/zos/v1r13/topic/com.ibm.zos.r13.idat300/shcds.htm



DFSMS Basics: VSAM

Transactional VSAM (TVS) 
Basics and Implementation

Enhancing your RLS applications through 
transactional processing

David LeGendre, dlegendr@us.ibm.com

 Session : 10968


	DFSMS Basics: VSAM Transactional VSAM (TVS) Basics and Implementation
	Copyright / Legal
	Trademarks
	Slide 4
	Agenda
	Slide 6
	TRANSACTIONAL VSAM
	TVS Overview
	Slide 9
	Quick Background - RLS
	RLS Access
	Slide 12
	Quick Background – RLS & CICS
	What is TVS?
	Slide 15
	Slide 16
	Slide 17
	Transactions and Transactional Recovery
	Transaction Example
	Slide 20
	Recovery (Backward)
	Slide 22
	Slide 23
	Data Set Recovery Types
	Recoverable Data Sets (when using RLS)
	A Technical Example – successful
	A Technical Example – Failure!
	Logging
	TVS Logs
	TVS Component Interaction
	The Overall Flow
	SETUP
	System Requirements
	Overview of Setup
	Required Parmlib Configuration
	Parmlib Configuration (Optional)
	Logger Configuration
	Data Set Allocation
	Application Changes
	Application Changes (cont)
	Application Example (Commit)
	Application Example (Backout)
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Restart Considerations
	Slide 48
	Summary
	References:
	Backup Slides / Additional Reference
	Recoverable Regions
	Example of TVS startup:
	Slide 54
	Slide 55
	Slide 56
	TVS Startup Messages:
	Recovery (Forward)
	Slide 59
	Slide 60
	Commands
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	SHCDS Commands Example
	Slide 71
	Slide 72
	Slide 73

