Agenda

- zEnterprise Workload Management
 - z/OS Virtual Servers
 - WLM and IRD
 - z/VM Guests and zBX Blade Virtual Servers
 - PPM

- zEnterprise Resource Monitoring
 - z/OS Virtual Servers
 - RMF
 - z/VM Guests and zBX Blade Virtual Servers
 - PPM
 - RMF XP
System z Hardware Management Console (HMC) with Unified Resource Manager

- Select IBM Blades
- Optimizers
- Blade HW Resources
- zBX
- z/OS
- z/TPF
- z/VSE
- Linux on System z
- Linux on System z
- Linux on System z
- AIX on POWER7
- Linux or Windows on System z
- Data Power
- Private data network (IEDN)
- Private Management Network (INMN)
- Private High Speed Data Network (IEDN)

zEnterprise Workload Management
zEnterprise Workload Management Overview

zEnterprise Platform Performance Manager

- Platform management component responsible for goal-oriented resource monitoring, management, and reporting across the zEnterprise Ensemble
 - Core component responsible for definition and implementation of goal-oriented management policy
 - Extend goal oriented approach of z/OS WLM to platform managed resources
 - Common approach to monitoring / management of platform resources across zEnterprise
 - Orchestration of autonomic management of resources across virtual servers
 - Provide Intelligent Resource Director like function across the zEnterprise
 - Pushes management directives to the SE, Hypervisors, and OS agents as required across the zEnterprise

- Integration of HMC console support
 - Integrated UI for monitoring, display of workload topology relationships, status alerts, etc
 - Definition of Performance Management Goals and Policy Administration

- Functionality integrated into the Unified Resource Manager
 - Code structured and packaged as System Z firmware
 - Inter-Component communication over trusted internal platform management network
PPM Components

- **HMC**
 - HMC is management server and console
 - Provides ensemble wide aggregation of performance data
 - UI for defining workloads, performance policy and reporting data
 - Pushes management directives to all the nodes of ensemble

- **Support Element (SE)**
 - Provides node (or CPC) level aggregation of performance data
 - Pushes management directives to all the hypervisors in the node.

PPM Components

- **Hypervisors**
 - Monitors goal defined in performance policy and performs dynamic resource mgmt (z/VM and Power VM) to achieve performance goal where applicable
 - Collects virtual server statistics from hypervisor and guest platform management providers. Pushes aggregated metrics to SE

- **Virtual Servers**
 - **Optional** Guest Platform Management Provider software deployed in Virtual Server
 - Collects monitoring data from Operating system and ARM instrumented applications and pushes to hypervisors.
Platform Performance Management Structure

- Ensemble Performance Mgmt (GUI / Console, Reporting, Workload & Policy Mgmt)
- HMC
- EPM
- SE
- NPM
- Virtual Server
- GPMP
- HPM
- Guest Platform Mgmt Provider (OS Monitoring)
- Hypervisor Performance Mgmt (Monitoring, Resource Optimization)
- Node Performance Mgmt (Policy Mgmt, Data Collection & Aggregation)

zManager Internal Management Flow

- HMC
- SE
- NPM
- HPM
- VIOS
- HPM
- Z/OS
- Z/GPMP
- z/VM
- z/VM Mgmt Guest
- HPM
- VS
- GPMP
- z/BX
- pHYP (PowerVM EE)
- xHYP (KVM)

(c) IBM Corporation 2012
zManager CPU Mgmt Functions

- **z/VM and PowerVM Hipervisors**
 - Virtual Server CPU Management provides the ability to manage CPU resources across virtual servers based on a goal-oriented performance policy.

- **System x xHyp (KVM based) Hipervisor**
 - Does not currently participate in CPU Management

- **PR/SM Hipervisor**
 - Does not make resource management adjustments based on PPM Policy. Only IRD dynamically influences the PR/SM hipervisor

Platform Workload

- A Platform Workload is a grouping mechanism and "management view" of virtual servers supporting a business application
- Provides the context within which associated platform resources are presented, monitored, reported, and managed
- Management policies are associated to Platform Workload
 - Currently supports Performance Policy
Workload Performance Policy…

- Policy structure:
 - Policy contains a set of service classes
 - Classification rules map each virtual server within the workload to a service class
 - A service class assigns a performance goal and importance
- HMC as console for policy creation and editing
 - Wizard for policy creation
 - Repository for policies under development and saved policies
 - Links to Workload based performance reporting

![Diagram of Workload Performance Policy structure]

Elements of a Service Class

- **Performance Goal** (managed at the virtual server level)
 - Velocity: Fastest, Fast, Moderate, Slow, Slowest
 - Discretionary: No performance goal

- **Business Importance**: Highest, High, Medium, Low, Lowest

- **Classification Rule**
 - Use Virtual Server Name as qualifier to assign Service Class
 - Virtual Servers under the PR/SM and System x hypervisors should be classified into a Service Class for resource monitoring purposes
Performance Policies

Performance policies

Service classes

Classification rules

Default
- Importance: Medium
- Velocity: Moderate

StoreSales
- Importance: Highest
- Velocity: Fastest

WebSales
- Importance: High
- Velocity: Fast

Product Sales' workload

Off-peak

Peak

Description:
- Provide best performance during peak hours
- Business importance: High
Managing Resources across Virtual Servers on P7 blade

- Manage resources across virtual servers to achieve workload goals
 - Detect that a virtual server is part of Workload not achieving goals
 - Determine that the virtual server performance can be improved with additional resources
 - Project impact on all effected Workloads of moving resources to virtual server
 - If good trade-off based on policy, redistribute resources
 - Initially support CPU management
Managing Resources across z/VM Virtual Machines

- Manage resources across z/VM virtual machines
 - Detect that a virtual machine that is part of Workload is not achieving goals
 - Determine that the virtual machine performance can be improved with additional resources
 - Project impact on all affected Workloads of moving resources to virtual machine
 - If good trade-off based on policy, redistribute resources
 - Initially support CPU management

Platform Performance Manager

Ensemble WorkLoad Balancing

© Copyright IBM Corporation 2012
PPM Load Balancing Function

- **Objective:** Influence workload balancing decisions across a System z Ensemble
 - Use SASP protocol to make recommendations for workload balancers (e.g. IP switches / routers that load balance)
 - HMC hosts SASP function
 - Scope of recommendations is non-z/OS virtual servers within the ensemble
 - z/OS Load Balancing Advisor (LBA) provides SASP recommendations for z/OS
 - Same SASP client code can interact with both LBA and HMC SASP implementations to provide complete coverage of z environment
 - HMC recommendations based on the platform performance manager’s understanding of the current performance of the members of a load balancing group
 - Recommendation based on overall utilization and delays experienced by virtual servers
 - If IP address and port used to register members of a load balancing group, port is used to determine application availability on each member of load balancing group. Weight of 0 given to members where port is not open

Unified Resource Manager View

- **GPMP will sample system statistics**
- **GPMP will know whether application is currently running or not**
How will Unified Resource Manager perform load balancing?

Co-operative management with z/OS WLM

- z/OS provides differentiated service to PPM classified work
- Transaction coming to z/OS needs to be ARM instrumented via Guest Platform Management Provider (GPMP) implementation
- WLM service definition needs to map PPM service classes to z/OS WLM service classes via EWLM classification rules
- PPM service class associated with transaction is used by WLM to classify work unit to a different WLM service class.
- WLM manages the resources based on the goal assigned to this specific service class.
1. PPM Service Class assigned

2. Virtual server managed by PPM Service Class

3. Arriving work classified by EWLM subsystem using PPM service class as qualifier

Setup for Co-operative Mgmt with z/OS WLM
zEnterprise Workload Management

z/OS
z/VSE
z/TPF
Linux on System z
z/VM
Linux on System x
z/PS/SM
(System z Host)

Support Element

System z Hardware Resources

Select IBM Blades
Optimizers

Blade HW Resources

zBX

Private data network (IEDN)

Customer Network

Unified Resource Manager

Private Management Network

High Speed Data Network (IEDN)

Customer Network

zEnterprise Resource Monitoring

© Copyright IBM Corporation 2012
PPM Workload Based Monitoring and Reporting

- Provide reporting capability that shows usage of platform resources in a Workload context within a zEnterprise Ensemble scope
 - Across virtual servers / partitions supporting the Workload
- Workload goal vs actual reporting
- Drill down from overall Workload “performance health” view to contributions of individual virtual server
- Graphical views
 - Topology, trending graphs, etc
- Links to system activity displays to show hardware utilization views
- Reporting is limited to platform level resources, not trying to replicate tools that report on intra-OS resources and performance
Workload Monitoring Overview

- Provide monitoring on the HMC based on a Workload context
- Display of current data and fairly recent history
 - Current stake in the ground is 36 hours of history
 - Interval of data displayed is user selectable
 - Granularity of data kept in repository changes over time
 - 1 minute granularity kept for most recent hour
 - 15 minute interval data kept after first hour

Unified Resource Manager APIs
Enabling External Management Tools

- New API support allows programmatic access to the same underlying functions exploited by the HMC user interface (UI)
 - Same resource types, instances and policies
 - API functions corresponding to views and tasks in the UI
 - Listing resource instances
 - Creating, changing, deleting resource instances
 - Operational control of resource instances

- Access to functions will enable management of Unified Resource Manager from external (to HMC) tools

- Initially the priority scenarios will be the discovery, monitoring, and provisioning use cases
Unified Resource Manager APIs intended to enable Tivoli to create and manage Workload Resource Groups

Definition of Workload Resource Groups based on platform requirements to support business services

Combine and apply Performance Policy

Workload Resource Groups can be provisioned, monitored, discovered and automated

IBM’s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice at IBM’s sole discretion.

Tivoli monitoring and discovery can track and manage Workload Resource Groups across zEnterprise

Add existing operating system, middleware, and application insights

Unified Resource Manager APIs

© 2012 IBM Corporation
Workload Monitoring Overview…

- **Workload Report**
 - Display high level view of “performance health” of each Workload
 - Indication if a Workload contains service class missing goals
 - Worst performing service class / performance index
 - Details of specific Workloads
 - Graph of PI of worst performing service class
 - Option to graph other service classes
 - Bar graph of virtual server utilization distribution
 - Visualize view of workload overall load
 - Drill down to Workload’s service class report
Workload Monitoring Overview…

- **Service Class Report**
 - High-level view of each service class in Workload’s performance policy
 - Goal and importance
 - Actual performance
 - Indication if monitoring event is established for service class and event is triggered
 - Service class details
 - Graph of service class performance index
 - Drill down to virtual server report for Workload

- **Event Monitoring**
 - Initial support:
 - Leverage HMC event monitoring
 - Send e-mail when selected metrics reach threshold
 - Service Class PI threshold
 - Virtual Server CPU Utilization threshold
Workload Monitoring Overview…

- **Workload virtual server report**
 - List of virtual servers in a service class
 - Virtual server velocity
 - Resource usage
 - Physical CPU utilization
 - OS view of CPU utilization
 - Physical memory used
 - Hypervisor delay percentage
- **Resource adjustment report**
 - Resource adjustment actions taken over report interval
Benefits of GPMP

- Guest Platform Management Provider (GPMP) is a lightweight component of PPM that provides additional monitoring data.
- Allows cooperative management with z/OS WLM.
- Allows virtual server to be classified using additional attributes such as HostName, SystemName, OS Level etc.
- With instrumented middleware support, GPMP provides metrics that allows detailed transaction topology as transaction hops through heterogeneous platforms in zEnterprise.

Benefits of Middleware instrumentation

- Transaction response time reporting
- Multi-tiered work request flow across environments
- Relationship to server resources being consumed
- Same reasoning lead to instrumentation of z/OS subsystems (CICS, IMS, DB2, etc) for z/OS WLM
- OpenGroup Application Response Measurement (ARM) standards based instrumentation.
Cross Platform Performance Monitoring with RMF XP

- The Common Information Model (aka CIM) instrumentation is available for almost all operating systems of this planet
- RMF has the infrastructure already in place to
 - combine performance data from multiple systems to a Sysplex wide view
 - display performance data by means of state-of-the-art graphical frontends
- RMF XP brings these two well-proven things together
- RMF XP supports the following operating systems:
 - AIX on System p
 - Linux on System x
 - Linux on System z
RMF XP

- Seamless performance monitoring solution for z/OS and distributed platforms
- z/OS as management platform for distributed environments
- Easy to setup, almost no customization needed
- Two graphical frontends
 - Instant access via web browser
 - z/OSMF with advanced capabilities
- zIIP exploitation helps to reduce costs
- Available with z/OS V1R13 RMF and z/OS V1R12 RMF (APAR OA36030)
Invocation

- Started Task: SYS1.PROCLIB(GPM4CIM)
- Runs in USS Environment via BPXBATCH
- Multiple instances can run in parallel: one STC per platform
 - S GPM4CIM.GPM4A,OS=A
 - S GPM4CIM.GPM4X,OS=X
 - S GPM4CIM.GPM4Z,OS=Z

```
//GPM4CIM  PROC  OS=X
//STEP1  EXEC  PGM=BPXBATCH,TIME=NOLIMIT,REGION=0M,
//       PARM='PGM /usr/lpp/gpm/bin/gpm4cim.cfg /etc/gpm/gpm4cim.cfg'
//STEP1  DD  PATH='/var/gpm/gpm4cim.env'
//STEP1  DD  PATH='/var/gpm/gpm4cim.log',
//       PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//       PATHMODE=(SIRUSR,SIRUSR,SIRUSR)
//STEP1  DD  SYSPRINT DD   SYSOUT=*
//STEP1  DD  SYSOUT=* PEND
```

Resource Models
zEnterprise Resource Monitoring

- System z Host
- Select IBM Blades
- Optimizers

- z/OS
- Linux on System z
- Linux on System z
- z/TPF
- z/VSE
- Linux on System z
- System z PR/SM
- z HW Resources
- Support Element

- Private data network (IEDN)
- Private Management Network
- High Speed Data Network

- IRD/RMF
- WLM/RMF
- PPM/HMC/APIs
- RMF XP

- Customer Network
- Customer Network

- Optimizers do not participate in resource monitoring

(c) IBM Corporation 2012