

A journey through the layers of EE or How to translate VTAM messages into IP talk

Matthias Burkhard IBM Germany mburkhar@de.ibm.com Session 10832 March 15, 2012: 11:00 AM - 12:00 PM, OMNI, Hickory

Session Contents

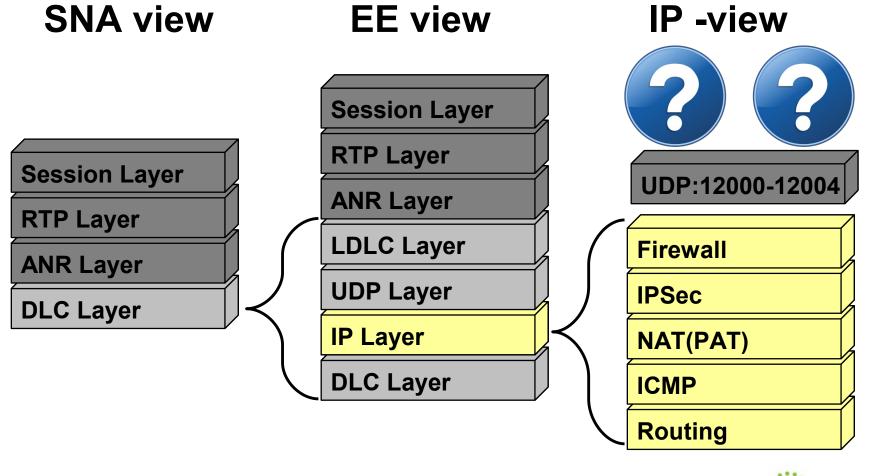
When it is not enough to present a set of VTAM messages to your network provider to solve a HPR problem in the IP network, the time has come to learn a second language. Join this session to learn how IST1494I PATH SWITCH STARTED FOR RTP CNR00062 TO netid.cpname IST1818I PATH SWITCH REASON: SHORT REOUEST RETRY LIMIT EXHAUSTED translate into the '4 and a half UDP Firewall Filter Rule' problem. Come and understand why a High Performance Routing (HPR) pipe is sometimes performing Low and is still not using LPR protocol. Get to know the underlying architecture of HPR: RTP, ANR, ARB. Walk with us through the layers of an EE packet and say Hello to all the bits and bytes that you better call a friend from now on. It will speed up problem resolution in heterogenous networks as most problems that result in nasty VTAM messages are not to be solved within z/OS!

EE problem categories The external symptoms of EE problems

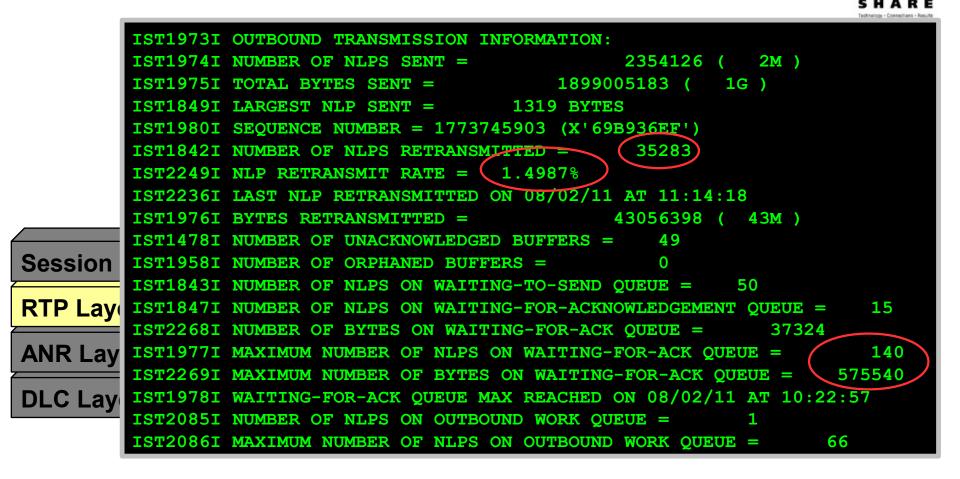


- Connectivity issues
 - Links don't set up / Links INOP
- Session hang problems
 - Sessions don't setup (PSESST, PBIPLUBF)
 - Sessions hang X-Clock
 - Sessions don't terminate (PSESSEND)
- HPR PATHSWITCH
 - Short Request Retry Limit Exhausted
- Performance Problems
 - Slowdown and Retransmissions
 - CPU utilisation

VTAM messages The layers that trigger them



Enterprise Extender Just another HPR-only APPN DLC type?



HPR Pipe Display – Lots of Information

Session	IST2178I RPNCB ADDRESS 1CA30018 IST1963I APPNCOS = #INTER - PRIORITY = HIGH IST1476I TCID X'269E31C3000100AC' - REMOTE TCID X'0C18BC6900010098' IST1481I DESTINATION CP xxxx.MV019 - NCE X'D000000000000' IST1587I ORIGIN NCE X'D0000000000000' IST1966I ACTIVATED AS ACTIVE ON 07/31/11 AT 10:55:19 IST1479I RTP CONNECTION STATE = CONNECTED BACKPRESSURE - MNPS = NO IST1959I DATA FLOW STATE = NORMAL
RTP Lay ANR Lay DLC Lay	IST1697I RTP PACING ALGORITHM = ARB RESPONSIVE MODE IST1477I ALLOWED DATA FLOW RATE = 258 KBITS/SEC IST1516I INITIAL DATA FLOW RATE = 500 KBITS/SEC
	IST1846I MAXIMUM RECEIVER THRESHOLD = 417000 MICROSECONDS IST1846I MINIMUM RECEIVER THRESHOLD = 185000 MICROSECONDS IST1970I RATE REDUCTIONS DUE TO RETRANSMISSIONS = 11660 IST924I

HPR Pipe Display – Lots of Information

EE problem categories The #1 root cause of EE problems

- Connectivity issues
 - IP routing issues
 - FW filter rules
- Session hang problems
 - IP Fragmentation
 - IPSec tunnels
- HPR PATHSWITCH
 - FW connection tables / FW filter rules
- Performance
 - Retransmissions
 - Slowdowns, delays, congestion

Packet Loss !

Packet loss – Use ip.id to track a packet in traces at source and destination

🗖 dr11.o	verlap.cap							- 0	🗖 i921.ov	erlap.ca	р								- 0
<u>F</u> ile <u>E</u> dit	<u>V</u> iew <u>G</u> o	<u>C</u> apture	e <u>A</u> nalyz	e <u>S</u> tatist	ics Teleph	on <u>y T</u> ool	ls <u>I</u> nterna	als <u>H</u> elp	<u>E</u> ile <u>E</u> dit	<u>V</u> iew	<u>G</u> o <u>C</u> aptur	re <u>A</u> naly	/ze <u>S</u> tatist	tics Tel	ephon <u>y T</u> ools	<u>I</u> nternals	<u>H</u> elp		
	o 10 12	í 🖻	R 🕷	22	0	•	> 7 1	L 🔳		ok 🕺	💓 🖻	8	K 🔁 🖻	0	🗢 🛸 🌍	7 1		€ €	
Filter: ip.t	tl==60 and ud	p.port==12	2002				~	·	Filter: lip.t	tl==60 and	d udp.port==	12002				✓ E	Expression (lear A	pply
ìme				rc.addr	dst.addr			SN	Time	lip.ttl	lip.id		src.addr	dst.add		TCID		BSN	
).00000					<pre>{10.199</pre>			0x699d6†29							99.212002		690001009		
0.00000		xa5d1			<pre>{10.199</pre>			0x699d7450							99.712002		690001009		
0.00000)xa5d2			<pre>{10.199</pre>			0x699d7977			0xa5d2				99.212002		690001009		
0.00000		xa5d3			<pre>{10.199</pre>			0x699d7e9e			0xa5d3				99.212002		690001009		
0.00000)xa5d4			<pre>{10.199</pre>			0x699d7f39			0xa5d4				99.712002		690001009		
0.00000					<pre>{10.199</pre>			0x699d8460			0xa5d5				99.212002		690001009		
0.00000					<pre>{10.199</pre>			0x699d8987			0xa5d6				99.712002		690001009		
0.00000)xa5d7			<pre>{10.199</pre>		2002 (0x699d8eae	0.00000	2 51	0xa5d7				99.712002		690001009		
0.00000		xa5d8			<pre>{10.199</pre>			0x699d8f49			0xa5d8				99.712002		690001009		
0.00000					<pre>{10.199.</pre>			0x699d9470			0xa5d9				99.712002		690001009		
).00000).00000)xa5da)xa5db		0.186.	10.199			0x699d9997			0xa5da				99.712002		690001009		
0.00000			1382 1		D	acl	ot.		0.00008 0.00018		0xa5dd				99.712002		690001009		
0.00000)xa5dc)xa5dd	1382			acr	ισι		0.00018		0xa5de				99.712002		690001009		
0.00000		xa5de	1382 1						0.00000		0xa5df				99.212002 99.212002		690001009 690001009		
0.00000)xa5df		0.186		OS			0.00002		0xa5e2				99.712002		690001009		
0.00000		xa5e0		0.186.		232.12		0x699daf69			0xa5e3				99.712002		690001009		
0.00000		xa5e1			.10.199.			0x699db490			. 0xa5e7 . 0xa5e8				99.712002		690001009		
0.00000		xa5e2		· · ·	10.199			0x699db9b7			0xa5eb				99.712002		690001009		
0.00000		xa5e3			{10.199			0x699dbede			. Oxaseb . Oxasec				99.712002		690001009		
0.00000)xa5e4			10.199			0x699dbf79			. 0xa3ec				99.712002		710001009		
0.00000		xa5e5			10.199			0x699dc4a0			. 0xa845 . 0xa845				99.712002		71000100b		
0.00000		xa5e6			10.199			0x699dc9c7			0xa846				99.712002		71000100b		
0.00000)xa5e7			10.199			0x699dceee			. 0xa840 . 0xa8ef				99.712002		71000100b		
0.00000		xa5e8			10.199			0x699dcf89			. 0xa90a				99.712002		71000100b		
0.00000		xa5e9			10.199			0x699dd4b0			. 0xa90a . 0xa90b				99.712002		71000100b		
0.00000		xa5ea			10.199			0x699dd9d7			0xa9da				99.712002		690001009		
0.00000		xa5eb			10.199			0x699ddefe			0xa9da 0xa9db				99.712002		690001009		
											. JAAJUD	1002	10.100.		JJ.112002	OCIODE	00001009	0 0 10	5505155

EE problems The top 3 questions

- Where did my packet get lost?
 - Locally (close to the source)
 - Remotely (close to the destination)
 - Somewhere in between (network, firewalls ...)
- Why was it discarded?
 - Incorrect routing ?
 - Congestion ?
 - Security Policies ?

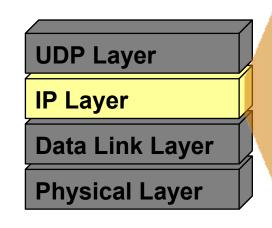
What exactly *is* the IP packet that you are missing? What does it look like? Are you sure you really sent it?

- How can I prove it?
 - VTAM messages?
 - VTAM Traces?

RTP layer Transport Header – Optional Segments

• Where HPR vocabulary lives

	A TCID start 31-bit
SNA Layer RTP Layer	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
ANR Layer	BSN 32-bit
DLC Layer	Optional Segments n* 32-bit


All fields and segments are always a multiple of 4 bytes in length

The IP header IP Header and additional protocols

• Where IP vocabulary lives

and

version 4-bit	header length	3-bit TOS field 5-bit reserved	total length 16-bit					
identific 16-bit	ation		0 D M fragment offset F F 13-bit					
time to l 8-bit	ive TTL	protocol 8-bit	header checksum 16-bit					
source l 32-bit	IP addres	35						
destinat 32-bit	tion IP ac	ldress						
options e.g. record route, timestamp, padding, etc. maximum 40 bytes								

A typical EE packet What this session will focus on

• IP Header

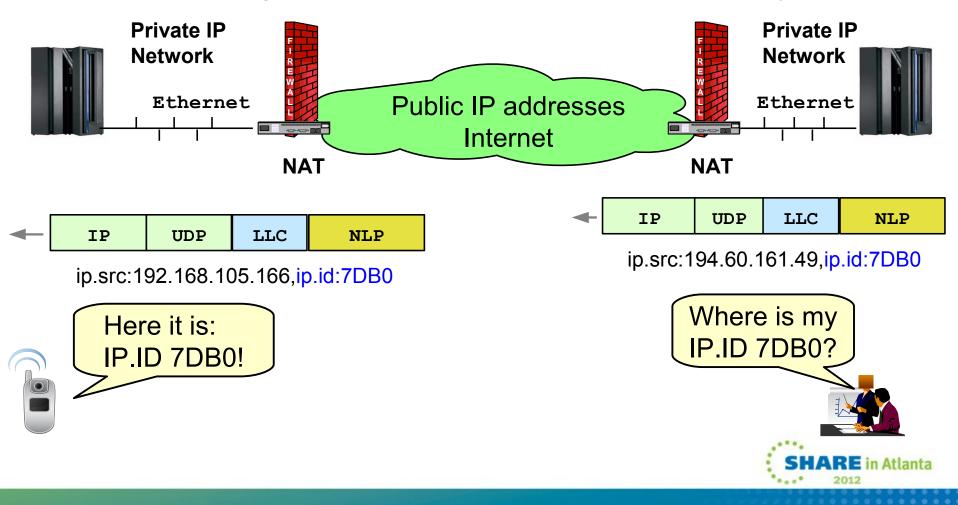
- Length
- Identifier
- Flags/FragOffs
- TTL
- IP addresses
- ICMP
- UDP Header
 - Ports
 - Length
 - Checksum

- LDLC
 - SAPs
 - Control
 - XID/TEST/UI/DISC
- HPR
 - NHDR
 - THDR
 - Optional Segments
- SNA PIU (TH,RH,RU)
 - Sense Codes
 - FMH7s

IP Header IP_ID and addresses

• IP Header

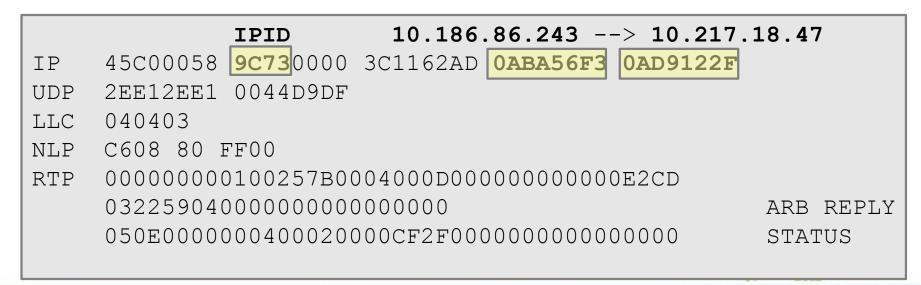
- TOS precedence
- Length
- Identifier
- Flags/FragOffs
- TTL
- IP addresses


4	5	3-bit TOS field 5-bit reserved	total length 16-bit					
identific 16-bit	cation		0 D M fragment offset F F 13-bit					
time to 8-bit	live TTL	protocol 8-bit	header checksum 16-bit					
source IP address 32-bit								
destination IP address 32-bit								

- IP_ID is a 2 byte field incremented with every new packet generated at the sending stack (unique until it wraps)
- IP addresses: in IPV4 (header 45) 4 byte long
 - Can be changed by NAT devices in flight

IP Identifier Following a packet through the network

• NAT will change the addresses – the IP_ID will stay the same



IP Header IP Identifier

- Required to track down a packet
- Will not change in flight

4	5	3-bit TOS field 5-bit reserved	total length 16-bit						
identification					M	fragment offset			
16-bit					F	13-bit			
time to	time to live TTL protocol			header checksum					
8-bit	8-bit 8-bit			16-bit					
source	source IP address								
32-bit	32-bit								
destinat	destination IP address								
32-bit	32-bit								

IP Header IP length and Fragmentation

• IP Header

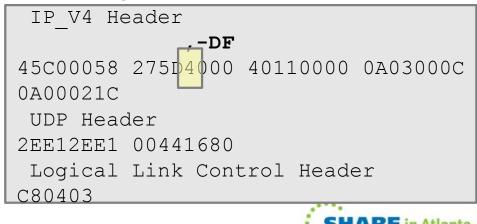
- TOS precedence
- Length
- Identifier
- Flags/Frag_Offs
- TTL
- IP addresses

4	5	3-bit TOS field 5-bit reserved	total length 16-bit					
identification			0 D M fragment offset					
16-bit			F I 13-bit					
time to l	ive TTL	protocol	header checksum					
8-bit		8-bit	16-bit					
source l	source IP address							
32-bit	32-bit							
destination IP address 32-bit								

- The length indicates how large the IP datagram is
- If the datagram exceeds the MTU size of the weakest link an intermediate router will fragment the packet.
- Reassembly is then done at the destination IP...

IP Fragmentation **Two fragments arriving**

- IPID is the same
- MF flag is set in 1st fragment
- Fragment Offset is > 0
- No protocol header in 2nd Fragment


4	5	3-bit TOS field 5-bit reserved	total length 16-bit							
identification				D	M	fragment offset				
16-bit				F	F	13-bit				
time to	time to live TTL protocol				header checksum					
8-bit	8-bit 8-bit				16-bit					
source	source IP address									
32-bit	32-bit									
destination IP address 32-bit										

IP_V4 Header	IP V4 Header
lgth ID ,-MF	<u>lqth</u> ID fgmt_offs
4500 <mark>0304</mark> 5A482000 2F11BA0B 0AC7E821	4500 <mark>02C0 5A48</mark> 0 <mark>05E</mark> 2F11D9F1 0AC7E821
0ABA56F3	0ABA56F3
UDP Header	IP FRAGMENT
2EE22EE2 059C8EF5	40404040 40404040 40404040 40404040
Logical Link Control Header	40404040 40404040 40404040 40404040
080403	40404040 40404040 40404040 40404040
	SHARE in Atlanta

IP Fragmentation Issues and Path MTU discovery

- Fragmentation increases CPU at receiver
- Fragmentation causes an additional delay
- Fragmentation across Firewall infrastructure often not allowed
 - FW filter rules check on IP@ ,protocol and port numbers
 2nd fragment does not have port numbers
- Path MTU Discovery (PMTUD) available for EE (SWNET PU)
 - DF bit is set soliciting ICMP message from router if fragmentation is required IP_V4 Header
 - Contains MTU size of next hop

IP Fragmentation Out of order arrival

- 2nd Fragment of ip.id 5001 arriving after ip.id 5002
- IP layer will reassemble the 2 fragments (if both arrive...)

Description	TTL	IP Address	<>	IP Address (+ PortN	Iden	Lengt
EE_HIG FID5	48	10.186.86.24	<-	10.199.232.33(12002	4FFE	300
EE_HIG First Frag	47	10.186.86.24	<-	10.199.232.33(12002	5001	836
EE_HIG continued	48	10.186.86.24	<-	10.199.232.33(12002	5002	845
IP/FRAGMENT Last	47	10.186.86.24	<-	10.199.232.33	5001	768
EE_HIG continued	48	10.186.86.24	<-	10.199.232.33(12002	5003	1,488
EE_HIG continued	48	10.186.86.24	<-	10.199.232.33(12002	5004	830
EE_HIG FID5	48	10.186.86.24	<-	10.199.232.33(12002	5005	1,488

- The upper layer protocol needs to reorder the data
 - Reordering is done in TCP protocol, not in UDP
 - For Enterprise Extender, HPR RTP will perform this function

IP Header TTL - Time To Live

• IP Header

- TOS precedence
- Length
- Identifier
- Flags/Frag_Offs
- TTL
- IP addresses

4 5	3-bit TOS field 5-bit reserved	total length 16-bit					
identification 16-bit		0 D M fragment offset F F 13-bit					
time to live TT 8-bit	L protocol 8-bit	header checksum 16-bit					
source IP add 32-bit	source IP address 32-bit						
destination IP address 32-bit							

- 1 byte field that controls how far an IP packet can travel
- It gets decremented by every router on the path
- When it reaches 1, the router will discard the packet

IP TTL Initial TTL values

- The initial TTL value is configurable in every IP stack
 - Most IP stacks use the default though
 - Why not?

OS	ICMP	UDP	ТСР
zOS	64	64	64
Linux		64	64
Solaris	255	255	60
AIX	255	30	60
Win	128	128	128
i5		64	64
WebSphere DataPower			195
Routers	255	255	255

- http://tinyurl.com/82gpc6d

- Knowledge of the initial TTL at the source can be used to determine (guess) the operating system and the distance of a remote host (in # of hops)
- An ICMP error message will be sent when a router discards a packet because of an inbound TTL of 1

IP TTL Guessing the topology

- Packets arriving with a TTL of 48
 - The sending IP stack is 16 hops away (Initial TTL=64)

Description	TTL	IP Address	<>	IP Address (+ PortN	Iden	Lengt
EE_HIG FID5	48			10.199.232.33(12002		300
EE_HIG First Frag	47	10.186.86.24	<-	10.199.232.33(12002	5001	836
EE_HIG continued	48	10.186.86.24	<-	10.199.232.33(12002	5002	845
IP/FRAGMENT Last	47	10.186.86.24	<-	10.199.232.33	5001	768
EE_HIG continued	48	10.186.86.24	<-	10.199.232.33(12002	5003	1,488
EE HIG continued	48	10.186.86.24	<-	10.199.232.33(12002	5004	830
EE_HIG FID5	48	10.186.86.24	<-	10.199.232.33(12002	5005	1,488

• However, fragmented packets arrive with a TTL of 47

IP TTL D NET,EEDIAG,TEST=YES

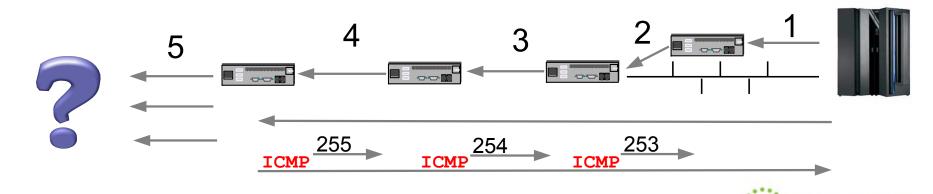
Sets TTL purposely too short to learn the IP route's RTT

D NET, EEDIAG, TEST=YES, LIST=ALL, IPADDR=(10.999.232.65, 10.888.86.241)										
IST350I DISPLAY TYPE = EEDIAG										
IST21301 ENTERPRISE EXTENDER CONNECTIVITY TEST INFORMATION										
IST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE00000B										
IST21311 EEDIAG DISPLAY COMPLETED ON 03/08/11 AT 12:12:58										
IST2132I LDLC PROBE VERSIONS: VTAM = V1		PARTNEI	R = V1							
IST1680I LOCAL IP ADDRESS 10.999.232.65										
IST16801 REMOTE IP ADDRESS 10.888.86.241										
IST924I										
IST2133I INTFNAME: OSAGES5L	INTFTYP	E: IPA(QENET							
IST2134I CONNECTIVITY SUCCESSFUL			PORT:	12000						
IST2137I 1 10.999.999.193	RTT:	1								
IST2137I 2 10.88.99.66	RTT:	0								
IST2137I 3 10.333.33.1	RTT:	0								
IST2137I 4 10.333.39.21	RTT:	12								

EEDIAG TEST=YES,LIST=ALL

* . . · ·

2012


D NET, EEI	DIAG,TEST=YES,LIST=ALL,IPADDR=	(10.999.232.6	5,10.8	88.86.241)							
IST350I	IST350I DISPLAY TYPE = EEDIAG										
IST21301 ENTERPRISE EXTENDER CONNECTIVITY TEST INFORMATION											
IST2119I	ST2119I ENTERPRISE EXTENDER DISPLAY CORRELATOR: EE00000B										
IST2131I	EEDIAG DISPLAY COMPLETED ON 03/08/11 AT 12:12:58										
IST2132I	LDLC PROBE VERSIONS: VTAM = V1 PARTNER = V1										
IST1680I	I LOCAL IP ADDRESS 10.999.232.65										
IST1680I	IST1680I REMOTE IP ADDRESS 10.888.86.241										
IST924I											
IST2133I	INTFNAME: OSAGES5L	INTFTYP	E: IPA	QENET							
IST2134I	CONNECTIVITY SUCCESSFUL			PORT: 12000							
IST2137I	1 10.999.999.193	RTT:	1								
IST2137I	2 10.88.99.66	RTT:	0								
IST2137I	3 10.333.33.1	RTT:	0								
IST2137I	4 10.333.39.21	RTT:	12								
IST2137I	5 10.333.39.3	RTT:	17								
IST2137I	6 10.444.130.1	RTT:	15								
IST2137I	7 10.555.1.206	RTT:	18								
IST2137I	8 192.666.250.162	RTT:	17								
IST2137I	9 10.777.127.186	RTT:	15								
IST2137I	10 10.777.86.241	RTT:	13								
IST2134I	CONNECTIVITY SUCCESSFUL			PORT: 12001							
			:	SHARE in Atlanta							
				and an an Antanta							

IP TTL D NET, EEDIAG, TEST=YES Trace

ICMP TTL Timeout messages required to come back

Delta Description (short)	TTL	IP Address	Iden	<> IP Address (+ PortNu
4.668.333 EE_CMD	1	198.238.232.3		<- 198.239.65.137(12000
0.000.169 ICMP/TIMEOUT (TTL)	255	147.55.217.3	B7C0	-> 198.239.65.137
0.000.328 EE_CMD	2	198.238.232.3		<- 198.239.65.137(12000
0.000.212 ICMP/TIMEOUT (TTL)	255	147.55.215.2	5906	-> 198.239.65.137
0.000.897 EE_CMD	3	198.238.232.3		<- 198.239.65.137(12000
0.000.712 ICMP/TIMEOUT (TTL)	254	147.55.215.6	430C	-> 198.239.65.137
0.000.017 EE_CMD	4	198.238.232.3		<- 198.239.65.137(12000
0.000.878 ICMP/TIMEOUT (TTL)	_253	10.2.3.3	3B31	-> 198.239.65.137
0.000.010 EE_CMD	5	198.238.232.3		<- 198.239.65.137(12000
3.301. 891 EE_CMD	5	198.238.232.3		<- 198.239.65.137(12000

ICMP Listen to the network music

- ICMP protocol is used in IP to
 - Test connectivity (PING)
 - Report errors
 - Destination unreachable
 - Time-out conditions
 - Propagate information
 - MTU size of next hop with PMTU Discovery
- ICMP packets are very important in diagnosis
 - Often not allowed through secured infrastructure
 - Firewall rules block ICMP in general
 - Often not traced because of trace filters
 - Source IP address of ICMP packets not predictable
- PMTUD (V1R10) depends on receipt of ICMP messages

ICMP Error message

- ICMP protocol type 1
- Contains Error information in the ICMP header
 - 0301 cannot route any further, host unreachable
- Contains the original IP header that caused this error
 - As seen at the ICMP sender (IPID:B31A, TTL=3A, UDP,12000)

A typical EE packet What's left ...

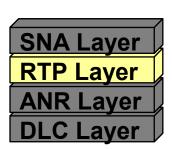
- IP Header
 - Length
 - Identifier
 - Flags/FragOffs
 - TTL
 - IP addresses
- ICMP
- UDP Header
- Ports
- Length/ Checksum

- LDLC
 - SAPs
 - Control
 - XID/TEST/UI/DISC
- HPR
 - NHDR
 - THDR
 - Optional Segments
- SNA PIU (TH,RH,RU)
 - Sense Codes
 - FMH7s

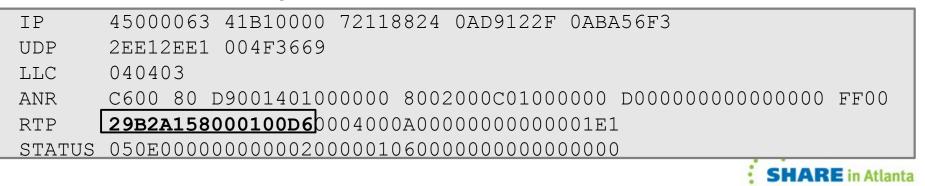
VTAM HPR Pipes – RTP PUs - TCIDs

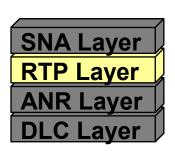
- VTAM knows a pipe by a PU name in ISTRTPMN
 - Typically starts with CNRxxxxx
- The names are different, depending on the RTP node
 - If the remote RTP is also a VTAM, it will have another CNRxxxxx name
 - If it is a distributed SNA stack, the name will be
 _____@Rnnnnn
- The TCIDs must be used to correlate the display output
 - The 'local TCID' here is the 'remote TCID' at the other end
- Both TCIDs must be used to follow a pipe's traffic in a trace
 - All NLPs carry the receiver's local TCID

RTP - TCID Different Names, same TCIDs



IST097I DISPLAY ACCEPTED IST350I DISPLAY TYPE = RTPS IST1695I PU NAME CP NAME COSNAME SWITCH CONGEST STALL SESS IST1960I CNR000C4 BROWN.KEN SNASVCMG NO NO NO 2 IST1960I CNR000C3 BROWN.KEN RSETUP NO NO NO 0 IST1960I CNR000C2 BROWN.KEN CPSVCMG NO NO NO 2 D NET, ID=CNR000C4, E **IST097I DISPLAY ACCEPTED** IST075I NAME = CNR000C4, TYPE = PU T2.1 667IST1043I CP NAME = KEN - CP NETID = BROWN - DYNAMIC LU = YES IST1962I APPNCOS = SNASYCMC - PRIORITY = NETWORK IST1476I TCID X'1AAFE05000010119 - REMOTE TCID X'0000000002002F1E IST1481I DESTINATION CP BROWN.KEN - NCE X'80' Communications Server-Knotenoperationen - Einzelknotensicht eines lokan systems Operationen Aufrufen Darstellung Fenster Hilfe 는 % 좀 ? 이 여 여 등 물물 🗮 Einzelknotensicht eines lokalen Systems : +...**S** 🔺 Zieladresse Name der Se... G., Emp... Lokale TLA Ak... Send. Maximal.. Ferne TCID Name Z @R000001 DEIBMTA.... 2 CPSVCMG 8... 828 f 7864 1469 I 000000001002 1E 1AAFE84E0001910B ÷ ズ@R000003 DEIBMTA.... 2 (200 + 0000000002002F1E 1AAFE05000010119 ą 4... 2933 1469 SNASVCMG ☑ @R000002 DEIBMTA.... 0 RSETUP 2... 273 (7864 1469 I 000000003002F1E 1AAFE04F00010100


RTP THDR TCID


Α		TCID start 29B2A158 31-bit 29B2A158										158
	CID 2-bit		nt.				0	0	0	1(00	0D6
0	C S	S M	E M	S R	R A	R Y	0	L M	дC	0 S	0	Data Offset/4 16-bit
	LF 2-bit											
	SN 2-bit											

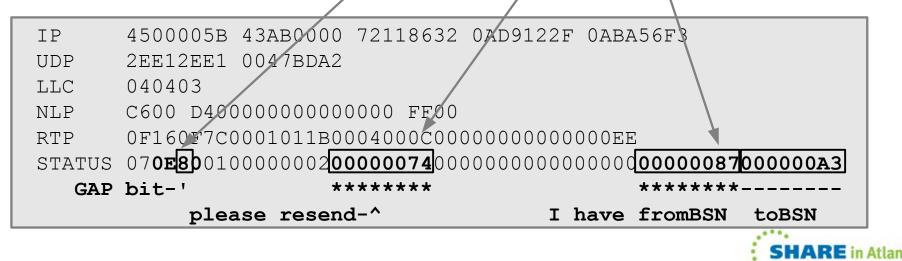
- The TCID is the first 8 bytes in the THDR
 - It uniquely identifies the pipe at the receiving RTP node
 - To follow traffic in both directions, both TCIDs must be used when filtering a trace.

RTP Transport Header THDR BSN

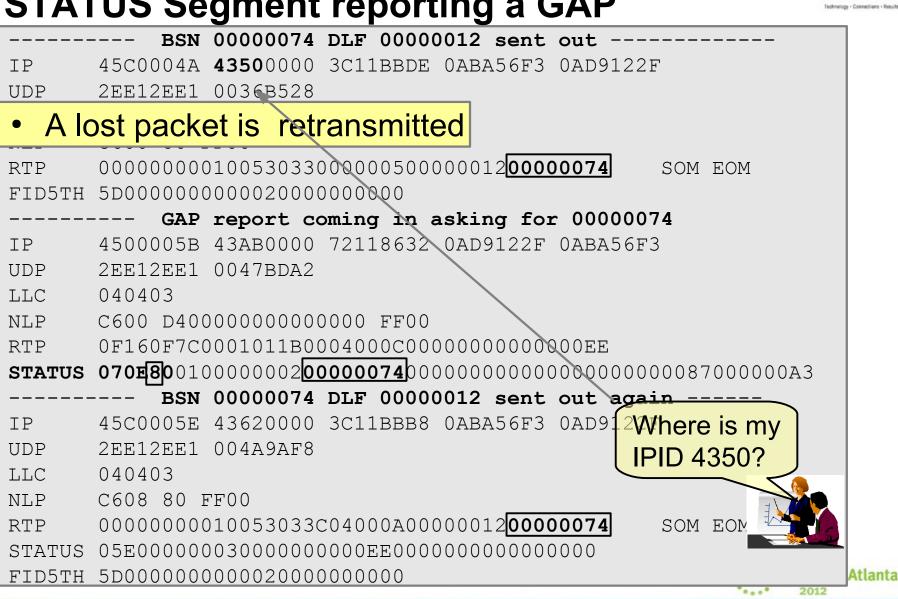
Α			ID bi		art							
	CID 2-bi		:0	nt.								
0	C S		S M	E M	S R	R A	R Y 0	L M	C Q	O S	0	Data Offset/4 16-bit
DLF 32-bit 0000000												
	SN 2-bi	it										000001E1

- The Byte Sequence Number keeps track of the data sent
 - Increments with every byte of payload (DLF field)
 - Also increments if End_of_Message bit is set

Translating from VTAM to IP Where is my lost packet?


- How can I identify an HPR packet in an IP Packet Trace?
- At the sender
 - Note the unique BSN/DLF on a given pipe (TCID)
 - Remember the IPID in the IP header
- In the network/ at the receiver
 - Look for the IP identifier of the sent IP packet
 - Remember: the IP addresses may be NAT'ed
 - The IP datagram may have been fragmented
 - The trace may not show the full packet
 - Verify the BSN and TCID
- Network Support people will be happy to track down a lost IPID

RTP Retransmission STATUS Segment reporting a GAP



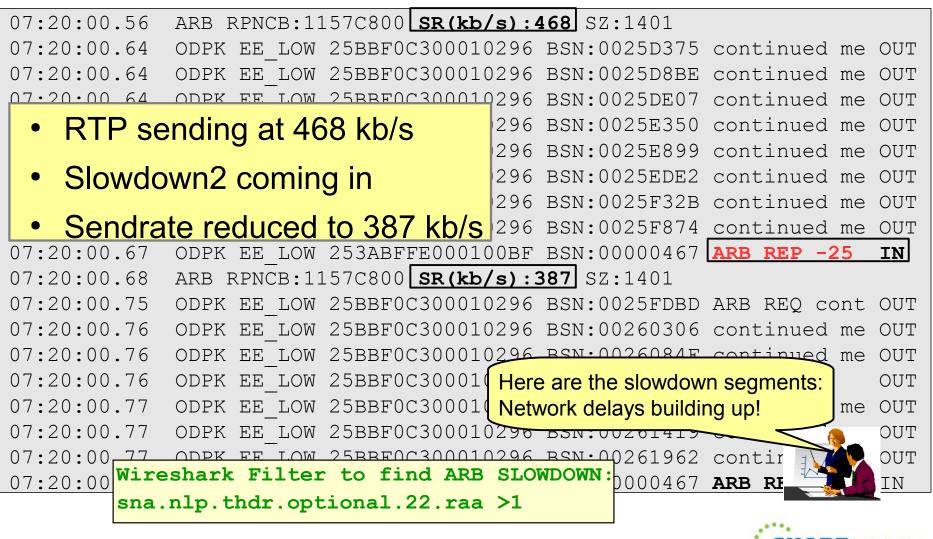
- When a packet is lost, RTP will detect a gap and initiate selective retransmission of the lost NLP
- A STATUS segment with the GAP bit will report
 - The next expected BSN (*this is the BSN of the lost NLP*)
 - One ore more Byte_Span_Pair
 - The BSNs that were received successfully but out of order)

RTP Retransmission STATUS Segment reporting a GAP

D NET, EEDIAG, REXMIT= Finding retransmitting connections

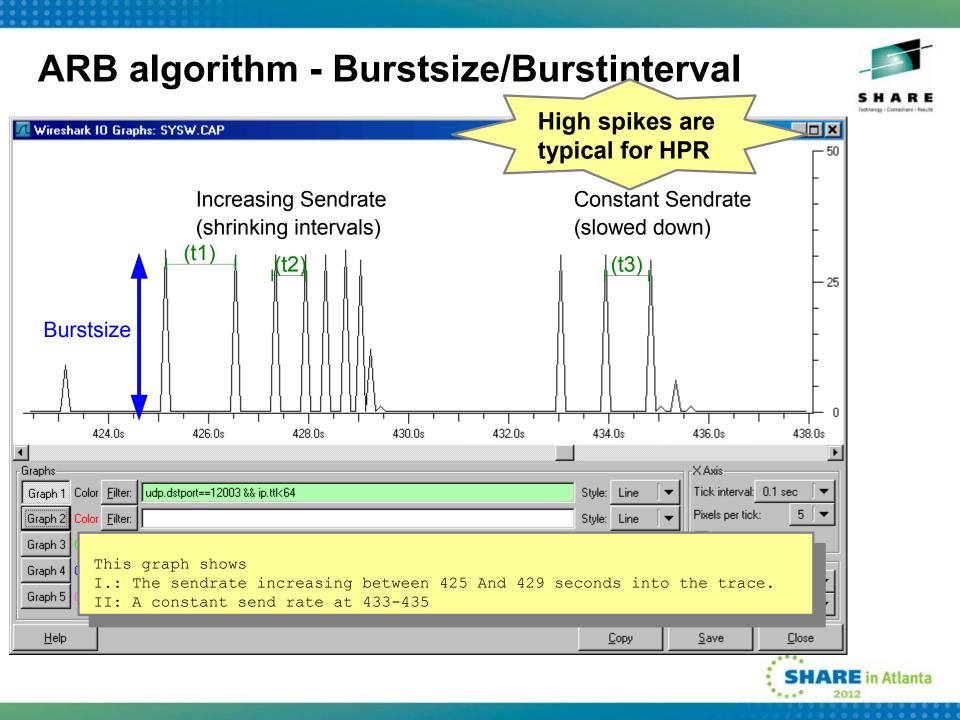
D NET, EEDIAG, REXMIT=1
IST097I DISPLAY ACCEPTED
IST350I DISPLAY TYPE = EEDIAG
IST2065I ENTERPRISE EXTENDER CONNECTION REXMIT INFORMATION
IST2067I EEDIAG DISPLAY ISSUED ON 08/25/09 AT 16:08:59
IST924I
IST1680I LOCAL IP ADDRESS 10.232.72.11
IST1680I REMOTE IP ADDRESS 129.35.231.237
IST2024I CONNECTED TO SWITCHED PU PUSA01
IST924I
IST2033I PORT PRIORITY = MEDIUM
IST2036I NLPS SENT = 95 (000K)
IST2038I NLPS RETRANSMITTED = 7 (000K)
IST2068I NLP RETRANSMIT RATE = 7%
IST924I
IST2035I TOTALS FOR ALL PORT PRIORI
IST2036I NLPS SENT = We're losing way too many packets!
IST2038I NLPS RETRANSMITTED =
IST2068I Wireshark Filter to find GAP reports: 0%
IST2069I sna.nlp.thdr.optional.0e.gap == 1 AT 13:24
IST314I ENS

RTP - Data Flow Control ARB algorithm



- Adaptive Rate Based algorithm
 - Operates on Send Rates (bits/s)
 - Initial Sendrate (5% of TG's capacity in APPN Topology)
 - Allowed Sendrate
 - Controlled by the receiving RTP
- The goal is to avoid congestion before packets get lost
 - BASE ARB was too polite to compete with greedy TCP/IP
 - Responsive Mode ARB (ARB2) is standard these days
 - Progressive Mode ARB available in V1R11 and CS V6R4
- ARB Segments (22) are used to adjust the allowed sendrate
 - Based on network delay changes

RTP - Data Flow Control ARB in action



RTP - Data Flow Control ARB algorithm – VERY time sensitive

- The receiving RTP is measuring the network delays
- Increasing network delays are treated as an indication of congestion building up in the network
 - Queues in bottleneck routers are building up
- To avoid a queue overflow in the network, ARB reduces the sendrate before packets are dropped allowing the network to recover sooner.
- Sometimes the delays are caused *within* the RTP nodes
 - CPU constrained systems (zSeries with few real CPUs)
 - z/OS and Linux under z/VM
 - Windows/Linux under VMWARE/Citrix environments
- Result is unnecessary slowdowns and poor performance

RTP – PATHSWITCH Identifying switching pipes in a trace

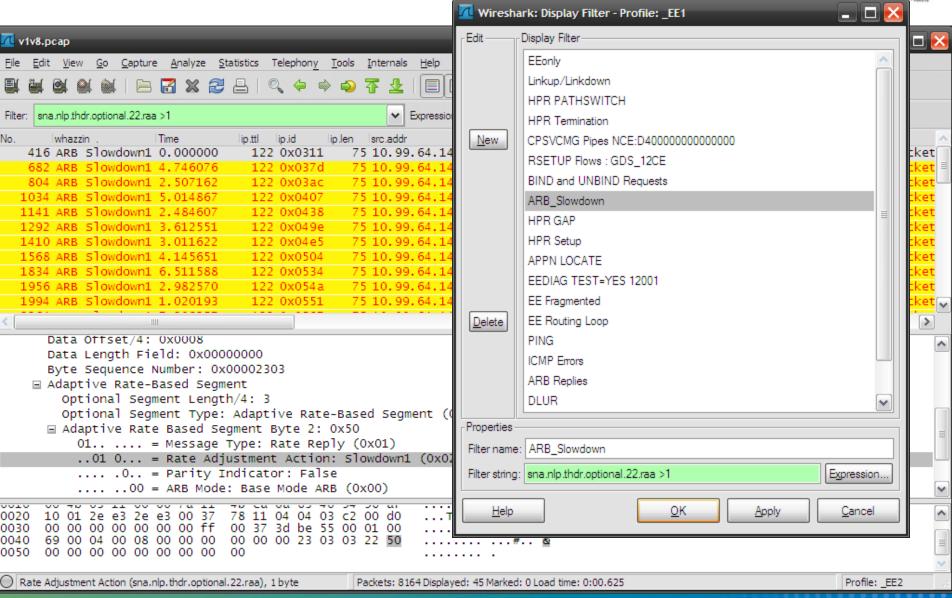
- Most HPR problems show up as path-switching pipes
- NLPs of an existing path-switching pipe will contain following information
 - The BSN will higher than zero
 - ARB SETUP is present to re-initialize the ARB algorithm
 - Length is 5 words
 - SWINFO is present to describe the characteristics of the new path
 - Length is variable but typically larger than 8 words
- In abbreviated traces the segments might not be traced

Wireshark filter - PATHSWITCH

2012

race1.pcap - Wireshark	
<u>E</u> dit <u>V</u> iew <u>G</u> o <u>C</u> apture <u>A</u> nalyze <u>S</u> tatistics Telephon <u>y</u> <u>T</u> ools <u>H</u> elp	
≝≝≝≝⊨⊒3×22≞∣९,⇔⇒⇒75⊻∣⊒⊒⊖€⊂,©,ऌ! »	
r: sna.nlp.thdr.offset > 0x000D && sna.nlp.thdr.bsn >0 Expression Clear Apply 	
Source Destination dst.port ANR label TCID BSN	
:52.69 192.168.: 92.254.132.12001 D40000000000000FF 21AC0C500001007 0x00002029	
0:53.56 92.254.1: 192.168.101 12001 D40000000000000FF 2A2122550001093 0x00003016	
0:54.59 92.254.1: 192.168.101 12001 D4000000000000000FF 2A2122550001093 0x00002029	
):54.72 192.168.: 92.254.132.12001 D40000000000000FF 21AC0C500001007 0x00002029	
0:55.62 92.254.1: 192.168.101 12001 D40000000000000FF 2A2122550001093 0x00003016	
Transport Connection Identifier: 2A2122550001093B	
■ RTP Transport Packet Header Byte 8: 0x0c	
⊞ RTP Transport Packet Header Byte 9: 0x04	
Data Offset/4: 0x0020	
Data Length Field: 0x0000000	
Byte Sequence Number: 0x00003016	
Adaptive Rate-Based Segment	
Status Segment Here are the path-switching pipes! Switching Informa	
sna.nlp.thdr.offset>13 and sna.nlp.thd	r hen o
0 00 00 08 ed 28 00 14 24 40 00 00 00 34 00 00 58(\$4	
0 c4 05 0e 00 00 00 1c 00 04 00 00 1f 2f 00 00 00 D	
0 00 00 00 00 11 14 00 96 28 83 82 00 00 00 05 o(cb 0 bd 00 00 ea 60 00 00 00 b4 0c 67 0a 00 80 96 00]o.	
ata Offset in Words (sna.nlp.thdr.offset), 2 bytes Packets: 1710 Display Profile: SHARE	1.1.1
	SHARE in A

IPCS Formatter Export SYSTCPDA to sniffer


Convert your SYSTCPDA/SYSTCPOT traces in sniffer

//SYSTSIN DD *
PROFILE MSGID
IPCS NOPARM
SETD PRINT NOTERM LENGTH (160000) NOCONFIRM FILE (INDMP)
DROPD
CTRACE COMP(SYSTCPDA) -
OPTIONS((SNIFFER(9000 TCPDUMP))) SUB((TCPIP)) -
NOREASSEMBLY ENTIDLIST (4)
END

- Download the resulting file in binary
- Run a trace tool against the trace to filter the down to the Problematic packets
 Fix the firewall rule 5 hops away!
- Talk to your network personnel using their language!

Wireshark Profiles

Thank You for your time!

n Atlanta

EE Education – IP wizards

ITS53 EE Implementation and Problem Determination


4 days ITSO 🕜 Workshop – 30.April 2012 Miami,FL

Register at http://greenhouse.lotus.com

Lotus Greenhouse[™] Solutions Products Labs FAQs Sign Up Log In

Join the IP wizards community

http://tinyurl.com/ipwizards

to download wireshark profiles and p0f fingerprints

EE Education – IP wizards

ITS53 EE Implementation and Problem Determination


4 days ITSO 🕜 Workshop – 30.April 2012 Miami,FL

Register at http://greenhouse.lotus.com

Lotus Greenhouse^{***} Solutions Products Labs FAQs Sign Up Log In

Join the IP wizards community

http://tinyurl.com/ipwizards

to download wireshark profiles and p0f fingerprints

