
Enterprise PL/I 4.2 Highlights

Peter Elderon
 elderon@us.ibm.com

March 2012
Session 10756

IBM compilers and you

Optimize your infrastructure by upgrading to
the latest IBM compilers

Latest compilers and middleware exploit
System z for maximum performance

Increase
Application Flexibility

20 to 35%
cost reduction in

managing
and maintaining

existing
application

portfolio

30 to 50%
cost reduction

in
renewal/re-
architecture

Optimize System
Utilization

up to 60%
improvement
in application
performance

with latest
compilers

for IBM
Systems*

Maximize Team
Productivity

15 to 20%
decrease in

development
cycle time

through common
team

infrastructure for
collaborative
application

lifecycle
management

 Boost Individual
Productivity

22-37%
improvement in

developer
productivity
with modern

tooling

50-80%
reduction in

host
CPU usage

Enterprise
Modernization

§Enterprise COBOL for z/OS v4.2
§Enterprise PL/I for z/OS v4.2
§z/OS XL C/C++ v1.13

§CICS v4.2
§DB2 for z/OS v10.0
§IMS for z/OS v12.0

*Sources of these benchmarks are available upon request

With advanced compiler technology

Exploit new advanced optimization technology and new hardware in
C/C++, PL/I , Java, and Fortran compilers

NEW hardware + NEW compiler
= Maximum Performance

Same hardware + NEW compiler
= Increased Performance

Compiler Version

Pe
rf

or
m

a
nc

e
ü Lowers capital outlays by increasing capacity and improving performance of application suite

§ z/OS XL C/C++ v1.13 on zEnterprise196* delivers up to 60% performance improvement
§ Enterprise PL/I V4.2 on zEnterprise196* delivers up to 10% performance improvement
§ XL C/C++ v11, XL Fortran v13 on POWER7 delivers industry leading SPEC® CPU2006 performance*

*Sources of these benchmarks are available upon request

With improved compiler middleware support

New releases of COBOL, PL/I and C/C++ provide improved
support for middleware via:

• Integrated CICS and SQL translators
• COBOL, PL/I and C/C++
• Enterprise PL/I v4.2 improved performance of processing SQL source by up to 40%

• Programming support for new middleware features
• CICS co-processor options, DB2 features (e.g. multiple-row fetch…)
• Support for new SQL new data types and SQL syntax first introduced in DB2 v9

• Problem determination support with program listings and Debug Tool
• Display SQL and CICS options in effect in COBOL and PL/I listing
• Debug applications written in COBOL, PL/I, C/C++ in CICS, DB2, IMS environments

• XML Support
• PL/I and COBOL programs can parse and generate XML documents

Follow these best practices
• Upgrade compilers when you upgrade System z hardware, or Middleware

(CICS, DB2, IMS)
• Minimize quality assurance effort
• Maximize performance
• Leverage compiler support for new middleware features
• Improve debugging and programmability

• Recompile only parts that are changed and “hot spots” to improve
performance

• Leverage new compiler features to modernize existing business critical
applications

• “Rip and Replace is expensive and risky
• Modernization promotes reuse and delivery of new solution at lower cost, lower risk,

and shorter delivery time
• Use Rational development tools to improve programmer productivity,

and help attract new talent
• Rational Developer for z, Rational Developer for z UT, Rational Team Concert

Enterprise 4.2

• schnell

• lecker

• nach Wunsch

schnell

zEnterprise exploitation

z196

• The new z196 hardware was introduced in 2010

• Enterprise PL/I immediately provided significant exploitation of the new
hardware under the ARCH(9) option

• The 4.2 release expands that ARCH(9) support

High-word Facility

• This facility adds a new set of instructions which consider the high-word of
the 64-bit GPRs to be self-contained 32-bit registers.

• The compiler now exploits this facility under the HGPR and OPT(3) options

• However, for now, this exploitation is limited to the generation of the BRCTH
Branch-Relative-on-Count-High instruction in some loops

High-word Facility

• So, when given this code

 loop: proc(a)
 options(nodescriptor)
 returns(fixed bin(31) byvalue);

 dcl a(100) fixed bin(31) connected;
 dcl jx fixed bin(31);
 dcl sum fixed bin(31);
 sum = 0;
 do jx = 1 to hbound(a);
 sum += a(jx);
 end;
 return(sum);
 end;

High-word Facility

• Under 4.1 and the options HGPR OPT(3) ARCH(9), the heart of the generated code is

 000046 41F0 0000 LA r15,0
 00004A 4100 0001 LA r0,1
 00004E 5810 1000 L r1,_addrA(,r1,0)
 000052 41E0 0004 LA r14,4
 000056 @1L2 DS 0H
 000056 E3FE 1FFC FF5E ALY r15,_shadow1(r14,r1,-4)
 00005C A70A 0001 AHI r0,H'1'
 000060 A70E 0064 CHI r0,H'100'
 000064 41E0 E004 LA r14,#AMNESIA(,r14,4)

 000068 A7D4 FFF7 JNH @1L2

High-word Facility

• While under 4.2, the heart of the generated code is 6 bytes smaller

 000046 41F0 0000 LA r15,0
 00004A 5810 1000 L r1,_addrA(,r1,0)
 00004E 41E0 0004 LA r14,4
 000052 C008 0000 0064 IIHF r0,F'100'
 000058 @1L2 DS 0H
 000058 E3FE 1FFC FF5E ALY r15,_shadow1(r14,r1,-4)
 00005E 41E0 E004 LA r14,#AMNESIA(,r14,4)
 000062 CC06 FFFF FFFB BRCTH r0,@1L2

Population-count Facility

• The new POPCNT instruction provides a count of the number of one bits in
each of the eight bytes of the input GPR.

• Each byte in the output GPR contains an 8-bit binary integer in the range of
0-8 holding the count for the corresponding byte.

• PL/I now exploits this facility via the new POPCNT built-in function

Population-count Facility

• On z/OS, this built-in function requires an ARCH level of 9 or higher

POPCNT(‘01020304’xn) returns ‘01010201’xn
POPCNT(‘05060708’xn) returns ‘02020301’xn

• And, if x has the attributes FIXED BIN(31), then

ISRL(POPCNT(x) * ’01010101’xn, 24)

• returns the number of bits in x equal to 1

Extended-float facility

• The compiler now exploits this facility to inline conversions between IEEE
float and FIXED BIN(63). In particular, it will generate

• The following new BFP instructions :
• CONVERT FROM LOGICAL (CXLFBR, CDLFBR, CELFBR, CXLGBR, CDLGBR,

CELGBR)
• CONVERT TO LOGICAL (CLFXBR, CLFDBR, CLFEBR, CLGXBR, CLGDBR,

CLGEBR)

• The following new DFP instructions :
• CONVERT FROM FIXED (CXFTR,CDFTR)
• CONVERT FROM LOGICAL (CXLGTR,CDLGTR, CXLFTR, CDLFTR)
• CONVERT TO FIXED (CFXTR, CFDTR)
• CONVERT TO LOGICAL (CLGXTR,CLGDTR, CLFXTR, CLFDTR)

Extended-float facility

• So, when given this code

*process
 arch(9) float(dfp) limits(fixedbin(31,63)) opt(3);

 cfdtr:
 proc(d)
 returns(fixed bin(31) byvalue);

 dcl d float dec(16);
 dcl n fixed bin(31);

 n = d;
 return(n);
 end;

Extended-float facility

• Under 4.1, the heart of the generated code is the scary

 000046 58E0 1000 L r14,_addrD(,r1,0)
 00004A C010 0000 002F LARL r1,F'47'
 000050 6800 E000 LD f0,_shadow1(,r14,0)
 000054 B3E1 9000 CGDTR r0,b'1001',f0
 000058 18F0 LR r15,r0
 00005A EB00 0020 000C SRLG r0,r0,32
 000060 5900 1000 C r0,+CONSTANT_AREA(,r1,0)
 000064 A774 0005 JNE @1L4
 000068 C2FF 8000 0000 CLFI r15,F'-2147483648'
 00006E @1L4 DS 0H
 00006E A724 0007 JH @1L3
 000072 A708 FFFF LHI r0,H'-1'
 000076 C0F9 8000 0000 IILF r15,F'-2147483648'
 00007C @1L3 DS 0H
 00007C 1200 LTR r0,r0
 00007E A774 0005 JNE @1L6
 000082 C2FF 7FFF FFFF CLFI r15,F'2147483647'
 000088 @1L6 DS 0H
 000088 A744 0005 JL @1L2
 00008C C0F9 7FFF FFFF IILF r15,F'2147483647'

Extended-float facility

• But under 4.2, the heart of the generated code is the simple

 000046 5810 1000 L r1,_addrD(,r1,0)
 00004A 6800 1000 LD f0,_shadow1(,r1,0)
 00004E B941 90F0 CFDTR r15,b'1001',f0

Additional performance enhancements

Loop unrolling

• The new UNROLL compiler option controls whether loops are unrolled

• The default is UNROLL(AUTO) which lets the compiler determine when
loops are unrolled – and which matches what the previous releases did

• UNROLL(NO) suppresses all loop unrolling

• UNROLL(AUTO) may produce bigger, but faster object code

Loop unrolling

• So, when given this code

 unroll: proc(a)
 options(nodescriptor)
 returns(fixed bin(31) byvalue);

 dcl a(10) fixed bin(31) connected;
 dcl jx fixed bin(31);
 dcl sum fixed bin(31);
 sum = 0;
 do jx = 1 to 10;
 sum += a(jx);
 end;
 return(sum);
 end;

Loop unrolling

• Under UNROLL(NO), the heart of the generated code is the short

 000046 5810 1000 L r1,_addrA(,r1,0)
 00004A 41F0 0000 LA r15,0
 00004E 41E0 0004 LA r14,4
 000052 4100 000A LA r0,10
 000056 A71A FFFC AHI r1,H'-4'
 00005A @1L2 DS 0H
 00005A 5EFE 1000 AL r15,_shadow1(r14,r1,0)
 00005E 41E0 E004 LA r14,#AMNESIA(,r14,4)
 000062 A706 FFFC BRCT r0,@1L2

Loop unrolling

• While under UNROLL(AUTO), it is the longer but faster

 000046 5810 1000 L r1,_addrA(,r1,0)
 00004A 58F0 1000 L r15,_shadow1(,r1,0)
 00004E 5EF0 1004 AL r15,_shadow1(,r1,4)
 000052 5EF0 1008 AL r15,_shadow1(,r1,8)
 000056 5EF0 100C AL r15,_shadow1(,r1,12)
 00005A 5EF0 1010 AL r15,_shadow1(,r1,16)
 00005E 5EF0 1014 AL r15,_shadow1(,r1,20)
 000062 5EF0 1018 AL r15,_shadow1(,r1,24)
 000066 5EF0 101C AL r15,_shadow1(,r1,28)
 00006A 5EF0 1020 AL r15,_shadow1(,r1,32)
 00006E 5EF0 1024 AL r15,_shadow1(,r1,36)

REFER

• Code that uses elements of structures with multiple REFERs used to be
very expensive: each reference used a costly library call to remap the
structure

• As of 4.1, for structures where all the elements are byte-aligned, those calls
are avoided and straightforward inline code generated

• If all elements are byte-aligned, no padding is possible and thus the address
calculations are relatively simple

• To insure all elements are byte-aligned

• Specify UNALIGNED on the level-1 part of the declare
• Declare any NONVARYING BIT as ALIGNED

REFER

• But with 4.1, if the STG built-in function was applied to such a structure,
library calls would still be made

• As of 4.2, no library calls will be made for STG when applied to such
structures

• This can be very useful if you want to use functions like PLIMOVE to copy an
entire structure using multiple REFERs

• And this is needed by some IMS tools

UTF string handling

• When ULENGTH and USUBSTR are applied to CHARACTER strings, the
compiler will now generate inline code (rather than call a library routine)

• This makes these functions much, much faster

• However, it also means that ERROR will not be raised if the source is invalid
UTF-8

• The UVALID function can still be used to test for validity

lecker

Menu

• Vorspeise

• Errol Morris and the iron triangle

• Hauptgang

• New and improved SQL preprocessor

• Nachtisch

• Improved multi-row fetch support - and more

Vorspeise

The iron triangle

• There is also an old engineering saying that you cannot make a product

• fast, cheap, and reliable

• You can have any 2, but not all 3

• BMW X6 M fast and reliable, but not cheap
• VW Beetle cheap and reliable, but not fast
• Used Ford Mustang fast and cheap, but not reliable

• This rule has also been applied to project management where the rule is
that you can have only two of: fast, cheap, and good

“Fast, Cheap & Out of Control”

• In 1997, Errol Morris released “Fast, Cheap & Out of Control” about

• a lion trainer
• a topiary (Formschnitt) sculptor
• a hairless-mole-rat specialist
• an MIT robot scientist

• The MIT scientist designs bug-like robots and had written a technical paper,
“A Robot Invasion of Space”, advocating the use of many fast and small, if
not reliable, robots as the way to explore space

• No SQL was used

Hauptgang

Fast, small, and powerful

• The 4.2 release contains a completely redesigned SQL preprocessor that is

• Fast – 20-50% faster than the 4.1 preprocessor

• Small - more than 8 times smaller than the 4.1 module

• Powerful – many restrictions removed

• It should also be more reliable as it is built on the same code base as the
macro and CICS preprocessors - which have had far fewer APARs

SQL preprocessor improvements

• Name scoping always in effect and with no restrictions

• The SCOPE option in 3.9 and 4.1 had these restrictions

• The data lists in GET and PUT statements must not include data-list items with
Type 3 DO specifications.

• The following keywords must not be used as variable names: BEGIN, DO, END,
PACKAGE, PROC, PROCEDURE and SELECT

• 3.9 and 4.1 had NOSCOPE as the default partly because of these restrictions

• 4.2 has dropped the (NO)SCOPE option, and name scoping is always in
effect and without any restrictions

SQL preprocessor improvements

• SQL TYPE supported as a first-class PL/I attribute

• Anywhere you could use a PL/I attribute such as FIXED BIN or CHAR, you
can now use any of the SQL TYPE attributes, e.g.

• dcl blobs(10) sql type is blob(100k) based;

• But unlike “FIXED BIN”, no keywords may break up “SQL TYPE IS …”

SQL preprocessor improvements

• Declare statements are fully and correctly processed, including

• These attributes are now honored and may be used in host variables:
PRECISION and DIMENSION

• The old preprocessor objected to DCL A FIXED BIN PREC(31) and to DCL B DIM(3)
FIXED BIN(15)

• These attributes are now recognized and would cause any host variable
with them to be unusable: UNSIGNED and COMPLEX

• The old preprocessor accepted DCL C FIXED BIN(16) UNSIGNED and incorrectly
viewed it as a 4 byte integer

SQL preprocessor improvements

• DEFAULT compiler suboptions are now honored

• DEFAULT(ANS/IBM) is honored when completing numeric attributes

• Also honored are the suboptions:

• (NON)NATIVE
• ASCII / EBCDIC
• (NO)EVENDEC
• SHORT(HEX / IEEE)

• Plus the RULES((NO)LAXCTL) option is also honored

SQL preprocessor improvements

• PACKAGEs fully supported

• For a PACKAGE, declares inserted by the SQL preprocessor are now put
into each outermost PROC as needed

• The old preprocessor put them at the PACKAGE level - which made the code
non-reentrant unless it was compiled with the RENT option

SQL preprocessor improvements

• TWOPASS option effectively always on

• As in normal PL/I code, declarations and statements can appear in any order

• And there is no extra processing cost for this (as there is also none in the
compiler itself)

SQL preprocessor difference: LOB
representation

• SQL TYPE has a different representation for large objects

• The LOB(DB2 | PLI) option used to control this – but that option is gone

• If you have code that “knows” the representation of SQL TYPE LOB data,
that code will almost certainly have to be changed

• But, since SQL TYPE is now essentially a full-fledged attribute, now your
code doesn’t need to “know” this

• For example:

SQL preprocessor difference: LOB
representation

• The structure element XML_DOC_STRUC knows the representation of a CLOB

 DCL
 1 DOCM_STRUC,
 2 DOC_ID FIXED BIN(31),
 2 DOC_TYPE CHAR(1),
 2 XML_DOC_STRUC,
 3 XML_DOC_ARRY_LENGTH FIXED BIN(31),
 3 XML_DOC_ARRY_DATA,
 4 XML_DOC_DATA1(3) CHAR(32767),
 4 XML_DOC_DATA2 CHAR(4099);
 DCL ID_ARRAY(5) FIXED BIN(31);
 DCL TYPE_ARRAY(5) CHAR(1);
 DCL XML_DOC_ARRAY(5) SQL TYPE IS XML AS CLOB(100K);

 EXEC SQL FETCH NEXT ROWSET FROM DOCM_CSR FOR 5 ROWS
 INTO :ID_ARRAY
 ,:TYPE_ARRAY
 ,:XML_DOC_ARRAY;

 XML_DOC_STRUC = XML_DOC_ARRAY(I);

SQL preprocessor difference: LOB
representation

• With 4.2, it can – and must – be declared as SQL TYPE …

 DCL

 1 DOCM_STRUC,

 2 DOC_ID FIXED BIN(31),

 2 DOC_TYPE CHAR(1),

 2 XML_DOC_STRUC SQL TYPE IS XML AS CLOB(100K);

 DCL ID_ARRAY(5) FIXED BIN(31);

 DCL TYPE_ARRAY(5) CHAR(1);

 DCL XML_DOC_ARRAY(5) SQL TYPE IS XML AS CLOB(100K);

SQL preprocessor difference: LOB
representation

• If you have code that has this dependency, it will be easy to spot

• The compiler will issue a severe message for the assignment statement

• And if you don’t get any such message, then your code is ok as is

SQL preprocessor difference: messages

• SQL preprocessor messages are now in the same series as the messages
produced by the MACRO and CICS preprocessors (since they all share
some common code)

• So, the message numbers and text for SQL messages have all changed

• So, if you are using the EXIT compiler option to suppress or to change the
severity of any SQL messages, you will have to change the message table

SQL preprocessor difference: messages

• Backend SQL messages also now have an IBM “facility id” (as do all other
messages including those produced by the CICS backend)

• So, if you are using the EXIT compiler option to suppress or to change the
severity of any SQL backend messages, you will have to use change the
EXIT itself

• There is a full example of how to do this in the 4.2 Programming Guide

Nachtisch

BY DIMACROSS

• The new BY DIMACROSS assignment statement makes it possible to write
nicer code after performing multi-row fetches

• For example, given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D char(10);
dcl 1 XA(100) dimacross like A;

• After a multi-row fetch, you might want to assign the JX element of XA to A

A = XA(JX);

• But this is illegal since XA is not an array – only its elements are!

BY DIMACROSS

• But 4.2 supports a new statement to help with this; given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 XA(100) dimacross like A;

• You can now write

A = XA, BY DIMACROSS(JX);

• Which will assign the JXth element in each of the arrays in XA to the
corresponding element in A

BY DIMACROSS

• You could use this to swap two rows; given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 T1 like A, 1 T2 like A;
dcl 1 XA(100) dimacross like A;

• You could swap row 1 and 17 via

T1 = XA, BY DIMACROSS(1);
T2 = XA, BY DIMACROSS(17);
XA = T2, BY DIMACROSS(1);
XA = T1, BY DIMACROSS(17);

BY DIMACROSS

• You could also use this to sum across the rows; given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 XA(100) dimacross like A;

• You could sum across the rows via

A = 0;
DO JX = 1 TO 100;
 A = A + XA, BY DIMACROSS(JX);
END;

HBOUNDACROSS

• The new HBOUNDACROSS and LBOUNDACROSS built-in functions make it
possible to write even nicer code for this; namely, given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 XA(100) dimacross like A;

• You could sum across the rows via

A = 0;
DO JX = LBOUNDACROSS(XA) TO HBOUNDACROSS(XA);
 A = A + XA, BY DIMACROSS(JX);
END;

INDICATORS

• If you use an indicator array with a structure in an SQL statement, the array
should have as many elements as the structure

• This means that if the structure changes, you also have to change the
declare for the indicator array

• The new INDICATORS built-in function eliminates this task

• It counts the number of elements in a structure and can be used to declare
an array with that as it upper bound

INDICATORS

• So, given a declare such as:

 dcl
 1 a,
 2 b fixed bin,
 . . .
 2 x fixed bin;

You can then declare an indicator array for use with this structure as:

 dcl inx(indicators(a)) fixed bin(15);

<> as not-equals

• SQL syntax uses <> to mean “not equals”

• This is now supported by all the preprocessors and by the compiler itself

• And <> has an advantage over ^=

• it does not depend on a code point that varies across code pages

Nach Wunsch

Enhanced XML generation

XMLOMIT

• The new XMLOMIT attribute lets you direct XMLCHAR to suppress some
fields

• in particular, it can be used to suppress

• A string field that compares equal to the null string (‘’)
• A numeric field that compares equal to zero

• But it is not permitted on structures, unions or fields named with an *

• So there is no suppression of structures

XMLOMIT

• So, when given

 dcl
 1 order,
 2 orderNr char(20) init('1729'),
 2 customer,

 3 name char(32) init(‘euler'),
 3 firstName char(24) init(‘leonhard'),
 3 special char(35) init('');

XMLOMIT

• XMLCHAR would generate

<order>
 <orderNr>1729</orderNr>
 <customer>
 <name>euler</name>
 <firstName>leonhard</firstName>
 <special></special>
 </customer>
</order>

XMLOMIT

• But with XMLOMIT added as in

 dcl
 1 order,
 2 orderNr char(20) init('1729'),
 2 customer,

 3 name char(32) init(‘euler'),
 3 firstName char(24) init(‘leonhard'),
 3 special xmlomit char(35) init('');

XMLOMIT

• XMLCHAR would generate the simpler

<order>
 <orderNr>1729</orderNr>
 <customer>
 <name>euler</name>
 <firstName>leonhard</firstName>
 </customer>
</order>

XMLATTR

• The new XMLATTR attribute lets you direct that XMLCHAR emit specified
fields as attributes

• It cannot be used on arrays, structures, unions, or fields named with an *

• It also cannot be used on an element of a structure if previous elements
with the same parent do not have the XMLATTR attribute

• So, there is no regrouping

XMLATTR

• So, with XMLATTR added as in

 dcl
 1 order,
 2 orderNr char(20) init('1729'),
 2 customer,

 3 name xmlattr char(32) init(‘euler'),
 3 firstName xmlattr char(24) init(‘leonhard'),
 3 special xmlomit char(35) init('');

XMLATTR

• XMLCHAR would generate XML with these fields as attributes

<order>
 <orderNr>1729</orderNr>

 <customer name=‘euler' firstName=‘leonhard'>
 </customer>
</order>

New (sub)options for better quality

PPLIST (GRZ - MR0322112751)

• The new PPLIST option controls whether the compiler keeps or erases the
part of the listing generated by each preprocessor phase.

• PPLIST(KEEP) is the default

• Under PPLIST(ERASE), the compiler will “erase” any preprocessor listing if
that preprocessor produced no messages

• So specifying PPLIST(ERASE) INSOURCE FLAG(W) would produce a listing
that was small except when a warning message was generated

NOLAXENTRY (Racon – MR1001105028)

• Under RULES(NOLAXENTRY), the compiler will flag all unprototyped ENTRY
declares, d.h. all ENTRY declares that do not specify a parameter list

• With 4.2, NOLAXENTRY can be qualified as STRICT or LOOSE

• RULES(NOLAXENTRY(STRICT)) is the default (for compatibility) and will
cause the compiler to flag all unprototyped ENTRY declares

• But under RULES(NOLAXENTRY(LOOSE)), the compiler will flag
unprototyped ENTRY declares only if they are not OPTIONS(ASM)

• The LOOSE suboption is probably much more useful

NOSELFASSIGN (Telcordia – MR1222106055)

• Under RULES(NOSELFASSIGN), the compiler will flag all assignments
where the source and the target are the same

• This will make it easier to catch Fingerfehler

NOLAXRETURN (GRZ - MR0216116237)

• Under RULES(NOLAXRETURN), the compiler will generate code to raise
ERROR

• when a RETURN with an expression is executed inside a procedure coded
without RETURNS
• or

• when a RETURN without an expression is executed inside a procedure
coded with RETURNS

• Note that this is one of very few RULES suboptions that change the code
generated

DSN and RULES (BayernLB)

• The compiler will no longer flag names starting with DSN under

• RULES(NOLAXENTRY)

• The compiler will no longer flag names starting with DSN or SQL under

• RULES(NOUNREF)

• This is reasonable since these names are usually not ones the programmer
has declared

CHECK(STORAGE) (CreditSuisse)

• The STORAGE suboption of the CHECK option has been restored

• It was dropped in 4.1 – CHECK(NOSTORAGE) was always in effect

• But since code compiled with CHECK(NOSTORAGE) cannot be mixed with
code compiled with CHECK(STORAGE), this meant that 4.1 would require a
complete recompile

• It was also restored to 4.1 via PTF UK68593

Miscellaneous user requirements

Restrictions lifted

• Typed structures are now supported in DebugTool

• The code must be compiled with the 4.2 compiler
• Runtime PTF for APAR PM30489 must be applied

• Comparisons of POINTER to ‘’ and ‘’b are now allowed

• The semantics match those in the assignment of ‘’ to a POINTER
• The is requirement MR0302115849 from GRZ

%INCLUDE enhancements

• The maximum number of distinct include files allowed in a single
compilation has been increased from 2047 to 4095

• This is requirement MR0517112942 from Huk
• This was also added to 4.1 via PTF UK67957

• The source for %INCLUDE statements will now be bracketed with a BEGIN
comment and an END comment

• Only when the MACRO preprocessor does the INCLUDE
• This is requirement MR0718114811 from Axa

Enhanced INONLY (Racon - MR0828104258)

• The 3.9 release introduced the INONLY, INOUT and OUTONLY

• However, apart from serving to make code self-documenting, the only effects
they had were

• The compiler would not flag dummy arguments for INONLY parameters
• The compiler would flag (possibly) uninitialized OUTONLY arguments

• But now, the compiler will apply the NONASSIGNABLE attribute to any
INONLY parameter (and hence flag any assignments to it)

• Furthermore, the compiler will flag any structure declared as INONLY but
containing an element with the ASSIGNABLE attribute

BASED with nonconstant extents

• With OS PL/I, this was possible only via REFER

• The documentation for Enterprise PL/I matched that, but the compiler
allowed nonconstant extents anyway – and users started using it

• We started flagging this with 3.9, but quickly changed back to allowing it

• The documentation has now also been updated to say it is ok

In review

schnell

• zEnterprise exploitation

• Performance enhancements
• Control of loop unrolling
• Inlining STG of structures using REFER
• Inlining of ULENGTH and USUBSTR

lecker

• Improved SQL support

• Faster, smaller and more powerful preprocessor
• BY DIMACROSS assignments
• HBOUNDACROSS built-in function
• INDICATORS built-in function

nach Wunsch

• Enhanced XML generation
• XML attributes
• Suppression of null fields

• Requested new (sub)options for better quality
• PPLIST option
• New RULES (sub)options

• Miscellaneous user requirements
• Restrictions lifted
• %INCLUDE enhancements

And remember

• COBOL, PL/I, and C/C++ are strategic for System z
• Committed to continue to deliver value to customers
• Strong investment commitment from IBM

• IBM compilers are designed to exploit z/Architecture and Middleware
(CICS, DB2, IMS)

• IBM compilers provide capability to…
• Modernize business critical COBOL and PL/I applications with improved Java

and XML interoperability
• Consolidate applications to System z by supporting industry language standards

and extensions
• Reduce programming complexity

• Advance optimization technology
• Enhanced problem determination capabilities
• System program development capability of “Metal C” option

• Rational is committed to delivering leading-edge compilers and application
development tools technology to…

• Maximize application performance and increase system capacity
• Improve programmer productivity and shorten development cycle
• Lower TCO and increase return on IT investment

For more information

• System z compilers product pages
• Enterprise COBOL for z/OS http://www-01.ibm.com/software/awdtools/cobol/zos/
• Enterprise PL/I for z/OS http://www-01.ibm.com/software/awdtools/pli/plizos
• z/OS XL C/C++ http://www-01.ibm.com/software/awdtools/czos/

• Documentation
• Enterprise COBOL for z/OS http://www-306.ibm.com/software/awdtools/cobol/zos/library/?

S_CMP=rnav
• Enterprise PL/I for z/OS http://www-306.ibm.com/software/awdtools/pli/plizos/library/?S_CMP=rnav
• z/OS XL C/C++ http://www-306.ibm.com/software/awdtools/czos/library/?S_CMP=rnav

• Rational Café https://www.ibm.com/developerworks/rational/community/cafe/
• Compilers and Application Tools user communities

• Rational Enterprise Modernization sandbox for System z
• http://www.ibm.com/developerworks/downloads/emsandbox_systemz/index.html

• Try out Rational Enterprise Modernization tools in a cloud environment

• Main compiler product pages:
• COBOL http://www.ibm.com/software/awdtools/cobol
• PL/I http://www.ibm.com/software/awdtools/pli
• C/C++ http://www.ibm.com/software/awdtools/ccompilers

http://www-01.ibm.com/software/awdtools/cobol/zos/
http://www-01.ibm.com/software/awdtools/pli/plizos
http://www-01.ibm.com/software/awdtools/czos/
http://www-306.ibm.com/software/awdtools/cobol/zos/library/?S_CMP=rnav
http://www-306.ibm.com/software/awdtools/cobol/zos/library/?S_CMP=rnav
http://www-306.ibm.com/software/awdtools/pli/plizos/library/?S_CMP=rnav
http://www-306.ibm.com/software/awdtools/czos/library/?S_CMP=rnav
https://www.ibm.com/developerworks/rational/community/cafe/
https://www.ibm.com/developerworks/rational/community/cafe/
http://www.ibm.com/developerworks/downloads/emsandbox_systemz/index.html
http://www.ibm.com/software/awdtools/cobol
http://www.ibm.com/software/awdtools/pli
http://www.ibm.com/software/awdtools/ccompilers

© Copyright IBM Corporation 2008. All rights reserved. The information contained in these materials is provided for informational purposes only, and is provided AS IS without warranty of any
kind, express or implied. IBM shall not be responsible for any damages arising out of the use of, or otherwise related to, these materials. Nothing contained in these materials is intended to, nor
shall have the effect of, creating any warranties or representations from IBM or its suppliers or licensors, or altering the terms and conditions of the applicable license agreement governing the use
of IBM software. References in these materials to IBM products, programs, or services do not imply that they will be available in all countries in which IBM operates. Product release dates and/or
capabilities referenced in these materials may change at any time at IBM’s sole discretion based on market opportunities or other factors, and are not intended to be a commitment to future product
or feature availability in any way. IBM, the IBM logo, the on-demand business logo, Rational, the Rational logo, and other IBM products and services are trademarks of the International Business
Machines Corporation, in the United States, other countries or both. Other company, product, or service names may be trademarks or service marks of others.

Learn more at:
• IBM Rational software
• IBM Rational Software Delivery Platform
• Process and portfolio management
• Change and release management
• Quality management

• Architecture management
• Rational trial downloads
• developerWorks Rational
• IBM Rational TV
• IBM Rational Business Partners

http://www.ibm.com/software/rational
http://www-306.ibm.com/software/info/developer/index.jsp
http://www-306.ibm.com/software/rational/offerings/lifecycle.html
http://www-306.ibm.com/software/rational/offerings/scm.html
http://www-306.ibm.com/software/rational/offerings/testing.html
http://www-306.ibm.com/software/rational/offerings/design.html
http://www.ibm.com/developerworks/rational/downloads/?S_TACT=105AGX23&S_CMP=RCD
http://www.ibm.com/developerworks/rational
http://www-306.ibm.com/software/info/television/index.jsp?cat=rational&media=video&item=en_us/rational/xml/M259765N40519Z80.xml
http://www-306.ibm.com/software/rational/partners/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85

