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IBM compilers and you



Optimize your infrastructure by upgrading to 
the latest IBM compilers

Latest compilers and middleware exploit
System z for maximum performance

Increase
Application Flexibility

20 to 35%
cost reduction in 

managing
and maintaining 

existing 
application 

portfolio

30 to 50%
cost reduction 

in 
renewal/re-
architecture

Optimize System 
Utilization

up to 60%
improvement
in application 
performance

with latest 
compilers

for IBM 
Systems*

Maximize Team 
Productivity

15 to 20%
decrease in 

development 
cycle time 

through common 
team 

infrastructure for 
collaborative 
application 

lifecycle 
management

 Boost Individual 
Productivity

22-37%
improvement in

developer 
productivity
with modern 

tooling

50-80%
reduction in 

host
CPU usage

Enterprise
Modernization

§Enterprise COBOL for z/OS v4.2
§Enterprise PL/I for z/OS v4.2
§z/OS XL C/C++ v1.13

§CICS v4.2
§DB2 for z/OS v10.0
§IMS for z/OS v12.0

*Sources of these benchmarks are available upon request



With advanced compiler technology

Exploit new advanced optimization technology and new hardware in 
C/C++, PL/I , Java, and Fortran compilers

NEW hardware + NEW compiler
= Maximum Performance

Same hardware + NEW compiler 
= Increased Performance

Compiler Version

Pe
rf

or
m

a
nc

e
ü Lowers capital outlays by increasing capacity and improving performance of application suite

§ z/OS XL C/C++ v1.13 on zEnterprise196* delivers up to 60% performance improvement
§ Enterprise PL/I V4.2 on zEnterprise196* delivers up to 10% performance improvement
§ XL C/C++ v11, XL Fortran v13 on POWER7 delivers industry leading SPEC® CPU2006 performance*

*Sources of these benchmarks are available upon request



With improved compiler middleware support

New releases of COBOL, PL/I and C/C++ provide improved 
support for middleware via:

• Integrated CICS and SQL translators 
• COBOL, PL/I and C/C++
• Enterprise PL/I v4.2 improved performance of processing SQL source by up to 40%

• Programming support for new middleware features 
• CICS co-processor options, DB2 features (e.g. multiple-row fetch…)
• Support for new SQL new data types and SQL syntax first introduced in DB2 v9 

• Problem determination support with program listings and Debug Tool
• Display SQL and CICS options in effect in COBOL and PL/I listing
• Debug applications written in COBOL, PL/I, C/C++ in CICS, DB2, IMS environments

• XML Support
• PL/I and COBOL programs can parse and generate XML documents



Follow these best practices 
• Upgrade compilers when you upgrade System z hardware, or Middleware 

(CICS, DB2, IMS) 
• Minimize quality assurance effort 
• Maximize performance 
• Leverage compiler support for new middleware features
• Improve debugging and programmability

• Recompile only parts that are changed and “hot spots” to improve 
performance

• Leverage new compiler features to modernize existing business critical 
applications 

• “Rip and Replace is expensive and risky
• Modernization promotes reuse and delivery of new solution at lower cost, lower risk, 

and shorter delivery time
• Use Rational development tools to improve programmer productivity, 

and help attract new talent 
• Rational Developer for z, Rational Developer for z UT, Rational Team Concert



Enterprise 4.2

• schnell

• lecker

• nach Wunsch



schnell



zEnterprise exploitation



z196

• The new z196 hardware was introduced in 2010

• Enterprise PL/I immediately provided significant exploitation of the new 
hardware under the ARCH(9) option

• The 4.2 release expands that ARCH(9) support



High-word Facility

• This facility adds a new set of instructions which consider the high-word of 
the 64-bit GPRs to be self-contained 32-bit registers.

• The compiler now exploits this facility under the HGPR and OPT(3) options

• However, for now, this exploitation is limited to the generation of the BRCTH 
Branch-Relative-on-Count-High instruction in some loops



High-word Facility

• So, when given this code

 loop: proc(a)
   options( nodescriptor )
   returns(fixed bin(31) byvalue);

   dcl a(100) fixed bin(31) connected;
   dcl jx  fixed bin(31);
   dcl sum fixed bin(31);
   sum = 0;
   do jx = 1 to hbound(a);
     sum += a(jx);
   end;
   return( sum );
 end; 
     



High-word Facility

• Under 4.1 and the options HGPR OPT(3) ARCH(9), the heart of the generated code is

 000046  41F0  0000                   LA       r15,0
 00004A  4100  0001                   LA       r0,1
 00004E  5810  1000                   L        r1,_addrA(,r1,0)
 000052  41E0  0004                   LA       r14,4
 000056                        @1L2   DS       0H
 000056  E3FE  1FFC  FF5E             ALY      r15,_shadow1(r14,r1,-4)
 00005C  A70A  0001                   AHI      r0,H'1'
 000060  A70E  0064                   CHI      r0,H'100'
 000064  41E0  E004                   LA       r14,#AMNESIA(,r14,4)

 000068  A7D4  FFF7                   JNH      @1L2 
        



High-word Facility

• While under 4.2, the heart of the generated code is 6 bytes smaller

 000046  41F0  0000              LA       r15,0
 00004A  5810  1000              L        r1,_addrA(,r1,0)
 00004E  41E0  0004              LA       r14,4
 000052  C008  0000  0064        IIHF     r0,F'100'
 000058                    @1L2  DS       0H
 000058  E3FE  1FFC  FF5E        ALY   r15,_shadow1(r14,r1,-4)
 00005E  41E0  E004              LA    r14,#AMNESIA(,r14,4)
 000062  CC06  FFFF  FFFB        BRCTH    r0,@1L2 

         



Population-count Facility

• The new POPCNT instruction provides a count of the number of one bits in 
each of the eight bytes of the input GPR.

• Each byte in the output GPR contains an 8-bit binary integer in the range of 
0-8 holding the count for the corresponding byte.

• PL/I now exploits this facility via the new POPCNT built-in function



Population-count Facility

• On z/OS, this built-in function requires an ARCH level of 9 or higher

POPCNT( ‘01020304’xn ) returns ‘01010201’xn
POPCNT( ‘05060708’xn ) returns ‘02020301’xn

• And, if x has the attributes FIXED BIN(31), then

ISRL( POPCNT(x) * ’01010101’xn, 24 ) 

• returns the number of bits in x equal to 1



Extended-float facility

• The compiler now exploits this facility to inline conversions between IEEE 
float and FIXED BIN(63). In particular, it will generate

• The following new BFP instructions :
• CONVERT FROM LOGICAL (CXLFBR, CDLFBR, CELFBR, CXLGBR, CDLGBR, 

CELGBR)
• CONVERT TO LOGICAL (CLFXBR, CLFDBR, CLFEBR, CLGXBR, CLGDBR, 

CLGEBR)

• The following new DFP instructions :
• CONVERT FROM FIXED (CXFTR,CDFTR)
• CONVERT FROM LOGICAL (CXLGTR,CDLGTR, CXLFTR, CDLFTR)
• CONVERT TO FIXED (CFXTR, CFDTR)
• CONVERT TO LOGICAL (CLGXTR,CLGDTR, CLFXTR, CLFDTR)



Extended-float facility

• So, when given this code

*process
  arch(9) float(dfp) limits(fixedbin(31,63)) opt(3);

  cfdtr:
    proc(d)
    returns( fixed bin(31) byvalue );

    dcl d             float dec(16);
    dcl n             fixed bin(31);

    n = d;
    return( n );
  end;   



Extended-float facility

• Under 4.1, the heart of the generated code is the scary

 000046  58E0  1000                   L        r14,_addrD(,r1,0)
 00004A  C010  0000  002F             LARL     r1,F'47'
 000050  6800  E000                   LD       f0,_shadow1(,r14,0)
 000054  B3E1  9000                   CGDTR    r0,b'1001',f0
 000058  18F0                         LR       r15,r0
 00005A  EB00  0020  000C             SRLG     r0,r0,32
 000060  5900  1000                   C        r0,+CONSTANT_AREA(,r1,0)
 000064  A774  0005                   JNE      @1L4
 000068  C2FF  8000  0000             CLFI     r15,F'-2147483648'
 00006E                      @1L4     DS       0H
 00006E  A724  0007                   JH       @1L3
 000072  A708  FFFF                   LHI      r0,H'-1'
 000076  C0F9  8000  0000             IILF     r15,F'-2147483648'
 00007C                      @1L3     DS       0H
 00007C  1200                         LTR      r0,r0
 00007E  A774  0005                   JNE      @1L6
 000082  C2FF  7FFF  FFFF             CLFI     r15,F'2147483647'
 000088                      @1L6     DS       0H
 000088  A744  0005                   JL       @1L2
 00008C  C0F9  7FFF  FFFF             IILF     r15,F'2147483647'
 
        



Extended-float facility

• But under 4.2, the heart of the generated code is the simple

 000046  5810  1000               L        r1,_addrD(,r1,0)
 00004A  6800  1000               LD       f0,_shadow1(,r1,0)
 00004E  B941  90F0               CFDTR    r15,b'1001',f0 
  
        



Additional performance enhancements



Loop unrolling

• The new UNROLL compiler option controls whether loops are unrolled

• The default is UNROLL( AUTO ) which lets the compiler determine when 
loops are unrolled – and which matches what the previous releases did

• UNROLL( NO ) suppresses all loop unrolling

• UNROLL( AUTO ) may produce bigger, but faster object code



Loop unrolling

• So, when given this code

 unroll: proc(a)
   options( nodescriptor )
   returns(fixed bin(31) byvalue);

   dcl a(10) fixed bin(31) connected;
   dcl jx  fixed bin(31);
   dcl sum fixed bin(31);
   sum = 0;
   do jx = 1 to 10;
     sum += a(jx);
   end;
   return( sum );
 end; 
  



Loop unrolling

• Under UNROLL(NO), the heart of the generated code is the short

 000046  5810  1000            L        r1,_addrA(,r1,0)
 00004A  41F0  0000            LA       r15,0 
 00004E  41E0  0004            LA       r14,4
 000052  4100  000A            LA       r0,10
 000056  A71A  FFFC            AHI      r1,H'-4'
 00005A               @1L2     DS       0H
 00005A  5EFE  1000            AL       r15,_shadow1(r14,r1,0)
 00005E  41E0  E004            LA       r14,#AMNESIA(,r14,4)
 000062  A706  FFFC            BRCT     r0,@1L2 
         



Loop unrolling

• While under UNROLL(AUTO), it is the longer but faster

 000046  5810  1000          L        r1,_addrA(,r1,0)
 00004A  58F0  1000          L        r15,_shadow1(,r1,0)
 00004E  5EF0  1004          AL       r15,_shadow1(,r1,4)
 000052  5EF0  1008          AL       r15,_shadow1(,r1,8)
 000056  5EF0  100C          AL       r15,_shadow1(,r1,12)
 00005A  5EF0  1010          AL       r15,_shadow1(,r1,16)
 00005E  5EF0  1014          AL       r15,_shadow1(,r1,20)
 000062  5EF0  1018          AL       r15,_shadow1(,r1,24)
 000066  5EF0  101C          AL       r15,_shadow1(,r1,28)
 00006A  5EF0  1020          AL       r15,_shadow1(,r1,32)
 00006E  5EF0  1024          AL       r15,_shadow1(,r1,36) 
          



REFER

• Code that uses elements of structures with multiple REFERs used to be 
very expensive: each reference used a costly library call to remap the 
structure

• As of 4.1, for structures where all the elements are byte-aligned, those calls 
are avoided and straightforward inline code generated

• If all elements are byte-aligned, no padding is possible and thus the address 
calculations are relatively simple

• To insure all elements are byte-aligned

• Specify UNALIGNED on the level-1 part of the declare
• Declare any NONVARYING BIT as ALIGNED



REFER

• But with 4.1, if the STG built-in function was applied to such a structure,  
library calls would still be made

• As of 4.2, no library calls will be made for STG when applied to such 
structures

• This can be very useful if you want to use functions like PLIMOVE to copy an 
entire structure using multiple REFERs

• And this is needed by some IMS tools



UTF string handling

• When ULENGTH and USUBSTR are applied to CHARACTER strings, the 
compiler will now generate inline code (rather than call a library routine)

• This makes these functions much, much faster

• However, it also means that ERROR will not be raised if the source is invalid 
UTF-8

• The UVALID function can still be used to test for validity     



lecker



Menu

• Vorspeise

• Errol Morris and the iron triangle

• Hauptgang

• New and improved SQL preprocessor

• Nachtisch

• Improved multi-row fetch support  - and more



Vorspeise



The iron triangle

• There is also an old engineering saying that you cannot make a product  

• fast, cheap, and reliable

• You can have any 2, but not all 3

• BMW X6 M fast and reliable, but not cheap
• VW Beetle        cheap and reliable, but not fast
• Used Ford Mustang fast and cheap, but not reliable

• This rule has also been applied to project management where the rule is 
that you can have only two of: fast, cheap, and good



“Fast, Cheap & Out of Control”

• In 1997, Errol Morris released “Fast, Cheap & Out of Control” about

• a lion trainer 
• a topiary (Formschnitt) sculptor 
• a hairless-mole-rat specialist 
• an MIT robot scientist 

• The MIT scientist designs bug-like robots and had written a technical paper, 
“A Robot Invasion of Space”, advocating the use of many fast and small, if 
not reliable, robots as the way to explore space

• No SQL was used



Hauptgang



Fast, small, and powerful

• The 4.2 release contains a completely redesigned SQL preprocessor that is

• Fast – 20-50% faster than the 4.1 preprocessor

• Small  - more than 8 times smaller than the 4.1 module

• Powerful – many restrictions removed

• It should also be more reliable as it is built on the same code base as the 
macro and CICS preprocessors - which have had far fewer APARs



SQL preprocessor improvements

• Name scoping always in effect and with no restrictions

• The SCOPE option in 3.9 and 4.1 had these restrictions

• The data lists in GET and PUT statements must not include data-list items with 
Type 3 DO specifications.

• The following keywords must not be used as variable names: BEGIN, DO, END, 
PACKAGE, PROC, PROCEDURE and SELECT

• 3.9 and 4.1 had NOSCOPE as the default partly because of these restrictions

• 4.2 has dropped the (NO)SCOPE option, and name scoping is always in 
effect and without any restrictions



SQL preprocessor improvements

• SQL TYPE supported as a first-class PL/I attribute

• Anywhere you could use a PL/I attribute such as FIXED BIN or CHAR, you 
can now use any of the SQL TYPE attributes, e.g.

• dcl blobs(10) sql type is blob(100k) based;

• But unlike “FIXED BIN”, no keywords may break up “SQL TYPE IS …” 



SQL preprocessor improvements

• Declare statements are fully and correctly processed, including

• These attributes are now honored and may be used in host variables: 
PRECISION and DIMENSION

• The old preprocessor objected to DCL A FIXED BIN PREC(31) and to DCL B DIM(3) 
FIXED BIN(15)

• These attributes are now recognized and would cause any host variable 
with them to be unusable: UNSIGNED and COMPLEX

• The old preprocessor accepted DCL C FIXED BIN(16) UNSIGNED and incorrectly 
viewed it as a 4 byte integer



SQL preprocessor improvements

• DEFAULT compiler suboptions are now honored

• DEFAULT( ANS/IBM ) is honored when completing numeric attributes 

• Also honored are the suboptions:

• (NON)NATIVE
• ASCII / EBCDIC
• (NO)EVENDEC
• SHORT( HEX / IEEE )

• Plus the RULES( (NO)LAXCTL ) option is also honored



SQL preprocessor improvements

• PACKAGEs fully supported

• For a PACKAGE, declares inserted by the SQL preprocessor are now put 
into each outermost PROC as needed

• The old preprocessor put them at the PACKAGE level - which made the code 
non-reentrant unless it was compiled with the RENT option



SQL preprocessor improvements

• TWOPASS option effectively always on

• As in normal PL/I code, declarations and statements can appear in any order

• And there is no extra processing cost for this (as there is also none in the 
compiler itself)



SQL preprocessor difference: LOB 
representation

• SQL TYPE has a different representation for large objects

• The LOB( DB2 | PLI ) option used to control this – but that option is gone

• If you have code that “knows” the representation of SQL TYPE LOB data, 
that code will almost certainly have to be changed

• But, since SQL TYPE is now essentially a full-fledged attribute, now your 
code doesn’t need to “know” this

• For example:



SQL preprocessor difference: LOB 
representation

• The structure element XML_DOC_STRUC knows the representation of a CLOB

   DCL                                                            
     1 DOCM_STRUC,                                                
       2 DOC_ID                  FIXED BIN(31),                     
       2 DOC_TYPE                CHAR(1),                           
       2 XML_DOC_STRUC,                                           
         3 XML_DOC_ARRY_LENGTH   FIXED BIN(31),                     
         3 XML_DOC_ARRY_DATA,                                     
           4 XML_DOC_DATA1(3)    CHAR(32767),                       
           4 XML_DOC_DATA2       CHAR(4099);                        
   DCL ID_ARRAY(5)            FIXED BIN(31);                      
   DCL TYPE_ARRAY(5)          CHAR(1);                            
   DCL XML_DOC_ARRAY(5)       SQL TYPE IS XML AS CLOB(100K);      
                                                                  
   EXEC SQL FETCH NEXT ROWSET FROM DOCM_CSR FOR 5 ROWS            
             INTO  :ID_ARRAY                                      
                  ,:TYPE_ARRAY                                    
                  ,:XML_DOC_ARRAY;                                
                                                                 
   XML_DOC_STRUC = XML_DOC_ARRAY(I); 



SQL preprocessor difference: LOB 
representation

• With 4.2, it can – and must – be declared as SQL TYPE …

   DCL                                                         
   

     1 DOCM_STRUC,                                             
   

       2 DOC_ID               FIXED BIN(31),                   
  

       2 DOC_TYPE             CHAR(1),                         
  

       2 XML_DOC_STRUC        SQL TYPE IS XML AS CLOB(100K);   
                                                

   
   DCL ID_ARRAY(5)          FIXED BIN(31);                     

 
   DCL TYPE_ARRAY(5)        CHAR(1);                           

 
   DCL XML_DOC_ARRAY(5)     SQL TYPE IS XML AS CLOB(100K);     

 
                                                          



SQL preprocessor difference: LOB 
representation

• If you have code that has this dependency, it will be easy to spot

• The compiler will issue a severe message for the assignment statement

• And if you don’t get any such message, then your code is ok as is



SQL preprocessor difference: messages

• SQL preprocessor messages are now in the same series as the messages 
produced by the MACRO and CICS preprocessors (since they all share 
some common code)

• So, the message numbers and text for SQL messages have all changed

• So, if you are using the EXIT compiler option to suppress or to change the 
severity of any SQL messages, you will have to change the message table



SQL preprocessor difference: messages

• Backend SQL messages also now have an IBM “facility id” (as do all other 
messages including those produced by the CICS backend)

• So, if you are using the EXIT compiler option to suppress or to change the 
severity of any SQL backend messages, you will have to use change the 
EXIT itself

• There is a full example of how to do this in the 4.2 Programming Guide



Nachtisch



BY DIMACROSS

• The new BY DIMACROSS assignment statement makes it possible to write 
nicer code after performing multi-row fetches

• For example, given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D char(10);
dcl 1 XA(100) dimacross like A;

• After a multi-row fetch, you might want to assign the JX element of XA to A

A = XA( JX );

• But this is illegal since XA is not an array – only its elements are!



BY DIMACROSS

• But 4.2 supports a new statement to help with this; given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 XA(100) dimacross like A;

• You can now write

A = XA, BY DIMACROSS( JX );

• Which will assign the JXth element in each of the arrays in XA to the 
corresponding element in A



BY DIMACROSS

• You could use this to swap two rows; given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 T1 like A, 1 T2 like A;
dcl 1 XA(100) dimacross like A;

• You could swap row 1 and 17 via

T1 = XA, BY DIMACROSS( 1 );
T2 = XA, BY DIMACROSS( 17 );
XA = T2, BY DIMACROSS( 1 );
XA = T1, BY DIMACROSS( 17 );



BY DIMACROSS

• You could also use this to sum across the rows; given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 XA(100) dimacross like A;

• You could sum across the rows via

A = 0;
DO JX = 1 TO 100;
    A = A + XA, BY DIMACROSS( JX );
END;



HBOUNDACROSS

• The new HBOUNDACROSS and LBOUNDACROSS built-in functions make it 
possible to write even nicer code for this; namely, given

dcl 1 A, 2 B fixed bin, 2 C fixed dec, 2 D float bin;
dcl 1 XA(100) dimacross like A;

• You could sum across the rows via

A = 0;
DO JX = LBOUNDACROSS(XA) TO HBOUNDACROSS(XA);
    A = A + XA, BY DIMACROSS( JX );
END;



INDICATORS

• If you use an indicator array with a structure in an SQL statement, the array 
should have as many elements as the structure

• This means that if the structure changes, you also have to change the 
declare for the indicator array

• The new INDICATORS built-in function eliminates this task

• It counts the number of elements in a structure and can be used to declare 
an array with that as it upper bound



INDICATORS

• So, given a declare such as:

   dcl
     1 a,
       2 b   fixed bin,
       . . .
       2 x   fixed bin;
   

You can then declare an indicator array for use with this structure as:

   dcl inx( indicators(a) ) fixed bin(15);
          



<> as not-equals

• SQL syntax uses <> to mean “not equals”

• This is now supported by all the preprocessors and by the compiler itself 

• And <> has an advantage over ^= 

• it does not depend on a code point that varies across code pages



Nach Wunsch



Enhanced XML generation



XMLOMIT

• The new XMLOMIT attribute lets you direct XMLCHAR to suppress some 
fields

• in particular, it can be used to suppress

• A string field that compares equal to the null string ( ‘’ )
• A numeric field that compares equal to zero

• But it is not permitted on structures, unions or fields named with an *

• So there is no suppression of structures



XMLOMIT

• So, when given 

      dcl
     1 order,
       2 orderNr            char(20) init('1729'),
       2 customer,

          3 name            char(32) init(‘euler'),
          3 firstName       char(24) init(‘leonhard'),
          3 special         char(35) init(''); 



XMLOMIT

• XMLCHAR would generate 

<order> 
  <orderNr>1729</orderNr>
  <customer>
    <name>euler</name>
    <firstName>leonhard</firstName>
    <special></special>
  </customer>
</order>
     



XMLOMIT

• But with XMLOMIT added as in

      dcl
     1 order,
       2 orderNr            char(20) init('1729'),
       2 customer,

          3 name            char(32) init(‘euler'),
          3 firstName       char(24) init(‘leonhard'),
          3 special         xmlomit char(35) init(''); 



XMLOMIT

• XMLCHAR would generate the simpler 

<order> 
  <orderNr>1729</orderNr>
  <customer>
    <name>euler</name>
    <firstName>leonhard</firstName>
  </customer>
</order>
     



XMLATTR

• The new XMLATTR attribute lets you direct that XMLCHAR emit specified 
fields as attributes

• It cannot be used on arrays, structures, unions, or fields named with an *

• It also cannot be used on an element of a structure if previous elements 
with the same parent do not have the XMLATTR attribute 

• So, there is no regrouping



XMLATTR

• So, with XMLATTR added as in

      dcl
     1 order,
       2 orderNr            char(20) init('1729'),
       2 customer,

          3 name            xmlattr char(32) init(‘euler'),
          3 firstName       xmlattr char(24) init(‘leonhard'),
          3 special         xmlomit char(35) init(''); 



XMLATTR

• XMLCHAR would generate XML with these fields as attributes 

<order>
  <orderNr>1729</orderNr>

  <customer name=‘euler' firstName=‘leonhard'>
  </customer>
</order>

       



New (sub)options for better quality



PPLIST ( GRZ - MR0322112751 )

• The new PPLIST option controls whether the compiler keeps or erases the 
part of the listing generated by each preprocessor phase.

• PPLIST( KEEP ) is the default

• Under PPLIST( ERASE ), the compiler will “erase” any preprocessor listing if 
that preprocessor produced no messages

• So specifying PPLIST(ERASE) INSOURCE FLAG(W) would produce a listing 
that was small except when a warning message was generated



NOLAXENTRY ( Racon – MR1001105028 )

• Under RULES(NOLAXENTRY), the compiler will flag all unprototyped ENTRY 
declares, d.h. all ENTRY declares that do not specify a parameter list

• With 4.2, NOLAXENTRY can be qualified as STRICT or LOOSE

• RULES(NOLAXENTRY(STRICT)) is the default (for compatibility) and will 
cause the compiler to flag all unprototyped ENTRY declares

• But under RULES(NOLAXENTRY(LOOSE)), the compiler will flag 
unprototyped ENTRY declares only if they are not OPTIONS(ASM) 

• The LOOSE suboption is probably much more useful



NOSELFASSIGN ( Telcordia – MR1222106055 )

• Under RULES(NOSELFASSIGN),  the compiler will flag all assignments 
where the source and the target are the same

• This will make it easier to catch Fingerfehler



NOLAXRETURN ( GRZ - MR0216116237 )

• Under RULES(NOLAXRETURN), the compiler will generate code to raise 
ERROR

• when a RETURN with an expression is executed inside a procedure coded 
without RETURNS
• or 

• when a RETURN without an expression is executed inside a procedure 
coded with RETURNS

• Note that this is one of very few RULES suboptions that change the code 
generated



DSN and RULES ( BayernLB )

• The compiler will no longer flag names starting with DSN under

• RULES( NOLAXENTRY )

• The compiler will no longer flag names starting with DSN or SQL under

• RULES( NOUNREF )

• This is reasonable since these names are usually not ones the programmer 
has declared



CHECK( STORAGE ) ( CreditSuisse )

• The STORAGE suboption of the CHECK option has been restored

• It was dropped in 4.1 – CHECK( NOSTORAGE ) was always in effect

• But since code compiled with CHECK(NOSTORAGE) cannot be mixed with 
code compiled with CHECK(STORAGE), this meant that 4.1 would require a 
complete recompile

• It was also restored to 4.1 via PTF UK68593



Miscellaneous user requirements



Restrictions lifted

• Typed structures are now supported in DebugTool 

• The code must be compiled with the 4.2 compiler
• Runtime PTF for APAR PM30489 must be applied

• Comparisons of POINTER to ‘’ and ‘’b are now allowed

• The semantics match those in the assignment of ‘’ to a POINTER 
• The is requirement MR0302115849 from GRZ



%INCLUDE enhancements

• The maximum number of distinct include files allowed in a single 
compilation has been increased from 2047 to 4095

• This is requirement MR0517112942 from Huk
• This was also added to 4.1 via PTF UK67957 

• The source for %INCLUDE statements will now be bracketed with a BEGIN 
comment and an END comment

• Only when the MACRO preprocessor does the INCLUDE
• This is requirement MR0718114811 from Axa



Enhanced INONLY ( Racon - MR0828104258 )

• The 3.9 release introduced the INONLY, INOUT and OUTONLY

• However, apart from serving to make code self-documenting, the only effects 
they had were

• The compiler would not flag dummy arguments for INONLY parameters
• The compiler would flag (possibly) uninitialized OUTONLY arguments

• But now, the compiler will apply the NONASSIGNABLE attribute to any 
INONLY parameter (and hence flag any assignments to it)

• Furthermore, the compiler will flag any structure declared as INONLY but 
containing an element with the ASSIGNABLE attribute 



BASED with nonconstant extents

• With OS PL/I, this was possible only via REFER

• The documentation for Enterprise PL/I matched that, but the compiler 
allowed nonconstant extents anyway – and users started using it 

• We started flagging this with 3.9, but quickly changed back to allowing it

• The documentation has now also been updated to say it is ok



In review



schnell

• zEnterprise exploitation

• Performance enhancements
• Control of loop unrolling
• Inlining STG of structures using REFER
• Inlining of ULENGTH and USUBSTR



lecker

• Improved SQL support

• Faster, smaller and more powerful preprocessor
• BY DIMACROSS assignments
• HBOUNDACROSS built-in function
• INDICATORS built-in function



nach Wunsch

• Enhanced XML generation
• XML attributes
• Suppression of null fields

• Requested new (sub)options for better quality
• PPLIST option
• New RULES (sub)options

• Miscellaneous user requirements
• Restrictions lifted
• %INCLUDE enhancements



And remember

• COBOL, PL/I, and C/C++ are strategic for System z
• Committed to continue to deliver value to customers
• Strong investment commitment from IBM

• IBM compilers are designed to exploit z/Architecture and Middleware 
(CICS, DB2, IMS)

• IBM compilers provide capability to…
• Modernize business critical COBOL and PL/I applications with improved Java 

and XML interoperability 
• Consolidate applications to System z by supporting industry language standards 

and extensions
• Reduce programming complexity

• Advance optimization technology
• Enhanced problem determination capabilities
• System program development capability of  “Metal C” option

• Rational is committed to delivering leading-edge compilers and application 
development tools technology to…

• Maximize application performance and increase system capacity
• Improve programmer productivity and shorten development cycle
• Lower TCO and increase return on IT investment



For more information

• System z compilers product pages
• Enterprise COBOL for z/OS  http://www-01.ibm.com/software/awdtools/cobol/zos/
• Enterprise PL/I for z/OS  http://www-01.ibm.com/software/awdtools/pli/plizos
• z/OS XL C/C++  http://www-01.ibm.com/software/awdtools/czos/

• Documentation 
• Enterprise COBOL for z/OS http://www-306.ibm.com/software/awdtools/cobol/zos/library/?

S_CMP=rnav
• Enterprise PL/I for z/OS http://www-306.ibm.com/software/awdtools/pli/plizos/library/?S_CMP=rnav
• z/OS XL C/C++  http://www-306.ibm.com/software/awdtools/czos/library/?S_CMP=rnav

• Rational Café  https://www.ibm.com/developerworks/rational/community/cafe/      
• Compilers and Application Tools user communities

• Rational Enterprise Modernization sandbox for System z
• http://www.ibm.com/developerworks/downloads/emsandbox_systemz/index.html

• Try out Rational Enterprise Modernization tools in a cloud environment

• Main compiler product pages:
• COBOL http://www.ibm.com/software/awdtools/cobol
• PL/I http://www.ibm.com/software/awdtools/pli
• C/C++ http://www.ibm.com/software/awdtools/ccompilers

http://www-01.ibm.com/software/awdtools/cobol/zos/
http://www-01.ibm.com/software/awdtools/pli/plizos
http://www-01.ibm.com/software/awdtools/czos/
http://www-306.ibm.com/software/awdtools/cobol/zos/library/?S_CMP=rnav
http://www-306.ibm.com/software/awdtools/cobol/zos/library/?S_CMP=rnav
http://www-306.ibm.com/software/awdtools/pli/plizos/library/?S_CMP=rnav
http://www-306.ibm.com/software/awdtools/czos/library/?S_CMP=rnav
https://www.ibm.com/developerworks/rational/community/cafe/
https://www.ibm.com/developerworks/rational/community/cafe/
http://www.ibm.com/developerworks/downloads/emsandbox_systemz/index.html
http://www.ibm.com/software/awdtools/cobol
http://www.ibm.com/software/awdtools/pli
http://www.ibm.com/software/awdtools/ccompilers
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Learn more at:
• IBM Rational software
• IBM Rational Software Delivery Platform
• Process and portfolio management
• Change and release management
• Quality management

• Architecture management
• Rational trial downloads
• developerWorks Rational
• IBM Rational TV
• IBM Rational Business Partners
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