
1

Ralph Bateman
ralph@uk.ibm.com

Session Number 10704

WebSphere MQ: Highly Scalable
Publish/Subscribe Environments

2

Agenda

• What is Publish/Subscribe?
• Recap WebSphere MQ V7.0

Publish/Subscribe
• What is Multicast?
• Publish/Subscribe in WebSphere MQ V7.1

using Multicast

2

What is Publish/Subscribe ?

4

N

O

T

E

S

WebSphere MQ Publish/Subscribe

• In WebSphere MQ V7 Publish/Subscribe becomes an in-
built part of the MQ API (Application Programming Interface)
and the administration model of WebSphere MQ.

• WebSphere MQ V7 extends the MQ API (Application
Programming Interface) to allow application programmers to
use the publish/subscribe application model with ease. New
verbs and changes to existing verbs are introduced in this
presentation.

• WebSphere MQ V7 also extend the administrative interfaces
(MQSC and PCF) to allow administrators to manage
Publish/Subscribe applications.

• In WebSphere MQ V7.1, Publish/Subscribe is extended to
include the Multicast transport.

3

5

What is Publish/Subscribe ?

• providers of information
need have no knowledge
of consumers

• consumers of information
need have no knowledge
of providers

• new providers/consumers can be added without disruption

Publish/Subscribe is a term used to define an
application model in which the provider of some
information is decoupled from the consumers of

that information.

• Providers of information
are called publishers

• Consumers of information
are called subscribers

6

N

O

T

E

S

What is Publish/Subscribe? - Notes
• Publish/subscribe systems have become very popular in recent years as

a way of distributing data messages from publishing computers to
subscribing computers. Such systems are especially useful where data
supplied by a publisher is constantly changing and a large number of
subscribers needs to be quickly updated with the latest data. Perhaps
the best example of where this is useful is in the distribution of stock
market data.

• In such systems, publisher applications of data messages do not need to
know the identity or location of the subscriber applications which will
receive the messages. Similarly, the subscribing applications do not
need to know the identity or location of the publishing application
providing the information. In this sense the providers and consumers are
said to be loosely-coupled.

4

7

The classic example

• A "feed" provides a continuous flow
of information which is pushed to
interested parties

• Traders consume this information
and use it as a basis for the buying
and selling stock

Traders

Stock
Feed

8

N

O

T

E

S

The classic example - Notes
• Perhaps the most-commonly quoted example of a Publish/Subscribe system is

one which provides stock-market information. Here a "feed" provides (publishes)
a continuous flow of information containing the latest stock prices. The latest
stock prices are required by traders who need this information in order to conduct
trades. Traders register their interest in (subscribe to) particular stock prices and
receive updates as prices change. Traders can be added/removed without
disruption to the providers of the information who have no knowledge of who is
receiving their information.

• The terms "push" and "pull" are also becoming increasingly popular when
describing the flow of information between applications. If we concentrate on this
example, traders receive new information from the stock-feed as soon as a stock
price changes. In this sense the information can be thought of as being pushed
directly to them. This pushing of information from provider to consumer is one of
the major differentiators between publish/subscribe and more conventional
systems. Our stock market example could have equally been designed in such a
way that updated stock prices only flowed to the traders when they specifically
requested, or pulled them from a central repository (server) of all stock prices. In
such a system, the emphasis would instead be on the traders, to request a
refresh of their stock prices on a continual basis.

• In fact WebSphere MQ supports both modes of operation.

5

9

Loose-coupling with Publish/Subscribe

Few-to-many: Research, news tickers

Many-to-many: Prices and Quotes

Many-to-few: Orders

Topic

Topic

Topic

10

N

O

T

E

S

Loose-coupling with Publish/Subscribe - Notes

• In the WebSphere MQ Publish/Subscribe model the only thing which connects
publishing and subscribing applications is the topic or subject which the publisher
associates with his information. Publishers and subscribers need only agree on
the topic to become connected to one another. Each different piece of
information has its own topic associated with it. Subscribers nominate which
types of information they want to receive by subscribing to specific topics.

• Publishers of information are unaware of subscribers to the extent that they may
publish information even if there are no subscribing applications requiring it.
Publishing and subscribing are completely dynamic processes. New subscribers
and new publishers can be added to the system without disruption.

• With respect to a given topic, or piece of information, all possible combinations of
publishers/subscribers are possible, that is:
• information about each topic may be provided by a single or multiple

publishing applications
• the information may be received and processed by one or more subscribing

applications
• The number of publishers and subscribers connected by a single topic depends

upon the type of information which is flowing between them. As we will see later,
WebSphere MQ supports both state and event based information, or topics.

6

11

Publications and subscriptions

• Subscribers make subscriptions with the queue manager to
register their interest in information relating to specific topics.
• They use the MQSUB verb

• Publishers provide information about specific topics by sending
publications to the queue manager
• They use the MQPUT verb

• The queue manager forwards each publication it receives to all
subscribers with a subscription which matches the associated
topic

12

N

O

T

E

S

Publications and subscriptions - Notes
• Just to recap, applications which provide information are called

publishers. Applications which consume information are called
subscribers.

• A subscriber specifies the topic it is interested in receiving information
about by specifying it on the MQSUB verb. A subscriber may make
multiple subscriptions to the queue manager.

• A publisher publishes its information by putting a message to a topic.
• It is the job of the queue manager, or queue manager network if multiple

queue managers have been connected together, to ensure that all
subscribing applications with matching subscriptions to the topic being
published on receive the publisher's message, known as a publication.

• There is a separate presentation about publish/subscribe in a multiple
queue manager scenario.

7

Re-cap WebSphere MQ V7 Publish/Subscribe

8

15

Publish/Subscribe in WebSphere MQ

MQSUB
‘Price/Fruit/+’
MQGET

MQOPEN
‘Price/Fruit/Apples’

MQPUT

Create TOPIC
objects

Configure attributes

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(FRUIT.ANCHOR)
TOPICSTR(‘Price/Fruit’)

Topic Status +
Subscription Status

Display Connections
and handles

Topic Tree

16

N

O

T

E

S

Publish/Subscribe in WebSphere MQ - Notes
• The queue manager holds a view of all the topic strings you are using in

a hierarchical construct known as the topic tree (see next page). This
topic tree is the central control point for all publish/subscribe. As a user
you will interact with the topic tree in several different ways.

• You can configure the behaviour of the topic tree by defining topic
objects and changing attributes on them. Of course you only need to do
this if you want to change the default behaviour. You may not need any
topic objects – we will look at this in more detail later.

• You can programmatically interface with the topic tree as a subscriber
using MQSUB and as a publisher using MQOPEN and MQPUT.

• You can monitor the use of your topic tree by such applications using the
Topic status command, the Subscription status command and the
commands to display connections and their handles.

9

17

Topic strings and topic tree

Price/Fruit/Apples

Price/Fruit/Oranges

Price/Vegetables/Potatoes

Price/Vegetables/Onions

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions

18

N

O

T

E

S

Topic strings and topic tree - Notes

• Topic strings can be any characters you choose. You can,
and should, add structure to you topic strings using the ‘/’
character. This produces a topic tree with a hierarchical
structure, as the example on this foil shows. Although this
hierarchical topic tree was created by the use of the topic
strings shown, we generally picture it as a tree such as this.

• There are some special characters, apart from the ‘/’
character that you should avoid in your topic strings. These
are ‘#’, ‘+’, ‘*’ and ‘?’ which are the symbols that are treated
as wildcards for subscribers to use.

10

19

Topic Objects

• Not necessary for Publish/Subscribe
• Provide an administrative control point for your topic tree

• Configuration attributes
• Security profiles
• Topic tree isolation MY.TOPIC.OBJECT

20

N

O

T

E

S

Topic Objects - Notes

• Topic objects are a new construct in WebSphere MQ V7.
They can be used to control the behaviour of your topic tree.

• You do not need to define any topic objects in order to use
Publish/Subscribe with WebSphere MQ V7, however you
may want to define some if you need to configure the topic
tree to use non-default attributes; if you want to apply
different security profiles to parts of your topic tree; or if you
want to isolate you applications from administrative changes
to the topic tree – rather like you do when you use remote
queue and alias queue definitions.

11

21

Subscribing Application

• MQSUB verb
• Subscription Descriptor (MQSD)

describes the topic
• MQSD.ObjectString
• MQSD.ObjectName

• Consume publications from the
returned hObj
• when MQSO_MANAGED used

MQSUB (hConn,
&SubDesc,
&hObj,
&hSub,
&CompCode,
&Reason);

MQGET (hConn,
hObj,
&MsgDesc,
&gmo,
strlen(pBuffer),
pBuffer,
&DataLength,
&CompCode,
&Reason);

MQSD SubDesc = {MQSD_DEFAULT};
SubDesc.ObjectString.VSPtr = “Price/Fruit/Apples”;
SubDesc.ObjectString.VSLength = MQVS_NULL_TERMINATED;
SubDesc.Options = MQSO_CREATE

| MQSO_MANAGED
| MQSO_FAIL_IF_QUIESCING;

22

N

O

T

E

S

Subscribing Application - Notes
• An application that wants to register an interest in information about a certain topic needs

to ‘subscribe’ to that topic. This can be done using the MQ API verb MQSUB. MQSUB can
be thought of rather like MQOPEN. It details the resource you wish to use, and it is the
point where security checks are done.

• The main structure that you need to be familiar with when using MQSUB is the MQSD
(subscription descriptor). This structure is where you define the topic you are interested in;
the options to use when making a subscription; and any other interesting changes to the
way the subscription is made.

• When specifying the topic string you wish to subscribe for, you can provide the whole topic
string, or an anchoring topic object which defines a certain point in the topic tree and then
the remaining part of the topic string to be appended to that which the topic object
represents.

• Here we see an example of MQSUB using the option MQSO_MANAGED. This is the
option to use when the application wishes the queue manager to look after the storage of
publication messages. On return from the MQSUB call your application is given two
handles, an hSub and an hObj. The hSub is the handle to the subscription. The hObj is the
handle which you can consume publications from, i.e. using MQGET or MQCB.

• Once you have successfully done an MQSUB, you can start to consume any publication
messages that are being sent to you.

12

23

FRUIT

Defining a topic object

Price

Fruit

Apples Oranges

SYSTEM.BASE.TOPIC

Starting MQSC for queue manager TEST1.

DEFINE TOPIC(FRUIT)
TOPICSTR(‘Price/Fruit’) DURSUB(NO)

DISPLAY TOPIC(FRUIT)
AMQ8633: Display topic details.

TOPIC(FRUIT) TYPE(LOCAL)
TOPICSTR(Price/Fruit) DURSUB(NO)
PUB(ASPARENT) SUB(ASPARENT)
DEFPSIST(ASPARENT) DEFPRTY(ASPARENT)
DEFPRESP(ASPARENT) ALTDATE(2011-09-27)
ALTTIME(18.33.56) PMSGDLV(ASPARENT)
NPMSGDLV(ASPARENT) PUBSCOPE(ASPARENT)
SUBSCOPE(ASPARENT) PROXYSUB(FIRSTUSE)
WILDCARD(PASSTHRU) MDURMDL()
MNDURMDL() MCAST(ASPARENT)
COMMINFO() USEDLQ(ASPARENT)

DEFINE TOPIC

ALTER TOPIC

DELETE TOPIC

DISPLAY TOPIC

24

• DEFINE TOPIC(FRUIT)
TOPICSTR(‘Price/Fruit’) DURSUB(NO)

• DISPLAY TOPIC(FRUIT)
AMQ8633: Display topic details.

TOPIC(FRUIT) TYPE(LOCAL)
TOPICSTR(Price/Fruit) DESCR()
CLUSTER() DURSUB(NO)
PUB(ASPARENT) SUB(ASPARENT)
DEFPSIST(ASPARENT) DEFPRTY(ASPARENT)
DEFPRESP(ASPARENT) ALTDATE(2011-09-27)
ALTTIME(18.33.56) PMSGDLV(ASPARENT)
NPMSGDLV(ASPARENT) PUBSCOPE(ASPARENT)
SUBSCOPE(ASPARENT) PROXYSUB(FIRSTUSE)
WILDCARD(PASSTHRU) MDURMDL()
MNDURMDL() MCAST(ASPARENT)
COMMINFO() USEDLQ(ASPARENT)
CUSTOM()

13

25

26

N

O

T

E

S

Defining a topic object - Notes
• Let’s say you need to disallow the creation of durable subscriptions for one half

of the topic tree. We can create one TOPIC object at the highest point where we
need this behaviour to start, and that behaviour will be inherited by the nodes in
the topic tree below that point without the need for any further TOPIC object
definitions.

• As you might expect, this new object type has DEFINE, ALTER, DELETE and
DISPLAY commands. One thing to note about ALTER is that the TOPICSTR
parameter of a TOPIC object cannot be altered. Think of this attribute as the
other name of the TOPIC object – you cannot alter the name of an object, you
must delete and redefine the object to do that.

• Looking at the DISPLAY output from the object we just defined, we can see that
many of the attributes that we didn’t specify have the value ASPARENT (or for
the character strings – have blanks, which means the same thing as the
ASPARENT value). ASPARENT means that the value for this attribute is taken
from the next TOPIC object found by walking up the topic tree. If the next TOPIC
object found also says ASPARENT for the value that is being resolved we carry
on up the tree – eventually we may get to the very top and thus use the values in
the SYSTEM.BASE.TOPIC.

14

What is Multicast?

15

29

Multicast

Unicast

Multicast – Technical Overview

• IP Multicast is a low level form of pub /sub implemented in NICs and routers
• Multicast group addresses

• For IPv4 this is 224.0.0.0 to 239.255.255.255 (RFC3171)
• Can be more efficient than unicast pub/sub

• Scaling to a high number of subscribers
• But Multicast is more complex to set up than unicast
• Basic multicast is unreliable

• No retries, no persistence
• Data can be lost

• Reliable Multicast
• Uses sequence numbers and NAKs
• Allows receivers to request missed messages to be replayed

• Reliable protocols not interoperable across vendors
• ‘PGM’ provides common denominator and is

supported by routers

30

N

O

T

E

S

Multicast – Technical Overview - Notes
• IP Multicast is a low level form of pub /sub implemented in NICs and routers.

Receivers register their interest in receiving data on pre-defined set of multicast
group addresses). For IPv4 this is 224.0.0.0 to 239.255.255.255 (RFC3171).
Senders send datagrams to the multicast address and then network
cards/routers make copies of data and send to receivers who have registered for
an address.

• Multicast can be more efficient than traditional uni-cast pub/sub, scaling to a high
number of subscribers, due to removing the duplication of sending each
subscriber its own copy of the data.

• However, multicast is more complex to set up than unicast. Routers need to be
configured to pass multicast traffic. This is gradually getting easier, since ISPs
are starting to enable routers – allowing multicast over the internet.

• The basic multicast transport is unreliable – no retries, persistence etc. This
means data can be lost. However, there is a layer provided over the basic
multicast transport called Reliable Multicast Messaging which uses sequence
numbers and (negative) acknowledgements (ACKS/NAKs), allowing receivers to
request messages to be replayed if they are missed. Publisher and subscriber
speed mismatches can lead to broadcast storms and flooding. NAK suppression
and aggregation is used to circumvent this problem.

16

31

Multicast – What are the Benefits?

• Low latency
• Much higher volumes than standard non-persistent messaging
• Messages do not pass through queues
• Peer to peer communication

• High Scalability
• Additional subscribers cause no slow down
• Reduced network traffic

• ‘Fair delivery’ of data
• Each subscriber ‘sees’ the data at the same time
• Fair delivery is critical to ensure that no recipient gains an advantage
• Multicast offers near simultaneous delivery

• High availability
• Multicast uses the network so does not need a pub/sub engine to fan-out data
• Once a Topic is mapped to a group address there is no need for a Qmgr

• Publishers and subscribers can operate in a “peer-to-peer” mode
• Allows load to be reduced on Qmgr servers
• Qmgr servers not a single point of failure

17

Publish/Subscribe in WebSphere MQ V7.1 using
Multicast

18

35

Publisher

Subscriber 2Subscriber 1

TEST1

MQSUB
‘Price/Fruit/+’

MQGET

Current MQ Publish/Subscribe

• Messages flow through
Queue Manager

• Subscriber matching done by
Queue Manager on publish

• Each subscriber
sent its own copy
of message

MQOPEN
‘Price/Fruit/Apples’

MQPUT
MQSUB
‘Price/Fruit/+’

MQGET

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions
Matching

36

N

O

T

E

S

Current MQ Publish/Subscribe - Notes

• Using the MQ Publish/Subscribe feature in V7.0, publication
messages are stored on queues for the subscriber to
consume. Applications which publish messages send them
to the queue manager, and applications which consume
messages retrieve them from the queue manager.

• The matching engine is in the queue manager. At publish
time this is where the subscribers are identified and copies
of the publication messages are sent to each subscriber’s
queue.

19

37

• Normal MQ connection still required
• Messages flow directly between clients
• Subscriber matching

done at each client.

FRUIT

Publisher

Subscriber 2Subscriber 1

TEST1

MQSUB
‘Price/Fruit/+’

MQGET

MQ Multicast Pub/Sub

MQOPEN
‘Price/Fruit/Apples’

MQPUT
MQSUB
‘Price/Fruit/+’

MQGET

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions

Matching

COMMINFO

Matching
Network

38

N

O

T

E

S

MQ Multicast Pub/Sub - Notes

• To use MQ Multicast for Publish/Subscribe, a connection to
the queue manager is still required – in order to discover the
group address for publishing, for example. This is defined in
a new MQ object called a COMMINFO object – we will see
this in a later page.

• However, publication messages are not sent through the
queue manager, but are instead published by the client to
the group address and received by the subscribing clients
from the group address.

• The matching engine is in the client. Matching must be done
in the client to filter out topics on the group address that the
application is not interested in because many topics can be
on the same group address.

20

39

TEST1

• Queue Manager or connection failure
does not stop multicast traffic

• Connection must be made with
MQCNO_RECONNECT_*

FRUIT

Publisher

Subscriber 2Subscriber 1

MQSUB
‘Price/Fruit/+’

MQGET

MQ Multicast Pub/Sub High availability

MQOPEN
‘Price/Fruit/Apples’

MQPUT
MQSUB
‘Price/Fruit/+’

MQGET

Price

Fruit

Apples Oranges

Vegetables

Potatoes Onions

Matching

COMMINFO

Matching
Network

40

N

O

T

E

S

MQ Multicast Pub/Sub High availability -
Notes

• Using the multicast transport gives your applications high
availability – specifically the ability to keep on sending and
receiving publication messages even whilst the queue
manager in unavailable.

• This is achieved because the messages are not going
through the queue manager, and is enabled when using a
reconnectable client, that is a client using one of the
MQCNO_RECONNECT_* options. If connection with the
Queue Manager is lost this option will cause the client to try
to reconnect to the queue manager in the background.
During this reconnect process multicast traffic is able to
continue.

21

41

Changes to your application to use Multicast

An application written in V7.0 using these criteria will not require
any changes in V7.1 to use Multicast
• Is a threaded client application
• Uses managed handles
• Uses non-durable subscriptions
• Uses a topic string length 255 or less
• Uses re-connectable clients (for high availability) – V7.0.1 feature
• Doesn’t use transactions
• Doesn’t use persistent messages
• Doesn’t use message grouping or segmentation

42

N

O

T

E

S

Changes to your application to use Multicast -
Notes

• You can write an application in WebSphere V7.0 that will not
require any changes to run as a multicast application in
WebSphere V7.1.

• Of course not every application will meet these criteria, for
example an application that is linked using local bindings
and doing point-to-point transactional work. The criteria that
are required are shown on this slide.

• Search the MQ Information Centre for “Multicast and the
Message Queue Interface” for more details.

22

43

• Linked and enabled on the TOPIC
• SYSTEM.BASE.TOPIC points to

SYSTEM.DEFAULT.COMMINFO.
MULTICAST
• Default group address is 239.0.0.0
• Usable as soon as

MCAST(ENABLED)
• Ensure topic strings length 255 or less

Configuring Pub/Sub to use Multicast

Starting MQSC for queue manager TEST1.

DEFINE COMMINFO(MC) GRPADDR(239.0.0.0)

DISPLAY COMMINFO(MC)
AMQ8861: Display comminfo details.

COMMINFO(MC) TYPE(MULTICAST)
DESCR() ALTDATE(2011-09-27)
ALTTIME(18.39.50) BRIDGE(ENABLED)
CCSID(ASPUB) COMMEV(DISABLED)
ENCODING(ASPUB) GRPADDR(239.0.0.0)
MCHBINT(2000) MCPROP(ALL)
MONINT(60) MSGHIST(100)
NSUBHIST(NONE) PORT(1414)

ALTER TOPIC(FRUIT) COMMINFO(MC) MCAST(ENABLED)

DEFINE COMMINO

ALTER COMMINFO

DELETE COMMINFO

DISPLAY COMMINFO

• New MQ object – COMMINFO
• Defines the behaviour of

the multicast traffic

44

N

O

T

E

S

Configuring Pub/Sub to use Multicast -
Notes

• In order to configure multicast there is a new MQ Object, the Communication
Information (COMMINFO) object. This object allows the tuning of behaviour of
the
multicast traffic including the Group address; whether message properties are
propagated; the reliability setting; attributes to control data conversion;
communication Monitoring and queue manager bridging.

• The COMMINFO object is then referenced from the TOPIC object. By default MQ
comes with the SYSTEM.DEFAULT.COMMINFO.MULTICAST object linked to
the SYSTEM.BASE.TOPIC – so the whole topic tree is ready to use multicast on
the default group address (239.0.0.0) – all that needs to be done to enable it is to
alter the topic object you want to use multicast with to MCAST(ENABLED). This
is useful for demos and playing with multicast initially, but unless you really want
the whole topic tree to use the same group address and all the same settings,
you would instead make your own COMMINFO objects, possibly using a different
group address for each.

• Another point to bear in mind is that the topic string used with multicast is limited
at 255 characters, so ensure to topics you define stay below this length limitation.

23

45

• DEFINE COMMINFO(MC) GRPADDR(239.0.0.0)

• DISPLAY COMMINFO(MC)
AMQ8861: Display comminfo details.

• COMMINFO(MC) TYPE(MULTICAST)
• DESCR() ALTDATE(2011-09-27)
• ALTTIME(18.39.50) BRIDGE(ENABLED)
• CCSID(ASPUB) COMMEV(DISABLED)
• ENCODING(ASPUB) GRPADDR(239.0.0.0)
• MCHBINT(2000) MCPROP(ALL)
• MONINT(60) MSGHIST(100)
• NSUBHIST(NONE) PORT(1414)

• ALTER TOPIC(FRUIT) COMMINFO(MC) MCAST(ENABLED)

46

24

47

Bridging from Queue Manager to Multicast

• From Queue Manager publish
to Multicast subscriber(s)

• COMMINFO object
• BRIDGE(ENABLED|DISABLED)

• Only outbound from
QMgr supported

Publisher

Subscriber 2Subscriber 1

TEST1

MQSUB
‘Price/Fruit/+’

MQGET

MQOPEN
‘Price/Fruit/Apples’

MQPUT

MQSUB
‘Price/Fruit/+’

MQGET

Matching Matching

Multicast Bridge

Network

48

N

O

T

E

S

Bridging from Queue Manager to Multicast - Notes

• Publications made by applications that are not using multicast can be
bridged to multicast subscribers by a component in the queue manager.

• Bridging is enabled on the COMMINFO object using the BRIDGE field.
• When an application publishes on a topic whose COMMINFO object is

configured as BRIDGE(ENABLED) then these messages are published
out on the group address for that TOPIC/COMMINFO.

• Bridging is only available outbound from the queue manager.
• Bear in mind the multicast topic string length limitation of 255 characters

when creating a topic to be bridged between MQ publishers and
multicast subscribers.

25

49

TEST1

Publisher

Subscriber 2Subscriber 1

MQSUB
‘Price/Fruit/+’

MQGET

Monitoring your MQ Multicast Network

• DISPLAY TPSTATUS TYPE(SUB/PUB)
• All the usual status
• Plus MCASTREL

• More detail in events written to the
SYSTEM.ADMIN.PUBSUB.EVENT
queue
• Two event types
• MQRC_MCAST_PUB_STATUS
• MQRC_MCAST_SUB_STATUS

• Controlled by COMMEV switch
• COMMEV(ENABLED)

for all events
• COMMEV(EXCEPTION)

for events only when
MCASTREL is 90%
or less.

• Events every MONINT

MQOPEN
‘Price/Fruit/Apples’

MQPUT
MQSUB
‘Price/Fruit/+’

MQGET

Matching Matching
Network

Subscriber and Publisher
Status Mesages

Event Queue

50

N

O

T

E

S

Monitoring your MQ Multicast Network -
Notes

• WebSphere MQ V7.0 introduced the DISPLAY TPSTATUS command which
shows status for the subscribers and publishers using a topic. Multicast
publishers and subscribers provide this status information but in addition have
one extra field called MCASTREL which is a pair of short and long term
indicators showing the reliability (as a percentage) of the multicast transport. A
value of 100% shows that all messages are being delivered successfully. A lower
value indicates some issue with the transport that means some messages are
not being delivered.

• To receive more detailed information about the problem you can turn on events
which provide more detail. This is another field on the COMMINFO object, called
COMMEV. This allows you to turn on events all the time, or just when a problem
is seen. COMMEV(EXCEPTION) will only write events when MCASTREL
indicates reliability is 90% or less. Events will be written at an interval defined by
the MONINT field on the COMMINFO object.

• The information that is used by the queue manager to display the reliability of the
multicast transport and the other status fields, periodically is sent from the clients
(as the messages being monitored do not go through the queue manager).
Clearly if the queue manager is not available to the clients and they are in the
process of reconnecting, this information may be out of date.

26

51

MQ Multicast interoperability with MQ LLM
WebSphere MQ LLMWebSphere MQ

MQPUT

Data: “Hello World”

rmmRxInit
rmmRxJoinMulticastGroup
rmmRxCreateTopic

Data: “Hello World”

Data: “Hello World”

Data: “Hello World”

Network

52

Starting MQSC for queue manager TEST1.

ALTER COMMINFO(MC) MCPROP(ALL)

MQ Multicast interoperability with MQ LLM
WebSphere MQ LLMWebSphere MQ

MQPUT
MQMD.Priority = 3
Colour = “Blue”

Data: “Hello World”

rmmRxInit
rmmRxJoinMulticastGroup
rmmRxCreateTopic

MQMD

MQ
Message Properties

Data

LLM
System Properties

Data

LLM
User Properties

Data: “Hello World”
Colour = “Blue”
MQMD.Priority = 3

LLM Prop (-1008) = 3

Data: “Hello World”

Colour = “Blue”

LLM Prop (1008) = 3
Colour = “Blue”
Data: “Hello World”

27

53

MQ Multicast interoperability with MQ LLM
Starting MQSC for queue manager TEST1.

ALTER COMMINFO(MC) MCPROP(USER)

WebSphere MQ LLMWebSphere MQ

MQPUT
MQMD.Priority = 3
Colour = “Blue”

Data: “Hello World”

rmmRxInit
rmmRxJoinMulticastGroup
rmmRxCreateTopic

MQMD

MQ
Message Properties

Data

LLM
System Properties

Data

LLM
User Properties

Data: “Hello World”
Colour = “Blue”
MQMD.Priority = 3

Data: “Hello World”

Colour = “Blue”

Colour = “Blue”
Data: “Hello World”

54

MQ Multicast interoperability with MQ LLM
Starting MQSC for queue manager TEST1.

ALTER COMMINFO(MC) MCPROP(NONE)

WebSphere MQ LLMWebSphere MQ

MQPUT
MQMD.Priority = 3
Colour = “Blue”

Data: “Hello World”

rmmRxInit
rmmRxJoinMulticastGroup
rmmRxCreateTopic

MQMD

MQ
Message Properties

Data

LLM
System Properties

Data

LLM
User Properties

Data: “Hello World”
Colour = “Blue”
MQMD.Priority = 3

Data: “Hello World”

Data: “Hello World”

28

55

MQ Multicast interoperability with MQ LLM
WebSphere MQ LLMWebSphere MQ

MQSUB
MQGET rmmTxSubmitMessage

MQMD

MQ
Message Properties

Data Data

LLM
System Properties

LLM
User Properties

MQMD.Priority = 3
Colour = “Blue”
Data: “Hello World”

LLM Prop (-1008) = 3

Data: “Hello World”
Colour = “Blue”

Data: “Hello World”

Colour = “Blue”

MQMD.Priority = 3

56

N

O

T

E

S

MQ Multicast interoperability with MQ LLM - Notes
• The underlying technology in WebSphere MQ V7.1 multicast support and in WebSphere MQ Low

Latency Messaging (LLM) is the same. Messages published by one can be subscribed by the other and
vice versa. WebSphere MQ messages of course have a different look and feel to those published over
LLM, so there are a few considerations. Additionally it is worth noting that a publisher using either
interface is unaware of the subscribers and whether they are MQ or native LLM applications.

• The message descriptor (MQMD) is quite a large structure (428 bytes) and often much of this structure is
the same for every message. Avoiding sending most/all of the MQMD reduces the size of the message
which improves the speed, and additionally means an LLM native application is not presented with
information it might not be expecting. MQMD fields can be sent however, and when they are they
become LLM properties. All fields in the MQMD are defined as reserved LLM system properties.

• Only those parts of the MQMD that are different from a defined default set for MQ Multicast are sent
(search MQ Info Centre for “Controlling the size of multicast messages”). When fields of the MQMD are
sent, they are given to LLM as properties. You can control the fields that are sent using the COMMINFO
field MCPROP.

• When receiving a message from a native LLM application, normally no MQMD fields will be there, so this
defined default set also provides a way of constructing an MQMD when presenting the message to an
MQ application. Of course, since the MQMD fields are defined as reserved LLM system properties, a
native LLM application can set the appropriate property and populate an MQMD field in an MQ
application (search MQ Info Centre for “Multicast interoperability with WebSphere MQ Low Latency
Messaging” for the LLM system property values).

29

57

Security

• MQ Security
• MQOPEN
• MQSUB

• Controlled on the topic object
• Doesn’t stop native LLM applications from transmitting/receiving using

same group address

• Physical Network Security
• Controls who can use the subnet

• Mixed MQ and LLM applications
• MQ API Exit on clients

58

N

O

T

E

S

Security – Notes
• Applications consuming the messages sent on a group address don’t

have to be MQ applications – as we have just discussed with LLM
interoperability. Therefore securing access to the MQ topic object for
subscribe and publish is not enough.

• It is expected that many multicast applications will run within a single
subnet. Control on who can use that subnet can be restricted by network
controls and further security is often not required.

• However, if applications are more widely spread than a small network
domain, security needs to be on the data that is being sent, and to this
end, you could use an API exit to encrypt the data before sending it on
the group address, and only recipients with an appropriate decrypting
API exit could then see the data. Equally, if you need to be sure that the
data is sent from a trusted source, an API exit which signs the data, and
an appropriate API exit which only accepts messages that are signed
thus would allow the detection of rogue messages inserted by an
unauthorized application. To this end, MQ V7.1 has added support for
client side API exits.

30

59

Performance

Number of subscribers

M
es

sa
ge

s
pe

r s
ec

on
d*

* Messages = #published messages
+ # received messages

60

N

O

T

E

S

Performance - Notes

• Here is a brief look at the sort of difference using multicast
can make when using it for a large fan-out to bigger numbers
of subscribers.

• In short, the more subscribers you have, the more messages
can be sent per second as the publishing rate is
independent of the number of subscribers.

• Full details will be published in the Performance Reports for
WebSphere MQ V7.1.

31

61

Availability

• Clients and Server both must be WebSphere MQ V7.1
• Clients

• ‘C’ Client only
• Not Java
• Not .Net

• Platforms
• Unix and Windows
• Not z/OS
• Not IBM i

• WebSphere MQ LLM Interoperability
• Need MQ LLM V2.4 minimum

62

N

O

T

E

S

Availability – Notes

• Multicast is available for use with the ‘C’ Client, that is the
client implementation which underlies the procedural MQI
client applications. It is not currently available in the Java
Client or the .Net Client implementations.

• Multicast is not available on z/OS or IBM i platforms.
• If you wish to interoperate between WebSphere MQ V7.1

multicast client applications and native LLM applications you
need a minimum of MQ LLM V2.4. You do not need any
version of MQ LLM installed to just use MQ multicast
however.

32

63

Demo
TEST1

Publisher

Subscriber 2Subscriber 1

MQSUB
‘Price/Fruit/+’

MQGET

MQOPEN
‘Price/Fruit/Apples’

MQPUT
MQSUB
‘Price/Fruit/+’

MQGET

Matching Matching
Network

64

N

O

T

E

S

Demo - Notes
• We are going to show a demonstration of the scenario we talked about earlier where we

can continue to publish messages to multicast subscribers even while the queue manager
is down. We will use a very simple command line application from SupportPac MA01 – ‘Q’.
The commands for which are provided here for you to try out at home.

• Make sure you have MULTICAST enabled in the SYSTEM.BASE.TOPIC
• Subscriber (as many as you want) – the demo will have two subscribers

q -m TEST1 -l mqic32 –xr -Scs:"Price/Fruit/+" -w60
• which means connect to queue manager TEST1 using mqic32 library (client) and a re-

connectable option; create a subscription to the topic string “Price/Fruit/+”; and wait for 60
seconds.

• Publisher
q -m TEST1 -l mqic32 –xr -Ts:"Price/Fruit/Apples" –M#100/-150/1000
• which means connect to the queue manager TEST1 using mqic32 library (client) and a re-

connectable option; open and put messages to the topic string “Price/Fruit/Apples”; there will
be 100 messages, ranging in size from 1 to 150 bytes in length which will be put at intervals
of 1000 ms.

• Once the publisher and subscribers are running we will end the queue manager using
endmqm –r –w TEST1
• which tells the queue manager that although this is a graceful command driven way of

stopping the queue manager, we should tell the clients to reconnect. If of course we had a
failure, perhaps of the network connection, reconnection would also take place.

33

65

Summary – Pub/Sub in MQ V7.1 using Multicast

• Programming
• Use managed handles
• Use non-durable subscriptions
• Use re-connectable clients for high availability

• Configuration
• Enable on TOPIC object
• Detailed tuning on COMMINFO object

• Other Considerations
• Bridging
• Monitoring
• Interoperation with MQ LLM
• Security

66

N

O

T

E

S

Summary - Notes

• So today we have seen that writing an MQ application to use
multicast requires no changes over and above the managed
handles that could be used in WebSphere MQ V7.0.

• Changes to enable multicast are all made by making
administrative changes to the TOPIC object and tuning can
be done with the new COMMINFO object.

• Multicast is a new transport in MQ and we looked at some of
the other considerations as well.

34

67

Putting the web into
WebSphere MQ: A look at
Web 2.0 technologies

MQ Q-Box - Open
Microphone to ask the
experts questions

For your eyes only -
WebSphere MQ
Advanced Message
Security

18:00

Shared Q including Shared
Message Data Sets

MQ Java zero to heroUnder the hood of
Message Broker on z/OS -
WLM, SMF and more

Introduction to the
WebSphere MQ
Product Family -
including what's new in
the family products

16:30

Diagnosing problems for
Message Broker

WebSphere MQ Security -
with V7.1 updates

What's new in WebSphere
MQ V7.1

WebSphere Message
Broker 101: The Swiss
army knife for
application integration

15:00

Diagnosing problems for MQThe Do’s and Don’ts of
Message Broker
Performance

What's new in WebSphere
Message Broker V8.0

WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

13:30

MQ & DB2 – MQ Verbs in
DB2 & Q-Replication

WebSphere MQ: Highly
scalable publish subscribe
environments

12:15

The Do’s and Don’ts of z/OS
Queue Manager Performance

Message Broker
administration

The Doctor is in. Hands-on
Lab and Lots of Help with
the MQ Family

11:00

CICS Programs Using
WMQ V7 Verbs

The even darker arts of SMFThe Dark Side of
Monitoring MQ - SMF 115
and 116 record reading
and interpretation

The MQ API for dummies -
the basics

09:30

MQ Performance and Tuning
on distributed

Free MQ! - MQ Clients
and what you can do with
them.

08:00

FridayThursdayWednesdayTuesdayMonday

This was session WMQ 101 - The rest of the week ……

68

Questions & Answers

As a reminder, please fill out a session evaluation

