
WebSphere MQ for z/OS Shared Queues

Paul Dennis
WebSphere MQ for z/OS Development

Agenda

• What shared queues are

• Shared queues

• Queue-sharing groups

• Coupling Facility (CF) structures

• Persistence and transaction integrity

• Configuring channels with shared queues

• Inbound channel configurations

• Outbound channel configurations

• Exploiting shared queues

• Availability benefits of queue sharing

• Scalability

• Function:

�Multiple Queue Managers can access the same shared

queue messages

�Multiple Queue Managers can access the same shared

queue objects

• Benefits

�Availability for new messages

�Availability for old messages

�Pull workload balancing

�Scalable capacity

�Low cost messaging within a sysplex

Shared Queues?

This page intentionally blank

Mover

(CHIN)

Mover

(CHIN)

Target

queue

Xmit

queue

Application

Queue manager

Application

Queue manager

Mover

N

O

T

E

S

Chart shows an application put to a remote target queue -- that is,
the target queue is local to another queue manager. This put
uses the mover as follows:

1. Application puts to remote target queue

2 Queue manager puts message on local transmit queue

3 Local mover gets message and sends to remote mover

4 Remote mover puts message to target queue

5 Remote application can now get the message.

The remote application can put a message to the reply-to queue
using the same method.

Note that only applications connected to the target queue manager
can get the message.

Mover

Shared
QueueCoupling Facility (CF)

Application Application

QMgr QMgr

�Same sysplex

�Physical message size
< 100MB (V6+)

Shared Queues

N

O

T

E

S

Chart shows an application put to a shared target queue -- that is, the target

queue is local to more than one queue manager. This put does not use the

mover:

1. Application puts to shared target queue

2. Remote application can now get the message.

The remote application can put a message to the reply-to queue using the

same method.

Note that applications connected to any queue manager with access to the

shared queue can get the message. To access the same shared queues,
queue managers must be:

� In the same z/OS sysplex

� In the same queue-sharing group (QSG) -- we will explain QSGs later.

There are restrictions on shared queues, for example:

�CF capacity is limited (compared to DASD).

Shared Queues

IGQ Agent

Intra-group
queue

Queue Manager

Application Application

Target

Queue

Queue Manager

SYSTEM.QSG.TRANSMIT.QUEUE

Intra-Group Queue

N

O

T

E

S

Chart shows an application put to a remote target queue -- but the target queue is

local to another queue manager in the same queue-sharing group. This put

uses the intra-group queuing (IGQ):

1. Application puts to remote target queue

2 Queue manager puts message on shared IGQ queue

3 Remote IGQ agent gets message from IGQ queue

4 Remote IGQ agent puts message to target queue

5 Remote application can now get the message

The IGQ method is similar to the mover method but more efficient -- that is, it uses

much less processor power.

There is one IGQ queue for each queue-sharing group. It has the reserved name

SYSTEM.QSG.TRANSMIT.QUEUE.

The IGQ queue (and the IGQ method) has the same restrictions as any shared

queue.

If IGQ cannot be used (large message, no IGQ queue defined, or whatever) then the

put will be handled by the mover (assuming there is a suitable channel).

Intra-Group Queue

DB2 Data Sharing Group

WebSphere MQ Queue Sharing Group

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Mover

QMGR

Private
Queues

Private
Objects

Shared
Queues

Shared
Objects

Data for

msg
> 63KB

Queue Sharing Groups (QSGs)

N

O

T

E

S

Chart shows how queue managers are organized into queue-sharing groups (QSGs) and the
relationship to DB2 data-sharing groups.

A queue-sharing group can contain one or more queue managers:
•Each queue manager has its own private (not shared) queues and object definitions.
•All queue managers in a QSG share the same set of shared queues and shared object
definitions

•A queue manager cannot belong to more than one QSG.

Shared object definitions for a QSG are maintained for WebSphere MQ by DB2. Shared access
to these definitions is by DB2 data sharing:

•You must have DB2
•You can have more than one data-sharing group, but all members of one QSG must be
members of the same data-sharing group

•Shared object definitions are cached in the queue managers.
•A DB2 outage does not bring down the QSG (but you cannot add or change shared objects if
DB2 is down).

You do not have to define any queue-sharing groups if you do not run a sysplex (or if you just don't
want to).

If using shared messages > 63KB then a small portion for the message is stored in the CF, and
the rest is stored in DB2 or with V7.1 or higher there is the option of using Shared Message Data
Sets (SMDS) for storing the rest of the message data.

Queue-Sharing Groups (QSGs)

Large Shared Queue Messages
(using DB2)

Message
10K

Shared QueueMessage
100K (ptr)

Message
100M (ptr)

Message
1K

Message Data 100M

Message Data 100K

…

…

DB2 Table CSQ.ADMIN_B_MESSAGES

QM1 Shared Queue

Message
100K (ptr)

QM1
SMDS

QM2

SMDS

QM2

APP
MQPUT

APP
MQGET

1

2 3

4

V7.1
Large Shared Queue Messages
(using SMDS)

N

O

T

E

S

Shared message data set concepts V7.1

Offloaded message data for shared messages is stored in data sets.

Each application structure has an associated group of shared message data

sets, with one data set per queue manager.
Named using DSGROUP parameter on CFSTRUCT definition.

Each queue manager owns a data set for each structure, opened for

read/write access, which it uses to write new large messages.

Each queue manager opens the data sets for the other queue managers for
read-only access, so it can read their message data.

When a message with offloaded data needs to be deleted, it is passed back

to the queue manager which originally wrote it, so that the queue manager
can free the data set space when it deletes the message.

1 2 3 4 5 6 7 8 9 10

0

50

100

150

200

250

300

350

400

•3 LPAR Test - DB2

64KB Non-Persistent Messages In-Syncpoint - DB2

NP SIS Scaling –

3 qmgr

NP SIS Scaling –

6 qmgr

NP SIS Scaling –

9 qmgr

Queue Pairs

T
ra

n
s
a

c
ti
o

n
s
 /

 S
e

c
o

n
d

1 2 3 4 5 6 7 8 9 10

0

1000

2000

3000

4000

5000

6000

7000

•3 LPAR Test - SMDS

64KB Non-Persistent Messages In-Syncpoint - SMDS

NP SIS Scaling –

3 qmgr

NP SIS Scaling –

6 qmgr

NP SIS Scaling –

9 qmgr

Queue Pairs

T
ra

n
s
a

c
ti
o

n
s
 /

 S
e

c
o

n
d

V7.1SMDS Performance Improvement

• Early Test Results on z196

• Tests show comparable CPU savings making SMDS a more usable feature for
managing your CF storage

• SMDS per CF structure provides better scaling than DB2 BLOB storage

•CSS: F S

Selecting which messages to offload

• Messages too large for CF entry (> 63K bytes) are always
offloaded.

• Other messages may be selectively offloaded using offload rules.
• Each structure has three offload rules, specified on the CFSTRUCT

definition.
• Each rule specifies message size in Kbytes and structure usage

threshold, using two parameters:
• OFFLDnSZ(size) and OFFLDnTH(percentage), where n = 1, 2, 3.

• Data for new messages exceeding the specified size is offloaded (as
for a large message) when structure usage exceeds the specified
threshold.

• Default rules are provided which should be useful in most cases.

• Rules can be set to dummy values if not required.

• Without offloading data, it is possible to store 1.25M messages of
63KB on a 100GB structure

• When offloading all messages, it is possible to store 45M
messages on the same structure, irrespective of message size

V7.1

N

O

T

E

S

Selecting which messages to offload V7.1

As with previous releases of MQ, the amount of data that can be stored in the CF for

a single message is limited to 63KB. This means that if the message is over 63KB in

size then it must be “offloaded”. With V7.1 there are two offload methods, already

seen, for offloading the data, using either DB2 or SMDS.

In addition to offloading all messages over 63KB, it is possible to specify that

messages smaller than this size should also be offloaded. There are three sets of

rules that are used to control this, and each set is made up of two parameters, the

size of the message and how full the CF structure is when the message is put. These

offload rules enable a balancing to be performed between performance and CF

capacity. For example, you might use a rule that says that when the CF structure is

70% full then all messages over 32KB will be offloaded, and then another rule that

says that when the CF structure is over 80% full, all messages over 4KB will be

offloaded. When migrating a structure from CFLEVEL 4 to CFLEVEL 5 (required to

use these rules), the defaults will be set to mimic the CFLEVEL 4 behavior. When

defining a new structure at CFLEVEL 5, the default rules will be set as follows:

OFFLD1SZ = 32K OFFLD1TH = 70

OFFLD2SZ = 4K OFFLD2TH = 80

OFFLD3SZ = 0K OFFLD3TH = 90

Use the CSQ5PQSG utility to create a QSG:

1 Add the QSG into the DB2 tables:
//stepname EXEC PGM=CSQ5PQSG,

// PARM='ADD QSG,qsg-name,dsg-name,DB2-ssid'

2 Add the queue managers into the DB2 tables as members of the

QSG:
//stepname EXEC PGM=CSQ5PQSG,

// PARM='ADD QMGR,qmgr-name,qsg-name,dsg-name,DB2-ssid'

Name of the DB2 data-sharing groupdsg-name

DB2 subsystem IDDB2-ssid

Name of the queue managerqmgr-name

Name for the queue-sharing groupqsg-name

Creating a queue-sharing group

N

O

T

E

S

Chart shows JCL fragments for defining a QSG and adding a queue

manager into a QSG (for more complete information, see System

Administration Guide).

You can also use CSQ5PQSG to remove a queue manager from a QSG.
To do this, you must ensure that the queue manager cannot have any

recovery to do -- either:
•The queue manager was stopped normally, or:

•The queue manager has never been started.

You can also use CSQ5PQSG to delete a QSG which has no queue

managers in it -- that is:

•You removed all the queue managers, or:

•You never added any queue managers in the first place.

To start a queue manager as a member of a QSG, you provide the QSG

information in CSQZPARM.

We advise you do not update the Websphere MQ DB2 tables directly -- use
the utilities we provide.

Creating a queue-sharing group

{
Administration

structure

Application

structures
Queue Queue Queue

(Information for unit-of-work recovery and so on)

Coupling facility

Administration

structure

Application

structures
Queue Queue Queue

(Information for unit-of-work recovery and so on)

{

Structures

for QSG 1

Structures

for QSG 2

CF Structures for shared-queues

N

O

T

E

S

Chart shows organization of WebSphere MQ data in coupling facility (CF)
structures (actually list structures).

For clarity the chart shows:

•All structures in one CF -- actually they can be spread arbitrarily over

many CFs

•Only WebSphere MQ structures -- actually other subsystems and
applications can have structures in the same CF as Websphere MQ.

Each queue-sharing group needs:

•One administration structure -- this is used for information that
WebSphere MQ itself needs, for example to manage unit-of-work

recovery

•One or more (up to a maximum of 63) application structures -- these are
used to hold the shared queues.

Each application structure can hold up to 512 shared queues.

CF Structures for shared-queues

Creating CF structures and shared queues

• Define a structure to z/OS (not to WebSphere MQ) by
updating the CFRM policy (see System Setup Guide):
• Structure is known to WebSphere MQ by its 12-character str-name.

• Structure is known to z/OS by the 16-character name formed by:
• qsg-name || str-name (Application structures)

• qsg-name || CSQ_ADMIN (Administration structure)

• Define a shared queue using the DEFINE QLOCAL
command on any queue manager in the QSG:
• DEFINE QLOCAL(queue-name) QSGDISP(SHARED) CFSTRUCT(str-

name)

• z/OS creates the structure when required (first use).

• WebSphere MQ creates the queue when required (first
use).

N

O

T

E

S

Chart shows the processes for creating CF list structures for use by

WebSphere MQ QSGs and for creating shared queues in these structures.

The z/OS CFRM policy for the sysplex specifies how z/OS should allocate

resources for each structure:
•What type of CF (for example, CF must have battery back-up)
•How big to make the structure.

z/OS does not actually allocate any resource for the structure until first use -

- in our case, the first time a queue manager connects to the structure:

•At startup for the administration structure
•At first queue open for application structures.

As with private queues, defining the queue to WebSphere MQ does not

create the queue. The queue is created when it is first used.

It is best to allocate queues so that (as far as possible) all the queues

accessed by any one unit-of-work are in the same structure.

Creating CF structures and shared queues

Queue

manager

Private

queues

Queue

manager

Private

queues

Queue

manager

Private

queues

Shared

queues

Coupling facility failure

Messages on

shared queues

OK (kept)

Nonpersistent
messages on

shared queues

lost (deleted)

Queue

manager

Private

queues

Queue

manager

Private

queues

Queue

manager

Private

queues

Shared

queues

Nonpersistent

messages on

private queues

OK (kept)

Messages on

shared queues

OK (kept)
Nonpersistent

messages on

private queues

lost (deleted)

Queue manager failure

Persistent
messages on

shared queues

restored from log

Failure and persistence

N

O

T

E

S

Chart shows implications of failures in a queue-sharing group.

Left side of chart shows queue manager failure. If one or more queue managers in a

queue-sharing group fail, or are stopped normally:

•Nonpersistent messages on queues private to the failing queue manager or

managers are lost -- in fact they are deleted when a queue manager restarts

•Messages on shared queues are not lost, they are kept -- even if all queue

managers in the queue-sharing group fail.

Right side of chart shows coupling facility structure failure (for simplicity the chart

shows an entire CF failing). If one or more CF structures fail:

•Messages on queues in other CF structures are not lost

•Nonpersistent messages on queues in failing CF structures are lost

•Persistent messages on queues in failing CF structures must be restored from

backup and log information on the logs

•Restoring queue manager accesses logs of all queue managers in the QSG.

If the administration structure fails, all the queue managers in the QSG fail.

Failure and persistence

V7.0.1Admin Structure Recovery

• Prior to V7.0.1 each queue manager would rebuild own
admin structure entries

• Particularly an issue in a DR situation.

• Need to start all queue managers to rebuild admin structure

• Once recovered, application structures could be recovered

• At V7.0.1 active queue managers notice if other queue
managers don’t have entries, and initiate rebuild on their
behalf

N

O

T

E

S

V7.0.1

If the Admin Structure was lost for some reason (DR situation, loss of power to the

CF etc), then prior to V7.0.1 each queue manager had to rebuild its own Admin

Structure entries. As the admin structure needs to be complete for application

structure recovery to take place, it was necessary in a DR situation to start up all the

queue managers in a QSG before application structure recover could take place.

In V7.0.1 an enhancement has been made to admin structure recovery so that a

single queue manager is able to recover the admin structure entries for all the other

queue managers in the QSG. If a V7.0.1 (or higher) queue manager notices that the

admin structure entries are missing for another queue manager then it will attempt to

recover them on behalf of the other queue manager. It can only do this if the other

queue manager is not running at the time. In a DR situation this means that it is only

necessary to start a single queue manager at V7.0.1 (or higher) before being able to

recover the application structures.

A V7.0.1 queue manager can recover the entries on behalf of any version of queue

manager, so you don’t need to have all queue managers in the QSG to be running at

V7.0.1 before this functionality will take place.

Admin Structure Recovery

CF

QM2

QM1

QM3

CF Loss of Connectivity Tolerance V7.1
Pre V7.1 Queue Managers

A failure of the Coupling

Facility is most likely

going to be presented

to connectors as a Loss
of Connectivity

Prior to V7.1, if a queue

manager receives a

loss of connectivity, it

will terminate.

In the case of a
Coupling Facility failure,

this would mean a QSG

wide outage (unless

protected by CF
Duplexing)

CF2With V7.1 the queue

managers will not

terminate. They will

automatically attempt to
re-establish access to

the structures affected.

CF1

QM2

QM1

QM3

CF Loss of Connectivity Tolerance V7.1
V7.1+ Queue Managers

In the case of a total loss

of connectivity the queue

managers can

automatically recover
(RECOVER CFSTRUCT)

the structures that were

on the failed CF into an

alternative CF

(if available)

N

O

T

E

S

Queue managers will tolerate loss of connectivity to the admin structure without

terminating if:

the QMGR CFCONLOS attribute is set to TOLERATE

all the queue managers in the QSG are at V7.1

All queue managers in the QSG will disconnect from the admin structure, then

attempt to reconnect and rebuild their own admin structure data.

If a queue manager cannot reconnect to the admin structure, for example because

there is no CF available with better connectivity, some shared queue operations will

remain unavailable until the queue manager can successfully reconnect to the admin

structure and rebuild its admin structure data.

The queue manager will automatically reconnect to the admin structure when a

suitable CF becomes available on the system.

Failure to connect to the admin structure during queue manager startup is not

tolerated, regardless of the value of CFCONLOS.

Admin structure loss of connectivity V7.1

N

O

T

E

S

Queue managers will tolerate loss of connectivity to application structures if:

they are at CFLEVEL(5)

the CFCONLOS attribute is set to TOLERATE

All queue managers that lose connectivity to an application structure will disconnect

from the structure.

The next action depends on whether it is a partial or total loss of connectivity

(according to MQ’s definition).

�loss of connectivity is partial if there is at least one system in the sysplex that still

has connectivity to the CF that the structure is allocated in.

�loss of connectivity is total if all systems in the sysplex have lost connectivity to the

CF that the structure is allocated in.

In the case of total loss of connectivity

�the structure will (probably) need to be recovered using the RECOVER CFSTRUCT

command.

�non-persistent messages will be lost.

Application structure loss of
connectivity V7.1

CF2CF1

QM2

QM1

QM3

CF Loss of Connectivity Tolerance V7.1
V7.1+ Queue Managers

In the case of a partial

loss of connectivity, a

System Managed Rebuild

will be automatically
initiated by the QMGRs to

rebuild the structures into

a more available CF. This

will mean that both

persistent and non-

persistent messages will
be retained.

N

O

T

E

S

In the case of partial loss of connectivity

�queue managers that lost connectivity to the structure will attempt to initiate a

system-managed rebuild in order to move the structure to another CF with better

connectivity.

�if the rebuild is successful, both persistent and non-persistent messages will be

copied to the other CF.

�queue managers that didn’t lose connectivity to the structure may experience a slight

delay during system-managed rebuild processing, but shared queues will remain

available.

If an application structure cannot be reallocated in another CF with better

connectivity, queues on the structure will remain unavailable until connectivity is

restored to the CF that the structure is currently allocated in.

Queue managers will automatically reconnect to the structure when it becomes

available.

Application structure loss of
connectivity V7.1

CF Loss of Connectivity Tolerance
• QMGR CFCONLOS(TERMINATE|TOLERATE)

• Specifies whether loss of connectivity to the admin structure should be

tolerated

• Default is TERMINATE

• Can only be altered to TOLERATE when all QSG members are at 7.1

• CFSTRUCT CFCONLOS(TERMINATE|TOLERATE|ASQMGR)

• Specifies whether loss of connectivity to application structures should be

tolerated

• Only available at CFLEVEL(5)

• Default is ASQMGR for new CFLEVEL(5) structures, and TERMINATE for

structures altered to CFLEVEL(5)

• CFSTRUCT RECAUTO(YES|NO)

• Specifies whether application structures should be automatically recovered

• Only available at CFLEVEL(5)

• Default is YES for new CFLEVEL(5) structure, and NO for structures altered

to CFLEVEL(5)

V7.1

• Administration structure updates are logged so
that this structure can be restored.

• Coupling Facilities are very rugged (zSeries
processor technology).

• CF can have its own separate power supply.

• CF can have nonvolatile memory (battery power
backup).

• Lost application structures can be restored from
backups and logs. (can use BACKUP
CFSTRUCT(*) at V7.0.1)

Safeguarding against CF failure

N

O

T

E

S

Losing a Coupling Facility has a severe impact on a queue sharing group.

In this respect a CF is a critical resource, similar to the log for private
queues and private objects.

Chart summarizes safeguards against CF failures.

CFs are inherently very rugged -- especially with separate power supplies

and battery backup.

WebSphere MQ does not provide its own CF structure duplexing because

this facility will be provided by System-Managed Structure Duplexing as a

part of z/OS.

Transaction state information recorded on the administration structure is

logged so that a failed administration structure can be restored.

Application structures can be backed up and persistent messages written to

application structures are logged so that persistent messages in a failed

application structure can be restored.

Safeguarding against CF failure

This page intentionally blank

Queue manager writes

the UOWD to the

administration structure

Message Message Message Message
Original state of

shared queue

Message Message Message Message
Transaction complete

-- UOWD deleted

Message Message Message
Message Queue manager

commits the

transaction

Message Message Message Transaction in flight

Message

Message

UOWD

GET

PUT

CommitUOWD on the administration

structure -- allows another queue manager to
complete the transaction

Message

Transaction integrity

N

O

T

E

S

Chart shows how WebSphere MQ maintains transaction integrity for shared queues.

For clarity the chart shows a transaction acting on one shared queue. WebSphere MQ also
maintains the integrity of transactions that act on multiple shared queues or that act on both
shared and private queues.

Chart shows the following states for a shared queue on an application structure (in a CF):

1 Original state -- transaction has not started:
•Queue has four messages on it (all committed).

2 Transaction in flight:
•Transaction has done one get -- message is marked in-flight-get
•Transaction has done one put -- message is marked in-flight-put
•Messages marked in-flight are "invisible" to other transactions
• If queue manager fails, any other queue manager can back-out.

3 Transaction in commit:
•Queue manager has written unit of work descriptor (UOWD)
• If queue manager fails, any other queue manager can complete.

4 Transaction complete:
• In-flight-put message unmarked -- becomes "visible"
•Queue manager deletes the UOWD.

Transaction integrity

• What shared queues are

• Shared queues

• Queue-sharing groups

• Coupling Facility (CF) structures

• Persistence and transaction integrity

• Configuring channels with shared queues

• Inbound channel configurations

• Outbound channel configurations

• Exploiting shared queues

• Availability benefits of queue sharing

• Scalability

Agenda

This page intentionally blank

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Sync Q

Generic

port/LU
Shared

queues
Sync Q

Sync Q Sync Q

Inbound connection to

local port/LU of specific

queue manager's mover

Target

Q

Target

Q

Inbound channel configuration 1

N

O

T

E

S

This chart is the first of three which show different ways to configure
inbound channels.

This configuration uses the local port (TCP/IP) or logical unit (LU6.2)
to connect to a specified mover (queue manager). It works almost
exactly the way existing channel configurations work, including using
the local sync queue for the channel -- but:

Because the queue manager is part of a queue-sharing group, the
channel can put messages directly onto a shared queue. That is, the
target application can be on any of the queue managers in the QSG.

The chart shows other ports/LUs not used by this configuration.

Inbound channel configuration 1

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Sync Q

Generic

port/LU
Shared

queues
Sync Q

Sync Q Sync Q

Inbound connection

to generic port/LU of

queue-sharing group

Target
Q

Target Q
Target

Q

Target Q

Inbound channel configuration 2

N

O

T

E

S

This configuration uses VTAM generic resources (LU6.2) or dynamic DNS
(TCP/IP) to connect to any mover in the queue-sharing group.

The chart shows that the connection has "selected" the mover shown at top
right, but a subsequent connection could select another mover in the QSG.

Notice that the mover uses the shared sync queue for this channel (because

access was through the shared LU or port). The shared sync queue is:
SYSTEM.QSG.CHANNEL.SYNCQ.

If the channel loses its connection (for example, because this queue

manager fails), it can connect to a different mover. But this different mover
can resynchronize the channel using the shared sync queue.

You can configure VTAM generic resources or dynamic DNS to use the

z/OS workload manager (WLM) to select the "least busy" mover -- providing
load balancing.

If the target queue for a put is not shared then the same private queue must
be defined on each of the queue managers in the QSG.

Inbound channel configuration 2

Inbound connection to

shared port/LU of specific

queue manager's mover

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Sync Q

Generic

port/LU
Shared

queues
Sync Q

Sync Q Sync Q

Target

Q

Target
Q

Inbound channel configuration 3

N

O

T

E

S

This chart shows that you can connect directly to the shared port of
a specified mover -- that is, you do not have to use VTAM generic
resources or dynamic DNS.

This allows you to use an "external" router to select which mover to
connect to.

By connecting to the shared port the connection uses the shared
sync queue. This allows correct resynchronization if the channel
fails and reconnects to the shared port of a different mover.

A disadvantage of an external router is that it does not use the
workload manager to identify the "best" (least busy) mover.

Inbound channel configuration 3

Private

queues

QMGR

Mover

Private

queues

QMGR

Mover

Private

queues

QMGR

Mover

Shared

queues

Xmit Q

Sync Q

Xmit Q

Sync Q

Outbound connection

for private channel

Xmit Q

Sync Q

Outbound connection

for shared channel

Xmit Q

Sync Q

Outbound channel configurations

N

O

T

E

S

This chart shows the two possible configurations for outbound channels.

At the top is a private (or local) outbound channel. It works exactly the way existing

channel configurations work:

•Private transmission queue local to the mover

•Private synchronization queue local to the mover.

Below is a shared outbound channel:

•Shared transmission queue -- any application in the QSG can use it

•Shared synchronization queue.

A shared outbound channel can start on any mover -- WebSphere MQ selects the

"best" (least busy) mover.

If a shared outbound channel fails (communication, mover, or queue manager

failure), the channel can restart automatically on another mover. This is called peer

channel recovery.

Shared queue restrictions apply to shared transmission queues, for example:

•CF capacity is limited (compared to DASD).

Outbound channel configurations

• Client channels are stateless, so don’t use synchronization
queues

• Only benefit of using a shared channel is the shared
status

• Can cause performance issues if using shared
channel
• Needs to update DB2 status for each connect/disconnect

• Can configure a generic port to point at INDISP(QMGR)
listener on each queue manager

• Can still benefit from failover and balancing of client
connections without using a shared channel, and
can still use QSG name on the MQCONN

• Will not work for Extended Transactional Client (including
WAS 2-Phase Commit over client conn) until at V7.0.1

Client Channels

N

O

T

E

S

As client channels are stateless, they don’t use a synchronization
queue. The only benefit of using a shared channel for client
channels is the shared status information. However, the use of a
shared server-connection channel has drawbacks as it means each
connection/disconnect will cause the queue manager to update the
shared channel status, which is held in DB2. This could lead to
performance issues if there are lots of clients connecting.

It is still possible to use a generic port to provide workload
distribution and failover in the QSG, but rather than targeting an
INDISP(SHARED) listener on each queue manager, the
INDISP(QMGR) listener should targeted.

When using client channels into a QSG it is not possible to use the
Extended Transactional Client (or client connections from WAS) if
you are using 2-phase commit, unless you are connecting into a
V7.0.1 queue manager

Client Channels

V7.0.1

• When setting up the connection, specify the QSG
name rather than QMGR name

• In MQConnectionFactory if using JMS under WAS, you

must ensure that you are only using shared resources

• This causes a UR with GROUP disposition to be

created, rather than QMGR

• A GROUP UR can be inquired and resolved via any
member of the QSG

• If there is a failure, the transaction manager will reconnect
to the QSG and request a list of in-doubt transactions.
GROUP URs will be reported back no matter what QMGR
they were started on

2-Phase Commit Client Connections

N

O

T

E

S

V7.0.1

When using the Extended Transactional Client, or the JMS
transactional client (under WAS), it is possible to use 2-phase
commit applications in a QSG. When specifying the connection
options to the Transaction Manager it is necessary to provide the
QSG name rather than the QMGR name, and also configure the
client channel to be routed to a suitable (V7.0.1 or higher qmgr) in
the QSG. When using this configuration, any Unit Of Recovery (UR)
that is created will have a GROUP disposition. This means that it
can be inquired and resolved on any qmgr in the QSG.

If a connection fails for some reason, and the TM reconnects to the
QSG, it can inquire and resolve the transactions no matter which
qmgr it is now connected to, and where the transactions were
originally started.

2-Phase Commit Client Connections

GROUPUR – The Problem
(Pre V7.0.1)

QM2QM1

Client
APP

Generic
Port

TM

Client App
connects via

generic port and
starts UOW

If TM reconnects to
QM2 it only be told
what is in-doubt on
QM2, meaning that
it will throw away
any information

about in-doubts on
QM1

If there is a failure,
TM will reconnect
via generic port to

inquire what
transactions need

resolving

V7.0.1

GROUPUR – The Solution
(V7.0.1)

QM2QM1

Client
APP

Generic
Port

TM

Client App
connects via

generic port and
starts UOW

If TM reconnects to
QM2, QM2 will inquire
all the in-doubts that

have a GROUP
disposition, whatever

QMGR that were
running on.

If there is a failure,
TM will reconnect
via generic port to

inquire what
transactions need

resolving

xa_open string needs to
be specified with the

QSG name rather than
QMGR name, this means
a GROUPUR is created

V7.0.1

• What shared queues are

• Shared queues

• Queue-sharing groups

• Coupling Facility (CF) structures

• Persistence and transaction integrity

• Configuring channels with shared queues

• Inbound channel configurations

• Outbound channel configurations

• Exploiting shared queues

• Scalability

Agenda

This page intentionally blank

Shared queue scaling – non persistent

N

O

T

E

S

Chart shows measured results on lab setup -- actual
numbers of messages processed will vary depending on
the equipment and configuration used.

Lab setup does not include business logic.

All messages are nonpersistent.

In all cases one queue manager per z/OS image.

Measurements are transactions/sec, which is made up of
2 messages.

Shared queue scaling – non persistent

• 23,000+ persistent messages/sec using 3 qmgrs

• log DASD still likely to be first limit on throughput

Shared queue scaling – persistent

N

O

T

E

S

Chart shows measured results on lab setup -- actual

numbers of messages processed will vary depending on
the equipment and configuration used.

Lab setup does not include business logic.

All messages are persistent.

In all cases one queue manager per z/OS image.

DASD configuration enforced single logs and no
archiving

Shared queue scaling – persistent

N

O

T

E

S

Throughput and CPU cost depend on load

CFP slowest, most expensive - up to 27 Km

CBP 'ClusterBus' - 10 metres

ICP only to CF LPAR'd within same box

CBP performs more like ICP than CFP? (did on 9672 anyway)

CF calls can be synchronous or async according to z/OS heuristics

Async likely to mean order of 130+ microsec wait

Sync means z/OS CPU is busy while call data sent, CF processes,
return data received

• typically 50+ microsecs

Technology trends - CPU speed increasing faster than link speed

CF Link types / z/OS XCF heuristics

This page intentionally blank

�No mover between servers in the QSG.

�Pull load-balancing for servers.

�Availability from multiple servers.

�Workload-balancing for movers.

�Availability from shared channels.

�Simplified configuration management from shared
object definitions and command scoping.

�Flexible capacity management.

Shared queue benefits

N

O

T

E

S

This chart summarizes benefits from using shared queues . Mostly these are things

we have discussed in this presentation.

Using shared queues for communication within the sysplex is faster and simpler than

using the mover.

Multiple servers get better performance from sharing the same request queue (pull

load balancing) than from separate queues.

Multiple servers provide better availability than single servers.

Each mover runs on the "best" (least busy) queue manager.

Shared channels provide better availability than private channels (peer channel

recovery and so on).

Configuration management is simplified by sharing the same object definitions across

many queue managers and by commands which act on more than one queue

manager (command scoping, see MQSC Command Reference).

Capacity can be increased (or decreased) nondisruptively by adding or upgrading

processors, disks, or whatever.

Shared queue benefits

• WebSphere MQ for z/OS Concepts and Planning
Guide

• SupportPacs MP16, MP1E, MP1F, MQ1G

• www.ibm.com/software/integration/support/supportpacs/

perfreppacs.html

• RedPaper 3636 – WebSphere MQ Queue Sharing
Group in a Parallel Sysplex environment

• www.redbooks.ibm.com/redpieces/pdfs/redp3636.pdf

More Information

Questions?

Copyright Information

© Copyright IBM Corporation 2011. All Rights Reserved. IBM, the IBM logo, ibm.com, AppScan, CICS,
Cloudburst, Cognos, CPLEX, DataPower, DB2, FileNet, ILOG, IMS, InfoSphere, Lotus, Lotus Notes,
Maximo, Quickr, Rational, Rational Team Concert, Sametime, Tivoli, WebSphere, and z/OS are
trademarks or registered trademarks of International Business Machines Corporation in the United
States, other countries, or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S.
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of
IBM trademarks is available on the Web at “Copyright and trademark information” at
ibm.com/legal/copytrade.shtml.

Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates. Other
company, product and service names may be trademarks or service marks of others. References in
this publication to IBM products and services do not imply that IBM intends to make them available in
all countries in which IBM operates.

