
MQ Performance and Tuning

Paul S Dennis

WebSphere MQ for z/OS Development

Agenda

• Application design

• Queue manager configuration

• Mover (chinit) configuration

• Shared queues

• Version 7 updates

• Accounting and statistics

• For more information

Application design

Application Design

�MQ is optimized for temporary storage of in-transit messages

�MQ is not optimized for long term storage of bulk data

�MQ is optimized for FIFO retrieval of messages

�MQ is not optimized for keyed-direct retrieval of data

If you want a database, use DB2
Tip

WebSphere MQ is not a database

N

O

T

E

S

WebSphere MQ is not a database

• It is possible to use WebSphere MQ as a database, storing
records as "messages" and retrieving specific records by
specifying various combinations of queue name, MessageID,
CorrelIiD, Groupid, MsgSeq Number and MsgToken.

• Sometimes this is simply poor application design, sometimes
it is a conscious decision to avoid the cost of a proper
database manager.

• Whatever the reason it is a bad idea:

• WebSphere MQ will not give the operational or performance
characteristics of a proper database manager.

• Abusing WebSphere MQ in this way will adversely impact
other “legitimate” users of WebSphere MQ.

• If you need a database, use a database manager.

Nonpersistent messages

�Message will be delivered except:

�Queue manager fails between PUT and

GET (n/a for SQs)

�Medium fails between PUT and GET

�Message will not be delivered twice

Persistent messages

�Message will be delivered:

�Queue manager fails

�Medium fails

�Message will not be delivered twice

Persistence

N

O

T

E

S

Persistence

• Chart reminds us that WebSphere MQ provides two classes of service for

messages:

• Persistent messages are preserved across software and hardware failures.

• Nonpersistent messages can be lost if is there is a software or hardware
failure.

• For both classes of service, WebSphere MQ does not deliver the same message

more than once.

Persistent messages are much more

expensive to process than nonpersistent

So why do we use persistent messages?

Cost of developing the application

Cost of losing the messages

Persistence – the choice

N

O

T

E

S

Persistence – the choice

• Many people assume, incorrectly, that you must use persistent messages
for "important" information and nonpersistent is for when you don’t care

• The real reason for WebSphere MQ persistent message support is to
reduce application complexity.

• If you use persistent messages your application does not need logic to
detect and deal with lost messages.

• If your application (or operational procedures) can detect and deal with
lost messages, then you do not need to use persistent messages.

• Consider:

• A bank may have sophisticated cross checking in its applications and in its
procedures to ensure no transactions are lost or repeated.

• An airline might assume (reasonably) that a passenger who does not get a

response to a reservation request within a few seconds will check what

happened and if necessary repeat or cancel the reservation.

• In both cases the messages are important but the justification for
persistence may be weak.

Longer recovery time
Lower cost per

get/put

�Small messages (<100KB) -- max 100 per UOW

�Large messages (>100KB) -- max 10 per UOW

�Life of UOW << time to log archive

�Do not prompt the user when unit of work in flight!

Long units of work

N

O

T

E

S

Long units of work - example

• Following pseudocode example shows how to split a large UOW which contains

many MQPUTs into a number of smaller UOWs, each of which contains 100

MQPUTs.

• The example uses a separate queue (FTP_index_queue) to record how many
MQPUTs have been done.

Do forever

Get current line record from FTP_index_queue

If not found then set current line to first record

Do i = 1 to 100

Read file

MQPUT message

End

MQPUT current line record to FTP_index_queue

Commit

End

Have automation check for messages CSQJ160I and CSQR026I

�Use DISPLAY CONN(*) WHERE(QMURID EQ qmurid) to find out where
they are coming from

Use MAXUMSGS to limit the number of in-syncpoint operations in a
unit of work

For client channels, use DISCINT, HBINT and KAINT.

Tip

Tip – long units of work

N

O

T

E

S

Tip – long units of work

• CSQJ160I is issued for a UOW spanning two or more active log switches.

• CSQR206I is issued when a UOW has been active for 3 checkpoints.

�Getter is temporarily down

�Getter is temporarily overloaded

�Getter is a batch job

Getter is permanently overloaded
You need more compute power --

talk to IBM

Queue is not a queue -- it's a
database

You need a database -- talk to IBM

But sometimes:

Long queues

Don't you just hate long queues?

FIFO queues (generic gets):

�Make sure the gets really are generic -- clear MessageID and CorrelIiD
to nulls (not blanks)

Indexed queues (eg:get by MessageID or CorrelIid):

�Not having an index can be expensive:

Indexed Not indexed

Get 1000th message 600 6300

Get 10 000th message 600 48 000

�Having an index can be expensive:

Index rebuild
time:

1 millisecond per message

30 minutes per million messages

Long queues

N

O

T

E

S

Long Queues and Index Usage

• If you are using an indexed queue which contains significant numbers of
messages , then it is a good idea to try to have keys (Msgid or CorrelIiD)
which vary.

• If all the messages on the index queue have the same Msgid or Correlid
then why was the queue indexed? If the keys don't vary then a get with a
specific key effectively behaves like a vanilla GET NEXT request.....but
it is slower!

• So, if you don't need an index don't specify one.

�MQCONN is a ‘heavy’ operation

�Don’t let your application do lots of them

�Lots of MQCONNs can cause throughput to go from 1000s
Msgs/Sec to 10s Msgs/Sec

�MQOPEN is also ‘heavy’ compared to MQPUT/MQGET

�It’s where we do the security check

�If you’re only putting one message, consider using MQPUT1

Heavyweight MQI Calls

�Do not use WebSphere MQ as a database

�Use nonpersistent messages if you can

�Avoid long units of work

�Avoid long queues

Application design - summary

Queue manager configuration

Queue manager configuration

�Buffer pool 0

�Pageset 0

Objects

�Small buffer pool

Queues with
long-lived

messages

�Large buffer pool

Queues with

short-lived
messages

Buffer pools and pagesets

N

O

T

E

S

Buffer pools and pagesets

• We recommend that you use pageset 0 and buffer pool 0 exclusively for
"system" use -- that is, for objects. This reduces any possible impact on
the queue manager itself from application activity (the queue-manager
needs to update queue objects when messages are put to queues).

• For short-lived messages, we recommend using a large buffer pool to
maximize the chance that a message will remain in a buffer for its life
(from put to get).

• For long-lived messages we recommend using a different (smaller) buffer
pool -- there is not much point in keeping a message in a buffer if we
cannot keep it until get time.

• This leaves a number of "spare" buffer pools which you can use for any
queues with special characteristics or requirements.

�Buffer pool 0 only for pageset 0

�Short-lived messages

�Large buffer pool

�Deferred pageset writes (QPSTDWT) = 0

�Pageset reads (QPSTRIO) = 0

�Long-lived messages

�Small buffer pool so messages move to disk

�Expect deferred pageset writes > 0

�Make them too big and tune down

�Buffer exhaustion (QPSTSOS) always 0

�To print SMF stats see MP15 Support pack

�Leave some storage for MVS!

Buffer pools

More efficient use of
space

Parallel I/O

Fast backup

Smaller pagesets

More of them

Larger pagesets

Fewer of them

Be sure to allocate secondary extents

to allow pageset expansion

Pagesets

�Allocate secondary extents for pageset expansion

�New extent is obtained and formatted when pageset is 90% full

�Applications waiting for expansion may be suspended

�If space becomes free in page set then other tasks can use it

�Can specify EXPAND(SYSTEM) on MQ PSID object if no secondary
extents

�Guaranteed Space attribute

�Allocates primary extent size on each volume specified

�When page set expansion occurs it fills one volume before using next
volume

�Possible big impact when new volume used

�Page set expansion must format all of this space

Pageset expansion

Allocated

Allocated

How pageset expansion works

Volume 1 Volume 2

Existing Dataset

Primary Extent

Extent 2

Extent 3

Extent 4

Extent 5

Page 0

Cylinder 0

N

O

T

E

S

How pageset expansion works

• When the data set is allocated and it has the Guaranteed Space attribute
then the primary allocation is allocated on each volume (primary extent
and extent four).

• When the page set is formatted then only the primary extent is formatted
by default.

• As page set expansion occurs, extent 2 and extent 3 are allocated and
formatted. When there is no more space on the volume the large extent
on the second volume (extent 4) is formatted. When this fills up then
extent 5 is allocated and used.

• Do not use a full volume backup of this volume to restore the page set as
it may be unusable, and you may not know for weeks that you have
corrupted your page set. This is because extent 2 will be backed up
before the primary extent, and page 0 of the page set (in the primary
extent) must be backed up first.

Example: Recovery time for a 1389 cylinder pageset (1GB)

�Run 1 million request/reply transactions (90 minutes)

�Batch jobs put to batch server, get reply

�Restore page set (DFDSS 2 minutes, REPRO 6 minutes)

�Consider rename

�Restart queue manager (log replay 20 minutes)

�50 000 transactions processed per minute

�10 hour's worth of data -> additional 2 hours

REPRO of dataset 330 cylinders 3390 per minute

DFDSS DUMP/RESTORE 760 cylinders 3390 per minute

RAMAC snapshot

Shark FlashCopy
"Instant"

Backup at least daily

Pageset backup and restore

N

O

T

E

S

Pageset backup and restore

• We recommend you backup each pageset at least daily.

• Chart shows some sample times for different backup

techniques.

• You must also consider the type and amount of storage you
use for backups.

• Chart also shows example times for recovery from a lost
pageset.

• Note that log replay is a significant part of the recovery time
(much the largest part in our example).

• You can reduce the log-replay part of your recovery time by
taking more frequent backups.

�You do not want to lose your active logs:

�Your queue manager won't work if it can't write to them

�Your recovery won't work if it can't read from them

�You do not want your queue manager to wait for archiving

�You do not want to use archive logs for recovery

�Allocate enough space

�Duplex the logs

�You do not want to be slowed by contention:

�You will have contention if archiving is using the same volume(s) as
the active log

�You will have contention if dual logs are on the same volume

�Use separate volumes

Active log datasets

N

O

T

E

S

Active log datasets

• There is very little performance difference between single
and dual logging (IO takes place in parallel) unless the total
IO load on your DASD subsystem becomes excessive.

More DASD space
for recall

Excessive

checkpointing

Smaller data sets

More of them

Larger data sets

Fewer of them

�Tune checkpoint frequency with LOGLOAD

�1000 cylinders of 3390 fit on a 3490 tape

Active logs – how many?

General recommendation: Allocate at least enough active log space for
one day's data

UOW recovery without accessing archive logs:

�Minimum of 4 to allow long-shunting to prevent UOW from going onto
archive

Pageset recovery without accessing archive logs:

�Enough space (= time) for plenty of checkpoints

�Enough space (= time) for backups

Comfort factors:

�Operational problems can delay archiving

�Unexpected peaks can fill logs quickly

Active logs – how much space

N

O

T

E

S

Active logs – how much space

• Chart emphasizes that you want to provide enough active log data set
space so that you never need to access archived log data sets for
recovery -- either "normal" recovery following queue manager
termination, or recovery following loss of a pageset. Shunting occurs
every three checkpoints for a unit of work, so you need four logs in the
ring to be sure that shunting will work, and the active log is not
overwriting the records it needs to copy.

• We recommend that you allocate at least enough active log space to
hold one day's worth of logging.

• For many installations the best arrangement is to use as much DASD
space as possible for active log data sets and archive to magnetic tape
-- the more active log space you have, the less likely you are to need
archived logs for recovery.

• If you sometimes experience long units of work from the chinit, caused
by failure of a TCP/IP link, then be sure to specify TCPKEEP = YES
which ensures the chinit quickly recognizes a failed TCP/IP link (and
backs-out its units of work).

Shark has one logical volume stored
on many small disks -- no physical
volume:

�Can use UCB aliasing -- up to 4
paths to one logical volume per
MVS image

�Keep consecutive logs on separate volumes

�Ensure archiving does not use same volume(s) as active log

Log 1

Log 5

Queue manager
writes

Archiving

Log 2

Log 6

Log 3

Log 7

Log 4

Log 8

Some DASD have multiple logical
volumes stored on one physical
disk:

�Ensure different physical
volumes

�Reduce disk contention between
logical volumes

�Avoid single point of failure

Active logs - contention

N

O

T

E

S

Active logs - contention

• Chart shows a way to organize log data sets across several
volumes so that you do net get contention for the same
volume when switching from one active log data set to the
next, and so that you do not get contention for the same
volume between logging by the queue manager and
archiving.

• If your DASD maps several logical volumes to the same
physical volume then using different logical volumes does
not provide adequate protection from DASD contention --
ensure you allocate on different physical volumes.

• Shark UCB aliasing allows you to allocate data sets on the
same logical volume without incurring contention. This is
automatic if you use workload manager goal-mode.

�Ensure you don't lose your archive logs:

�Ensure retention date long enough (otherwise data sets get deleted
automatically!)

�Keep enough records in BSDS (MAXARCH should be large)

�Keep two copies (perhaps one on disk, one on tape)

�Decide when to send data sets off-site (possibly needed for restart
after a failure)

�Same size as active logs

�Don't use software compression for tapes

Archive logs

N

O

T

E

S

Archive logs

• You should protect archived log data sets in much the same
way you protect active log data sets (in particular keep two
copies) until you are sure you will never need them for
recovery (or anything else!).

• We recommend that you avoid using software compression
for archived logs because of the extra time required to
decompress if you need to use the data for recovery.

CSQ6SYSP

�Tune LOGLOAD so not checkpointing more than 10 times per hour (see
QJSTLLCP)

CSQ6LOGP

�Increase output buffer space (OUTBUFF) if buffer waits (QJSTWTB) > 0

CSQ6ARVP

�Make archive allocation (PRIQTY) same size as active logs

�Make archive retention period (ARCRETN) large so archives do not get
deleted

CSQZPARM

N

O

T

E

S

CSQZPARM

• QJSTWTB indicates the number of times the log output
buffer was full and caused a log record to wait for I/O to
complete. However, QJSTBPAG might indicate that the log
output buffer is too large in relation to the demand for real
storage.

�DB2 stored procedure issues MQCONN, MQPUT1, MQDISC

�High costs loading MQSeries modules at MQCONN

�Put CSQBCON and CSQBSRV into LLA(Library Lookaside):

�17 connects/disconnects per second -> 65 per second

�Put 'STEPLIB' into LLA to reduce BLDL costs:

�65 connects/disconnects per second -> 300 per second

�SYS1.PARMLIB(CSVLLAxx):

LIBRARIES(MQM.Vvrm.SCSQAUTH,

CUSTOMER.APPS.LOAD,

CEE.SCEERUN)

FREEZE(MQM.Vvrm.SCSQAUTH,

CUSTOMER.APPS.LOAD,

CEE.SCEERUN)

Use LLA for frequent connects

Example application:

Request/reply, 1KB messages, local requester

Nonpersistent messages:

�Throughput limited by queue contention

�Example application, single server, zSeries 900:

�At 2200 round trips per second, need more queues or servers

Persistent messages, two phase commit:

�Throughput limited by log contention

�Example application, single server, Shark DASD:

�At 110 round trips per second, need more servers

�Example application, 16 servers, Shark DASD:

�At 770 round trips per second, need more queue managers

Queue manager throughput

N

O

T

E

S

Queue manager throughput

• In general we do not expect the throughput of the queue manager to limit
the throughput of your system -- processing the messages (in your
application) is likely to be much more significant than transporting the
messages (in the queue manager). But:

• If you have a single server (more precisely, a single thread), you will be
processing messages serially and will probably be able to increase
throughput by adding more servers (or threads) to allow parallel
processing.

• At high message rates, processing the queues can be limited by
contention -- for the queue in the case of nonpersistent messages or for
the log in the case of persistent messages.

• You can relieve contention for a queue by using more than one queue.

• If you are limited by contention for the log then you must consider using
more than one queue manager.

�Only takes place when there is a getter waiting for a message that is
being put

�Only for non-persistent out of syncpoint messages

�The message is passed straight from the putter to the getter without
being placed onto the queue first

�Removes a lot of processing of placing the message onto the queue

�Significantly reduces CPU cost and improves throughput

�40% CPU saving for 1K messages

�Also applies to shared queues if there is a waiting getter on the same
queue manager

�Particularly significant for large shared queue messages

Put to a waiting getter

N

O

T

E

S

Put to a waiting getter

• "Put to a waiting getter" is a technique whereby a message may not actually be

put onto a queue if there is an application already waiting to get the message.

Certain conditions must be satisfied for this to occur, in particular the message
must be non-persistent and the putter and getter must be processing the

message outside syncpoint control. If these conditions are met then the message

will be transferred from the putters buffer into the getters buffer without actually

touching the MQ queue. This removes a lot of processing involved in putting the

message on the queue and therefore leads to increased throughput and lower
CPU costs.

Mover (chinit) configuration

Mover (chinit) configuration

Maximum 9000 clients or 4500 channel pairs

Adapters issue MQ requests

We recommend: 30 adapters

Dispatchers issue communication requests

We recommend: 20 dispatchers if more than 100 channels

Chinit recommendations

N

O

T

E

S

Chinit recommendations

• Chart shows approximate upper limits for chinit capacity
(clients or channel pairs). If you are approaching these limits
you should consider adding more queue managers.

• Performance of the chinit is potentially constrained if you do
not have enough dispatchers or adapters. Chart shows
some guidelines -- in general it does not hurt to use higher
values.

• The first MIN(MAXCHL/CHIDISP),10) channels are
associated with the first dispatcher TCBs and so on until all
dispatcher TCBs are used. Therefore, if only a small number
of channels are in use, make sure MAXCHL is accurate for
even distribution across dispatcher TCBs.

�No end-of-batch commit:

�Less CPU and logging

�Still an end-of-batch confirm flow

�Processed out of syncpoint:

�Messages appear sooner at remote end

�Consider 100 messages in 1 second, batch size = 100:

�A fast message is available every 0.01 second

�Non fast messages, 100 available after 1 second

�Risk of losing message if channel fails

Channel attribute:NPMSPEED(FAST)

Fast nonpersistent messages

�Many channels have an achieved batch size of 1

�Specify BATCHSZ = 1 -- saves 5% CPU cost

�Use DISPLAY CHSTATUS(channel) XBATCHSZ to see the size of
batches achieved by the channel (need MONCHL to be set)

�For persistent messages, if response time is not critical

�Specify BATCHINT > 0 -- increases messages per batch

�Reduces commits and end-of-batch flows

�Too large a value and you may impact response times

See Intercommunication Guide

Chinit - batching

N

O

T

E

S

Chinit - batching

• Batching in the chinit can reduce overheads by spreading the cost of
end-of-batch flows and commits over a number of messages (a batch).

• The batch size you specify (BATCHSZ) is a maximum -- if the channel is
fast compared to the message rate then the chinit will often have only
one message to send -- giving an achieved batch size of one.

• If you have an achieved batch size of one, consider setting BATCHSZ to
1 -- this reduces overheads (the chinit does not need to look for a second
message to include in the batch).

• If you can tolerate the delay, you can reduce overheads by using
BATCHINT to force the channel to wait before ending a batch (and so get
a higher achieved batch size).

• WebSphere MQ Intercommunication provides more detailed information
about batching.

�Optional compression on data that flows across a channel

�None

�Message headers

�Data compression

�Choice of compression techniques

�RLE

�ZLIB

�Performance dependant on numerous factors

�Compressibility of messages

�Elapsed time to compress messages

�CPU cost for compression

�Available network bandwidth

Channel message compression

N

O

T

E

S

Channel message compression

• WebSphere MQ for z/OS V6.0 introduced new channel attributes to
enable the compression of message headers and/or message data. A
choice of compression techniques is available for message data
compression; for message headers the choice is simply to enable
compression or not. Compression of channel data reduces the amount of
network traffic and can therefore improve the performance of channels.

• The benefits of channel compression will vary greatly depending on a
number of factors: the compressibility of the messages; the elapsed time
spent in performing compression; the amount of CPU consumed during
compression and decompression; the available bandwidth of the
network. All of these factors will differ from one installation to the next,
and may vary from day to day within a single installation.

Channel message compression

N

O

T

E

S

Channel message compression

• We measured the effects of compression using a remote request reply model. A message is MQPUT by
an application running against one MQ Queue Manager (Queue Manager A) to a remote queue hosted
by a second MQ Queue Manager (Queue Manager B). A reply application running against Queue
Manager B MQGETs the message and then MQPUTs a reply message of the same size to a reply queue
hosted by Queue Manager A. Upon receipt of the reply message, Queue Manager A then MQPUTs
another message, and the process continues for a defined number (usually tens of thousands) of cycles.
This task is performed first with no compression, and then with compression of the request message
only. In this way we can determine the cost of compression at Queue Manager A, the cost of
decompression at Queue Manager B, and changes to the number of round trips per second. All CPU
figures quoted relate to the total CPU (MQ Queue Manager + MQ Channel Initiator + TCP/IP +
Application) per transaction.

• The charts show the effects on CPU costs at the compressing (driver) end and the decompressing
(server) end of the transaction, and the effect on throughput. Note that, as described above, only the
request message undergoes compression (or attempted compression); the reply message does not pass
through the compression routines. The CPU costs displayed on the charts are the total costs (MQ Queue
Manager + MQ Channel Initiator + TCP/IP + Application) for servicing two messages (request and reply),
but any differences in CPU cost are the result of compressing request messages at the driver or
decompressing them at the server.

�Benefits seen when using compression with SSL

�Cost of compressing data offset again cost of encrypting data

Channel message compression with SSL

N

O

T

E

S

Channel message compression with SSL

• For some installations it is possible the cost of encrypting messages can be

partially offset using message data compression; although there is a cost

associated with compression, there may be a greater gain through encrypting a
smaller amount of data.

• The chart gives an indication of how compression can affect the CPU costs of
sending and receiving encrypted messages. The value of enabling compression

routines on the channel will be highly dependent upon the compressibility of the

data, and in many cases the introduction of compression will result in an

additional processing cost.

• As would be expected, the more expensive encryption techniques show the

greatest potential for improvement.

Tip

Message size RU size 256 RU size 3480

1000 66ms 44ms

10 000 332ms 88ms

Use largest possible RU size for network

Tip – VTAM RU size

Exits within chinit often use GETMAIN and FREEMAIN

�Impact at high throughput

�Doubles the cost

Exploit ExitBuffer:

�Allocate buffer on initial call -- returns ExitBufferAddress

�ExitBufferAddress gets passed to every exit call -- so reuse
the storage

�Free buffer on term call

Tip

Tip – channel exits

Shared Queues

Shared Queues

Shared Queue

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Private

queues

QMGR

Mover

Shr

Lcl

Private
Objects

Generic

port/LU
Shared

queues
Sync Q

Private

Objects

Private
Objects

Shared

Objects

DB2

N

O

T

E

S

Shared Queue

• Chart shows a queue-sharing group of three queue managers in the
same sysplex (outer square).

• Each queue manager functions as a "traditional" queue manager with its
own private queues and objects.

• Each queue manager also functions as a member of the queue-sharing
group, sharing queues held on coupling facilities (CFs, shown as
triangles).

• Shared object definitions for the queue-sharing group are held in DB2.

• Define once, available everywhere

• Generic port/LU for mover

• Benefits of shared queues include:
• Availability

• Systems Management

• Scalability

• Workload balancing (pull model rather than push)

• Non persistent messages are available after restart

Mover

(CHIN)

Mover

(CHIN)

Target

queue

Xmit

queue

Application

Queue
manager

Application

Queue
manager

Shared

QueueCoupling Facility (CF)

Application Application

QMgr QMgr

Elimination of message
flows saves costs

Simplified administration
saves costs

Shared Queue – Cost Savings

N

O

T

E

S

Shared Queue – Cost Savings

• Chart contrasts moving messages between queue managers
using the chinit (top left) with using shared queue (bottom
right).

• Shared queue avoids the processing costs of the chinit and
greatly simplifies system administration.

�Make CF structure(s) big enough:

�7500 1KB message = 16MB

�Use single structure rather than multiple in same unit of work

�Shared queue performance depends on CF link type:

�ICP link (same box) – fastest

�CIB link (150 metres)

�CBP link (10 meters)

�CFP link (27km) -- slowest (100MB/sec technology)

�Number of DB2 tasks -- use default but keep an eye on Q5ST->DHIGMAX (not
more than 10)

Shared Queue – tuning and setup

N

O

T

E

S

Shared Queue – tuning and setup

• Chart provides some guidelines for configuring shared queues to provide
optimum performance.

• Where possible, keep related queues in the same application structure --
additional overheads are incurred if a unit of work affects queues in more
than one structure.

• You may need more than one structure because any one structure can
contain a maximum of 512 queues. Also you will need more than one
structure if you want to use more than one coupling facility.

• There are several types of coupling facility links:

• Internal coupling (ICP) can only be used with a CF which is an LPAR of
the same processor. It uses very fast memory-to-memory technology.

• Infiniband (CIB) is the fastest technology for an external CF, 6GB
between z10 ECs

• Slower coupling facility links (CFP) can connect a CF up to 27 kilometers
distant.

5850

10900

16550

1 QMGR 2 QMGRs 3 QMGRs

0

5

10

15

20

T
h

o
u

s
a

n
d

s

messages per second

Maximum message rate -- single queue

SQ non-persistent message throughput
scales

N

O

T

E

S

Shared queue - scaling

• Chart shows measured results on lab setup -- actual
numbers of messages processed will vary depending on the
equipment and configuration used.

• Lab setup does not include business logic.

• In all cases one queue manager per z/OS image.

�11,000+ persistent messages/sec using 4 qmgrs

�Log DASD still likely to be first limit on throughput

SQ persistent message throughput
scales

N

O

T

E

S

CF Link types / z/OS XCF heuristics

• Throughput and CPU cost depend on load

• CFP slowest, most expensive - up to 27 Km

• CBP 'ClusterBus' - 10 metres

• ICP only to CF LPAR'd within same box

• CBP performs more like ICP than CFP? (did on 9672 anyway)

• CF calls can be synchronous or async according to z/OS heuristics

• Async likely to mean order of 130+ microsec wait

• Sync means z/OS CPU is busy while call data sent, CF processes, return
data received

typically 50+ microsecs

• Technology trends - CPU speed increasing faster than link speed

1KB persistent msgs/sec to

longest log

1KB persistent

msgs/sec to 3 evenly

loaded logs

MB/sec to

longest log

Backup interval in minutes

(based on reading logs backwards at

9MB/sec)

1000 3000 2.27 115
2000 6000 4.61 56
6400* 19200 15 18

(*6400 is the maximum for

this DASD with 1KB msgs)

�BACKUP of 200,000 1KB SQ persistent messages takes 1 CPU secs
(2084-303)

�RESTORE of that fuzzy backup takes 31 secs using DS8000 DASD

�Re-apply log data since backup taken @ 9MB/sec on this DASD

�Logs read (backwards) in parallel by single qmgr

�so longest log determines recovery processing time (15,660MB in 29 mins)

�How often should CF structure be backed up for 30min recovery time ?

SQ backup and recovery

Version 7 Updates

Version 7 Updates

�Small messages

�Log compression

�Large shared queue messages (using SMDS)

�Some z196 performance figures

Version 7 Updates

Small messages

• Small (< 4KB) message storage changed

• One message per page instead of fitting multiples into single
page

• May increase DASD use, especially if messages not quickly
retrieved

• But typical workloads show improved performance and
reduced CPU
• One customer has reported a 50% reduction in processing time

between a workload running on MQ V6 and the same workload
running on MQ V7.0.

- Note this is the DEFAULT behaviour in V7.0.1 but it can be
reset by the
RECOVER QMGR (TUNE MAXSHORTMSGS 0) command
as described in MP1G

Log compression

• Can increase the throughput possible for persistent messages

• May reduce the size of your logs

• Dependent on your message content

• Useful if you are DASD constrained.

• RLE (run-length encoding) of “insert” log records for private queue messages

• Will not compress shared queue log records

• SMF 115 records updated to show compression rates achieved etc

• Controlled via ZPARM option at queue manager level.

• COMPLOG(NONE) or COMPLOG(RLE) in CSQ6LOGP

• Can also be viewed/controlled via DISPLAY LOG / SET LOG

• By compressing a 100KB message that contained 90% compressible data, it
was possible to increase the transaction rate by over 3 times (see SupportPac
MP1G).

N

O

T

E

S

Log compression

• Log compression improves the I/O processing, reducing the
bandwidth required to log persistent messages. Clearly there
is some CPU cost associated with the compression (and, if
required during recovery, decompression). But this may be
offset by the I/O savings – and for some customers, it’s the
I/O usage that was most critical in limiting their workload.

• Compression is done using the same run-length encoding
algorithm that is an option on channels.

QM1 Shared Queue

Message
100K (ptr)

QM1
SMDS

QM2
SMDS

QM2

APP

MQPUT

APP

MQGET

1

2 3

4

V7.1
Large Shared Queue Messages (using
SMDS)

N

O

T

E

S

Shared message data set concepts V7.1

Offloaded message data for shared messages is stored in data sets.

Each application structure has an associated group of shared message data sets, with one data set
per queue manager.

Named using DSGROUP parameter on CFSTRUCT definition.

Each queue manager owns a data set for each structure, opened for read/write access, which it uses
to write new large messages.

Each queue manager opens the data sets for the other queue managers for read-only access, so it
can read their message data.

When a message with offloaded data needs to be deleted, it is passed back to the queue manager
which originally wrote it, so that the queue manager can free the data set space when it deletes the
message.

Large Shared Queue Messages: SMDS

• Using DB2 BLOBs to store large (>63KB) messages is expensive

• Both CPU and pathlength

• Shared Message DataSets (SMDS) removes DB2 for large message storage

• DB2 still needed for storing shared definitions

• CF still holds small messages and pointers for offloaded messages

• Shared VSAM datasets increase shared queues capacity and performance

• All queue managers in the QSG can access the dataset

• CF Structure message reference still controls locking, ordering, deletion etc.

• So every message still has a “pointer” in the CF

• Rules control offload message size and % Structure-full offload trigger

• Set per CF structure

• Offloading messages at 63K gives 1.25M messages on a 100GB structure

• Offloading all messages at 1KB gives 45M messages on same structure

• All QSG members must be at new level to access queues with this capability

CSS: F S

V7.1

MQ V7.0.1 z10 / z196 performance
comparisons

• Tests run in Hursley for a variety of workloads show performance

improvements in line with LSPR predictions

• The transaction cost is between 28 and 34% LESS on the z196 compared
to the z10

MQ V7.1.0 z196 performance highlights

Highlights

140

38

160,000

360,000

1,100,000

MB/Second logging rate

360,000360,000

Shared queue messages per second

Private queue messages per second

Gigabytes of data moved between applications per second

Messages per second
Using put-to-waiting getter

N

O

T

E

S

MQ V7.1.0 z196 performance highlights

• The MQ V7.1.0 measurements were run in the following configuration

• 1x64-way LPAR with 12-way CF

• 2x30-way LPAR with 16-way CF

• 2x24-way LPAR with 16-way CF

• 3x8-way LPAR with 16-way CF

• Measurements were run using up to 3 queue managers for private queue

messaging and up to 12 queue managers for shared queue messaging

• As well as using batch applications, ran Mover, CICS, IMS Bridge and Client

measurements.

Accounting and statistics

Accounting and statistics

Why didn't anyone

tell me?

�Which applications used which queue, and what did they do with it!

�CPU cost per MQ verb per queue

�Is “Put to a waiting getter” being used

�How many messages were read from disk

�Persistent v Non Persistent message counts

�How many MQGETs were by msgid/correlid and how many message
were skipped to find the right message

�Expired messages

�Which were the active queues

�Why is today slower than yesterday

�Id by Jobname, transaction, or channel name

�'C' program source to process them – MP1B

�Costs 5-10%

What you can do with accounting

�Number of checkpoints (QJSTLLCP)

�Reads from active/archive logs - indicative of backouts
(QJSTRACT/QJSTRARH)

�Amount of data being logged (QJSTCIWR)

�Is log buffer big enough (QJSTWTB)

�How effective is log compression (QJSTCmpUncmp/QJSTCmpComp)

�Number of MQ verbs being issued (QMSTGET – number of MQGETs)

�Buffer pool usage – is buffer pool being stressed (QPSTDWT)

�Queuing on DB2 server TCBs (Q5ST. DHIGMAX)

What you can see with statistics

http://www.ibm.com/software/integration/support/supportpacs/

For more information

MP1B Interpreting Accounting and Statistics Data

MP1G
WebSphere MQ for z/OS V7.0.1

Performance Report

MP1E
WebSphere MQ for z/OS V6.0 Performance

Report

MP15 Program to Print SMF Statistics

MP16 Capacity Planning and Tuning -- Updates

MD16 Getting the Best from MQSeries on OS/390

Questions?

Copyright Information

© Copyright IBM Corporation 2011. All Rights Reserved. IBM, the IBM logo, ibm.com, AppScan,

CICS, Cloudburst, Cognos, CPLEX, DataPower, DB2, FileNet, ILOG, IMS, InfoSphere, Lotus,

Lotus Notes, Maximo, Quickr, Rational, Rational Team Concert, Sametime, Tivoli, WebSphere,

and z/OS are trademarks or registered trademarks of International Business Machines

Corporation in the United States, other countries, or both. If these and other IBM trademarked

terms are marked on their first occurrence in this information with a trademark symbol (® or ™),

these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this

information was published. Such trademarks may also be registered or common law trademarks

in other countries. A current list of IBM trademarks is available on the Web at “Copyright and

trademark information” at ibm.com/legal/copytrade.shtml.

Coremetrics is a trademark or registered trademark of Coremetrics, Inc., an IBM Company.

SPSS is a trademark or registered trademark of SPSS, Inc. (or its affiliates), an IBM Company.

Unica is a trademark or registered trademark of Unica Corporation, an IBM Company.

Java and all Java-based trademarks and logos are trademarks of Oracle and/or its affiliates. Other

company, product and service names may be trademarks or service marks of others. References

in this publication to IBM products and services do not imply that IBM intends to make them

available in all countries in which IBM operates.

