z/OS Parallel Sysplex® Update and New XCF Client/Server APIs

Mark A Brooks
IBM
mabrook@us.ibm.com

11:00 a.m. Tuesday March 13, 2012
Session 10649 (long)
The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

<table>
<thead>
<tr>
<th>IBM®</th>
<th>MQSeries®</th>
<th>S/390®</th>
<th>z9®</th>
</tr>
</thead>
<tbody>
<tr>
<td>ibm.com®</td>
<td>MVST™</td>
<td>Service Request Manager®</td>
<td>z10™</td>
</tr>
<tr>
<td>CICS®</td>
<td>OS/390®</td>
<td>Sysplex Timer®</td>
<td>z/Architecture®</td>
</tr>
<tr>
<td>CICSPlex®</td>
<td>Parallel Sysplex®</td>
<td>System z®</td>
<td>zEnterprise™</td>
</tr>
<tr>
<td>DB2®</td>
<td>Processor Resource/Systems Manager™</td>
<td>System z9®</td>
<td>z/OS®</td>
</tr>
<tr>
<td>eServer™</td>
<td>PR/SM™</td>
<td>System z10®</td>
<td>z/VM®</td>
</tr>
<tr>
<td>ESCON®</td>
<td>RACF®</td>
<td>System/390®</td>
<td>z/VSE®</td>
</tr>
<tr>
<td>FICON®</td>
<td>Redbooks®</td>
<td>Tivoli®</td>
<td>zSeries®</td>
</tr>
<tr>
<td>HyperSwap®</td>
<td>Resource Measurement Facility™</td>
<td>VTAM®</td>
<td></td>
</tr>
<tr>
<td>IMS™</td>
<td>RETAIN®</td>
<td>WebSphere®</td>
<td></td>
</tr>
<tr>
<td>IMS/ESA®</td>
<td>GDPS®</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Geographically Dispersed Parallel Sysplex™

The following are trademarks or registered trademarks of other companies.

IBM, z/OS, Predictive Failure Analysis, DB2, Parallel Sysplex, Tivoli, RACF, System z, WebSphere, Language Environment, zSeries, CICS, System x, AIX, BladeCenter and PartnerWorld are registered trademarks of IBM Corporation in the United States, other countries, or both.

DFSMShsm, z9, DFSMSrm, DFSMSdpf, DFSMSdsd, DFSMS, DFS, DFSORT, IMS, and RMF are trademarks of IBM Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

InfiniBand is a trademark and service mark of the InfiniBand Trade Association.

UNiX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.
Statements of Direction

- z196 announcement, July 22, 2010
- z114 announcement, July 12, 2011
- The z196 and z114 will be the last System z servers to:
 - Offer ordering of ESCON channels
 - Offer ordering of ISC-3
 - Support dial-up modem
- Implications
 - If using CTC devices for XCF signalling paths, need to migrate to FICON from ESCON
 - Migrate from ISC-3 coupling links to infiniband
 - Migrate to alternatives for dial-up time services
Agenda

• Hardware Updates
 • CFCC Level 17
 • InfiniBand (IFB) coupling links
 • Server Time Protocol (STP)

• Software Updates
 • z/OS V1R13 (new XCF Client/Server APIs)
 • z/OS V1R12
 • z/OS V1R11

• Summary
CFCC Level 17 – Constraint Relief

- Up to 2047 structures per CF image (prior limit 1023)
 - Many data sharing groups, SAP, CICS, merging plexes
 - New version of CFRM CDS needed to define more than 1024 structures
- Supports up to 255 connectors for all structure types
 - Cache structures already support 255 connectors
 - z/OS imposes smaller limits for lock structures (247) and serialized list structures (127)
 - Will require exploiter changes as well (none yet!)
- Prerequisites
 - z/OS V1.10 or later with PTF for OA32807
 - z/VM V5.4 for guest virtual coupling

APAR OA38840
CFCC Level 17 - Serviceability

- CF Diagnostics
 - Non-disruptive dumping
 - Coordinated dump capture
 - Gathers z/OS, CF, and link diagnostics at same time
 - Use DUPLEXCFDIAG to enable

- Prerequisites
 - z/OS V1.12
 - z/OS 1.10 or 1.11 with PTFs for OA31387

Also available for z10
CFCC Level 16 (need MCLs)
z/OS APAR OA33723
CFCC Level 17 - Migration

- In general, get to most current LIC levels
- Use CF Sizer website to check/update structure sizes:
 - CF structure sizes may increase when migrating to CFCC Level 17 from earlier levels due to additional CFCC controls
 - IBM’s testers saw 0-4% growth from CFLEVEL=16
 - Improperly sized structures can lead to outages!
- Minimum CFCC image size is now 512MB

www.ibm.com/systems/support/z/cfsizer/
Agenda

• Hardware Updates
 • CFCC Level 17
 • InfiniBand (IFB) coupling links
 • Server Time Protocol (STP)

• Software Updates
 • z/OS V1R13
 • z/OS V1R12
 • z/OS V1R11

• Summary
Glossary for System z Coupling

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>AID</td>
<td>Adapter identification</td>
<td>HCA fanout has AID instead of a PCHID</td>
</tr>
<tr>
<td>CIB</td>
<td>Coupling using InfiniBand</td>
<td>CHPID type z196, z10, System z9</td>
</tr>
<tr>
<td>HCA</td>
<td>Host Channel Adapter</td>
<td>Path for communication</td>
</tr>
<tr>
<td>MBA</td>
<td>Memory Bus Adapter</td>
<td>Path for communication</td>
</tr>
<tr>
<td>PSIFB</td>
<td>Parallel Sysplex using InfiniBand</td>
<td>InfiniBand Coupling Links</td>
</tr>
<tr>
<td>12x IFB</td>
<td>12x InfiniBand</td>
<td>12 lanes of fiber in each direction</td>
</tr>
<tr>
<td>1x IFB</td>
<td>1x InfiniBand</td>
<td>Long Reach one pair of fiber</td>
</tr>
<tr>
<td>12x IFB3</td>
<td>12x InfiniBand3</td>
<td>Improved service times versus 12x IFB on HCA3-O</td>
</tr>
</tbody>
</table>
Glossary for System z Coupling …

<table>
<thead>
<tr>
<th>Type</th>
<th>System z10</th>
<th>System z196/z114</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCA1-O fanout</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>HCA2-O fanout</td>
<td>Optical - Coupling 12x InfiniBand</td>
<td>Optical - Coupling 12x InfiniBand</td>
</tr>
<tr>
<td>HCA2-O LR fanout</td>
<td>Optical - Coupling 1x InfiniBand</td>
<td>Optical - Coupling 1x InfiniBand</td>
</tr>
<tr>
<td>HCA3-O fanout</td>
<td>NA</td>
<td>Optical - Coupling 12x InfiniBand</td>
</tr>
<tr>
<td>HCA3-O LR fanout</td>
<td>NA</td>
<td>Optical - Coupling 1x InfiniBand</td>
</tr>
<tr>
<td>MBA fanout</td>
<td>Copper - Coupling (ICB-4)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Coupling link choices

Short Distance

- **IC (Internal Coupling Channel)**
 - Microcode - no external connection
 - Only between partitions on same processor
 - **ICB-3 and ICB-4 (Integrated Cluster Bus)**
 - Copper cable plugs close to memory bus
 - 10 meter max length

- **12x IFB, 12x IFB3**
 - 150 meter max distance optical cabling

Extended Distance

- **ISC-3 (InterSystem Channel)**
 - Fiber optics
 - I/O Adapter card
 - 10km and longer distances with qualified DWDM solutions

- **1x IFB**
 - Fiber optics – uses same cabling as ISC
 - 10km and longer distances with qualified DWDM solutions

Only z10 or older
InfiniBand (IFB) Overview

- Physical lane
 - Link based on a two-fiber 2.5 Gbps bidirectional connection for an optical (fiber cable) implementation
 - Grouped as either 12 physical lanes (12x) or 1 physical lane (1x)

- Link speeds
 - Single data rate (SDR) delivering 2.5 Gbps per physical lane
 - Double data rate (DDR) delivering 6.0 Gbps per physical lane

- Host Channel Adapter (HCA)
 - Physical devices that create and receive packets of information

- CHPID type (CIB) for both 12x IFB and 1x IFB
 - 7 subchannels per CHPID (12x)
 - 32 for HCA2-O LR and HCA3-O LR (1x)

- IFB available on z196, z114, z10, z9
 - HCA3-O exclusive to z196 and z114
New Infiniband Support
July 12, 2011

- Improved service times with 12x IFB links
 - New 12x IFB3 protocol, applies when:
 - HCA3-O to HCA3-O connectivity, ≤ 4 CHPIDs/port
 - Designed to improve link service time up to 40%
- Improved physical connectivity with 1x IFB links
 - HCA3-O LR has 4 ports instead of 2
 - Helps with migration from ISC-3 links
- Up to 32 subchannels per CHPID with 1x IFB links
 - HCA3-O LR or HCA2-O LR
 - Helps with bandwidth at longer distances
IFB Supports Multiple Channel Paths per Physical Link

- Allows more subchannels per physical link
 - Up to 16 CHPIDs across the ports of a single InfiniBand coupling HCA
- Can connect to multiple CF LPARs

- MIF uses same address, 7 subchannels per CHPID
- With HCA2-O LR or HCA3-O LR, 32 subchannels per CHPID
Lower Cost Coupling Infrastructure – consolidating coupling links

- Each line is 2 ICB (up to 10m) or 2+ ISC (up to 10km unrepeated)
- Each line is 2 InfiniBand (~150m for 12x features, or up to 10km unrepeated for 1x features)
- Systems can share the IFB link
Consolidating links with IFB

• Pure Capacity
 • 1 12x IFB replaces 1 ICB-4
 • 1 12x IFB replaces 4 ISC-3s

• Eliminating subchannel and path delays
 • Often >2 ICB-4s configured not for capacity but for extra subchannels/paths to eliminate delays
 • 2 12x IFB links with multiple CHPIDs can replace >2 ICB-4s in this case

• Multiple sysplexes sharing hardware
 • Production, development, test sysplexes may share hardware
 • Previously each required own ICB-4 or ISC-3 links
 • 2 12x or 1x IFB links with multiple CHPIDs can replace >2 ICB-4s or ISC-3s in this case

• Multiple CHPID recommendations
 • Max 16 per HCA (2 ports per HCA)
 • Use up to all 16 for lightly loaded connectivity
 • Limit to max of 8 per HCA for heavy loads

Be sure to maintain redundancy!
Coupling Technology versus Host Processor Speed

Host effect with primary application involved in data sharing

Chart below is based on 9 CF ops/Mi - may be scaled linearly for other rates

<table>
<thead>
<tr>
<th>Host CF</th>
<th>z9 BC</th>
<th>z9 EC</th>
<th>z10 BC</th>
<th>z10 EC</th>
<th>z114</th>
<th>z196</th>
</tr>
</thead>
<tbody>
<tr>
<td>z9 BC ISC3</td>
<td>14%</td>
<td>15%</td>
<td>17%</td>
<td>19%</td>
<td>18%</td>
<td>23%</td>
</tr>
<tr>
<td>z9 BC 12x IFB</td>
<td>NA</td>
<td>NA</td>
<td>13%</td>
<td>14%</td>
<td>13%</td>
<td>16%</td>
</tr>
<tr>
<td>z9 BC ICB4</td>
<td>9%</td>
<td>10%</td>
<td>11%</td>
<td>12%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>z9 EC ISC3</td>
<td>13%</td>
<td>14%</td>
<td>16%</td>
<td>18%</td>
<td>17%</td>
<td>22%</td>
</tr>
<tr>
<td>z9 EC 12x IFB</td>
<td>NA</td>
<td>NA</td>
<td>13%</td>
<td>14%</td>
<td>13%</td>
<td>16%</td>
</tr>
<tr>
<td>z9 EC ICB4</td>
<td>8%</td>
<td>9%</td>
<td>10%</td>
<td>11%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>z10 BC ISC3</td>
<td>13%</td>
<td>14%</td>
<td>16%</td>
<td>18%</td>
<td>17%</td>
<td>22%</td>
</tr>
<tr>
<td>z10 BC 12x IFB</td>
<td>11%</td>
<td>12%</td>
<td>13%</td>
<td>14%</td>
<td>13%</td>
<td>15%</td>
</tr>
<tr>
<td>z10 BC ICB4</td>
<td>8%</td>
<td>9%</td>
<td>10%</td>
<td>11%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>z10 EC ISC3</td>
<td>12%</td>
<td>13%</td>
<td>15%</td>
<td>17%</td>
<td>17%</td>
<td>22%</td>
</tr>
<tr>
<td>z10 EC 12x IFB</td>
<td>10%</td>
<td>11%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>z10 EC ICB4</td>
<td>7%</td>
<td>8%</td>
<td>9%</td>
<td>10%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>z114 ISC3</td>
<td>14%</td>
<td>14%</td>
<td>16%</td>
<td>18%</td>
<td>17%</td>
<td>21%</td>
</tr>
<tr>
<td>z114 12x IFB</td>
<td>10%</td>
<td>10%</td>
<td>12%</td>
<td>13%</td>
<td>12%</td>
<td>15%</td>
</tr>
<tr>
<td>z114 12x IFB3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>10%</td>
<td>12%</td>
</tr>
<tr>
<td>z196 ISC3</td>
<td>11%</td>
<td>12%</td>
<td>14%</td>
<td>16%</td>
<td>17%</td>
<td>21%</td>
</tr>
<tr>
<td>z196 12x IFB</td>
<td>9%</td>
<td>10%</td>
<td>11%</td>
<td>12%</td>
<td>11%</td>
<td>14%</td>
</tr>
<tr>
<td>z196 12x IFB3</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>9%</td>
<td>11%</td>
</tr>
</tbody>
</table>

With z/OS 1.2 and above, synch->asynch conversion caps values in table at about 18% PSIFB 1X links would fall approximately halfway between PSIFB 12X and ISC links IC links scale with speed of host technology and would provide an 8% effect in each case
Maximum Coupling Links and CHPIDs

<table>
<thead>
<tr>
<th>Server</th>
<th>1x IFB (HCA3-O LR)</th>
<th>12x IFB (HCA3-O)</th>
<th>1x IFB (HCA2-O LR)</th>
<th>12x IFB (HCA2-O)</th>
<th>IC</th>
<th>ICB-4</th>
<th>ICB-3</th>
<th>ISC-3</th>
<th>Max External Links</th>
<th>Max Coupling CHPIDs</th>
</tr>
</thead>
<tbody>
<tr>
<td>z196</td>
<td>48 M15 – 32*</td>
<td>32 M15 – 16*</td>
<td>32 M15 – 16*</td>
<td>32 M15 – 16*</td>
<td>32</td>
<td>N/A</td>
<td>N/A</td>
<td>48</td>
<td>104(^1)</td>
<td>128</td>
</tr>
<tr>
<td>z114</td>
<td>M10 – 32* M05 – 16*</td>
<td>M10 – 16* M05 – 8*</td>
<td>M10 – 12 M05 – 8*</td>
<td>M10 – 16* M05 – 8*</td>
<td>32</td>
<td>N/A</td>
<td>N/A</td>
<td>48</td>
<td>M10(^2) M05(^3)</td>
<td>128</td>
</tr>
<tr>
<td>z10 EC</td>
<td>N/A</td>
<td>N/A</td>
<td>32 E12 - 16</td>
<td>32 E12 - 16</td>
<td>32</td>
<td>16(^4)</td>
<td>N/A</td>
<td>48</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>z10 BC</td>
<td>N/A</td>
<td>N/A</td>
<td>12</td>
<td>12</td>
<td>32</td>
<td>12</td>
<td>N/A</td>
<td>48</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>z9 EC</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>16 S08 - 12</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>48</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>z9 BC</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>12</td>
<td>32</td>
<td>16</td>
<td>16</td>
<td>48</td>
<td>64</td>
<td>64</td>
</tr>
</tbody>
</table>

1. z196 & z114 do not have an inherent maximum external link limit. The effective limit depends on the HCA fanout slots available and combined 12x IFB and 1x IFB limit of 16 HCA features.
2. z196 M49, M66 or M80 supports max 96 extended distance links (48 1x IFB and 48 ISC-3) plus 8 12x IFB links.
3. z196 M32 supports max 96 extended distance links (48 1x IFB and 48 ISC-3) plus 4 12x IFB links.
4. z196 M15 supports max 72 extended distance links (24 1x IFB and 48 ISC-3) with no 12x IFB links.

\(^1\) Uses all available fanout slots. Allows no other I/O or coupling.
z114 and z196 GA2 Parallel Sysplex Coupling Connectivity

z9 EC and z9 BC S07
- **IFB 12x SDR, ISC-3**
- z9 to z9 IFB is NOT supported

z10 EC and z10 BC
- **IFB 12x and 1x, ISC-3,**
- 12x IFB, 3 GBps, 150 m
- 12x IFB, 6 GBps, 150 m
- 1x IFB, 5 Gbps, 10/100 km

z800, z900
- Not supported!

z890 and z990
- Not supported!

Note: ICB-4 and ETR are NOT supported on z196 or z114

Note: The InfiniBand link data rates do not represent the performance of the link. The actual performance is dependent upon many factors including latency through the adapters, cable lengths, and the type of workload.
Infiniband Resource Materials

- Parallel Sysplex Website
 - www.ibm.com/systems/z/advantages/pso/ifb.html
 - “Coupling Facility Configuration Options” whitepaper
- Redbooks
 - "Implementing and Managing InfiniBand Coupling Links on System z", SG24-7539
 - “IBM System z Connectivity Handbook” SG24-5444
- STG Lab Services
 - Specialized studies available for complex situations
 - Send a note to stglsls@us.ibm.com
- zCP3000 (Performance Analysis and Capacity Planning)
 - Includes reports of CF and CP utilization given a change of coupling link types
 - Contact your IBM representative to use this tool
Agenda

• Hardware Updates
 • CFCC Level 17
 • InfiniBand (IFB) coupling links
 • Server Time Protocol (STP)

• Software Updates
 • z/OS V1R13
 • z/OS V1R12
 • z/OS V1R11

• Summary
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full name</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbiter</td>
<td>Arbiter</td>
<td>Server assigned by the customer to provide additional means for the Backup Time Server to determine whether it should take over as the Current Time Server.</td>
</tr>
<tr>
<td>BTS</td>
<td>Backup Time Server</td>
<td>Server assigned by the customer to take over as the Current Time Server (stratum 1 server) because of a planned or unplanned reconfiguration.</td>
</tr>
<tr>
<td>CST</td>
<td>Coordinated Server Time</td>
<td>The Coordinated Server Time in a CTN represents the time for the CTN. CST is determined at each server in the CTN.</td>
</tr>
<tr>
<td>CTN</td>
<td>Coordinated Timing Network</td>
<td>A network that contains a collection of servers that are time synchronized to CST.</td>
</tr>
<tr>
<td>CTN ID</td>
<td>Coordinated Timing Network Identifier</td>
<td>Identifier that is used to indicate whether the server has been configured to be part of a CTN and, if so, identifies that CTN.</td>
</tr>
<tr>
<td>CTS</td>
<td>Current Time Server</td>
<td>A server that is currently the clock source for an STP-only CTN.</td>
</tr>
<tr>
<td>PTS</td>
<td>Preferred Time Server</td>
<td>The server assigned by the customer to be the preferred stratum 1 server in an STP-only CTN.</td>
</tr>
</tbody>
</table>
It is possible to have a z196 server as a Stratum 2 server in a Mixed CTN as long as there are at least two z10s or z9s attached to the Sysplex Timer operating as Stratum 1 servers.

Two Stratum 1 servers are highly recommended to provide redundancy and avoid a single point of failure.

Suitable for a customer planning to migrate to an STP-only CTN.

Neither a z196 nor z114 can be in the same Mixed CTN as a z990 or z890 (n-2).
Background: Support Element (SE) Battery Operated Clock (BOC)

- SE Clock used to set CPC clock at IML
- SE Clock synchronized to CPC clock
- NTP clients on zBX synchronize to SE Clock

- But BOC synchronized only once every 24 hours:
 - So CPC TOD after IML could have significant drift relative to External Time Source of CPC – could take hours to steer TOD back in sync, and
 - Time coordination between z196 and zBX components typically worse than non-System z servers not part of the zEnterprise, and
 - Synchronization by “jumping” implies timestamp anomalies
Improved SE BOC Synchronization

Applies to z196 GA2 and z114 (driver 93)

• SE synchronizes to CPC TOD every hour
• Synchronization is steered

So:

• CPC TOD set at IML from SE BOC has less drift
• SE BOC can maintain time accuracy within 100 milliseconds of CPC (and therefore ETS)
• NTP Clients on zBX that synchronize with SE at least once an hour can maintain it too
Background: STP only CTN
Recovery rules for 3 or more servers

To ensure data integrity, you CANNOT have two Stratum 1 servers in timing network

- Backup Time Server (BTS) can take over as Current Time Server (CTS), if:
 - Preferred Time Server (PTS) can indicate it has “failed”, or
 - BTS can unambiguously determine the PTS has “failed”
- Otherwise recovery based on “voting” (2 out of 3)
 - If BTS and Arbiter agree they cannot communicate with PTS, then safe for BTS to takeover as S1
 - If PTS cannot communicate with BTS and Arbiter, it can no longer remain a S1 (even if it is operational and providing a time source to rest of CTN)
Motivational Example: Sysplex Outage 1

CTN roles not reassigned prior to planned disruptive actions on special role servers

- Planned disruptive action initiated from HMC to POR BTS and Arbiter
 - Could be same task or
 - Could be sequential

- Roles not reassigned as recommended

- PTS loses communication to both BTS and Arbiter
 - Surrenders S1 role
 - Since no other clock source available, PTS becomes unsynchronized (S0)
 - CECs with P4, P5, P6 also become unsynchronized

- Sysplex wide outage
Block disruptive planned actions

Applies to z196 GA2, z196 GA1 w/ MCLs, z114, and z10 w/ MCLs

- Block planned disruptive action from proceeding on the BTS and Arbiter using similar design used to block CTS
- Forces CTN role to be removed or reassigned prior to proceeding with a disruptive action
- Pros:
 - Safeguard for disruptive planned actions performed as part of same HMC task on both the BTS and Arbiter or done sequentially
 - Consistency – same procedure for all servers with CTN roles
- Cons:
 - Need special operational procedures for each server assigned a role in the CTN, instead of just the CTS
 - Does not safeguard against unplanned double failures
CTN roles not reassigned after BTS takeover as S1

- PTS checkstop
 - BTS take over as S1
 - Customer does not reassign roles as recommended

- If subsequently BTS fails, no other server available to take over as S1 or

- If subsequently Arbiter fails or is PORed (planned action)
 - BTS loses communication to both PTS and Arbiter
 - Surrenders S1 role
 - Since no other clock source available, BTS becomes unsynchronized (S0)
 - CECs with P4, P5, P6 also become unsynchronized

- Sysplex wide outage

Coupling links
STP design changes

Triad voting disabled when Triad state “degraded”

- Triad State “degraded” when any two of the special role servers (PTS, BTS, Arbiter) agree they cannot communicate with the third special role server
 - BTS and Arbiter can communicate, but both cannot communicate with PTS/CTS
 - Current triad voting first allows BTS to takeover as CTS and then Triad voting is disabled (design change)
 - PTS and BTS can communicate, but both cannot communicate with Arbiter
 - Triad voting is disabled (design change)
 - PTS and Arbiter can communicate, but both cannot communicate with BTS
 - Triad voting is disabled (design change)
- Provides safeguard against:
 - Planned disruptive actions done sequentially on BTS and Arbiter
 - Double failures (Unplanned or combination of planned & unplanned) of BTS and Arbiter

Notes:
- This enhancement does not protect against double failures of both the PTS and BTS
- Results in sysplex outage
- Best practice recommendation is for customer to reassign roles after failure affecting any of the special role servers
STP Recovery Enhancement

• Reliable unambiguous “going away” signal allows CTS in an STP-only CTN to notify BTS of its demise
• The BTS can then safely take over as the CTS
 • Dependencies on OLS and CAR removed in a 2 server CTN
 • Dependency on BTS > Arbiter communication removed in CTNs with 3 or more servers
 • BTS can also use GOSIG to take over as CTS for CTNs with 3 or more servers without communicating with Arbiter

• Hardware Requirements
 • STP-only CTN
 • z196 or z114
 • HCA3-O or HCA3-O LR connecting BTS and CTS

Driver 93 had an issue:
Hiper EC.MCL N48165.053 (alert/circumvention)
Hiper EC.MCL N48165.057 (alert/fix)
False Going Away Signal detected in the BTS – fixed
STP Resource Materials

- Parallel Sysplex Web site
 - www.ibm.com/systems/z/pso/stp.html

- Redbooks®
 - Server Time Protocol Planning Guide, SG24-7280
 - Server Time Protocol Implementation Guide, SG24-7281

- TechDocs
 - Server Time Protocol Overview, PRS2398
 - STP Recovery White papers (search for STP)

- Introduction to Server Time Protocol (STP)
 - Course available on Resource Link
Agenda

- Hardware Updates
 - CFCC Level 17
 - InfiniBand (IFB) coupling links
 - Server Time Protocol (STP)

- Software Updates
 - z/OS V1R13 (new XCF Client/Server APIs)
 - z/OS V1R12
 - z/OS V1R11

- Summary
z/OS V1R13 - Summary

- D XCF, SYSPLEX – Revised output
- CF Structure Placement – more explanation
- ARM – New timeout parameter for application cleanup
- XCF – New API for message passing

- SETXCF MODIFY - Disable structure alter processing
- SDSF – Sysplex wide data gathering without MQ
- Runtime Diagnostics – Detects more contention
- zFS – Direct access to shared files throughout sysplex

Due to time restrictions, only the topic in bold will be discussed. Slides for the remaining topics are included in the Appendix.
D XCF,SYSPLEX command is a popular command used to display the systems in the sysplex

But, prior to z/OS V1R13:
- Output not as helpful for problem diagnosis as it could be
- Much useful system and sysplex status information is kept by XCF, but not externalized in one central place

So z/OS V1R13 enhances the output
- You can still get the same output (perhaps with new msg #)
- And you can get more details than before
z/OS 1.12

<table>
<thead>
<tr>
<th>D XCF,S,ALL</th>
<th>IXC335I 12:55:00 DISPLAY XCF FRAME LAST F E SYS=SY1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSPLEX PLEX1</td>
<td>SYSTEM TYPE SERIAL LPAR STATUS TIME SYSTEM STATUS</td>
</tr>
<tr>
<td>SY1 4381 9F30 N/A 04/22/2011 12:55:00 ACTIVE TM=SIMETR</td>
<td></td>
</tr>
<tr>
<td>SY2 4381 9F30 N/A 04/22/2011 12:54:56 ACTIVE TM=SIMETR</td>
<td></td>
</tr>
<tr>
<td>SY3 4381 9F30 N/A 04/22/2011 12:54:56 ACTIVE TM=SIMETR</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM STATUS

DETECTION PARTITIONING PROTOCOL CONNECTION EXCEPTIONS:
SYSPLEX COUPLE DATA SET NOT FORMATTED FOR THE SSD PROTOCOL

z/OS 1.13

<table>
<thead>
<tr>
<th>D XCF,S,ALL</th>
<th>IXC337I 12.29.36 DISPLAY XCF FRAME LAST F E SYS=SY1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSPLEX PLEX1</td>
<td>SYSTEM TYPE SERIAL LPAR STATUS TIME SYSTEM STATUS</td>
</tr>
<tr>
<td>SY1 4381 9F30 N/A 05/04/2011 12:29:36.000218 ACTIVE TM=SIMETR</td>
<td></td>
</tr>
<tr>
<td>SYSTEM NUMBER: 01000001</td>
<td></td>
</tr>
<tr>
<td>SYSTEM IDENTIFIER: AC257038 01000001</td>
<td></td>
</tr>
<tr>
<td>SYSTEM TYPE: 4381 SERIAL: 9F30 LPAR: N/A</td>
<td></td>
</tr>
<tr>
<td>NODE DESCRIPTOR: SIMDEV.IBM.PK.D13ID31</td>
<td></td>
</tr>
<tr>
<td>PARTITION: 00 CPCID: 00</td>
<td></td>
</tr>
<tr>
<td>RELEASE: z/OS 01.13.00</td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM STATUS

DETECTION PARTITIONING PROTOCOL CONNECTION EXCEPTIONS:
SYSPLEX COUPLE DATA SET NOT FORMATTED FOR THE SSD PROTOCOL
Why did it put my structure in that CF?
 - A dark art, often a mystery to the observer

Existing messages updated to help explain
 - IXL015I: Initial/rebuild structure allocation
 - Also has “CONNECTIVITY=” insert
 - IXC347I: Reallocate/Reallocate test results
 - IXC574I: Reallocate processing, system managed rebuild processing, or duplexing feasibility
IXL015I STRUCTURE ALLOCATION INFORMATION FOR STRUCTURE THRLST01, CONNECTOR NAME THRLST0101000001, CONNECTIVITY=SYSPLEX

<table>
<thead>
<tr>
<th>CFNAME</th>
<th>ALLOCATION STATUS/FAILURE REASON</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF01</td>
<td>ALLOCATION NOT PERMITTED COUPLING FACILITY IS IN MAINTENANCE MODE</td>
</tr>
<tr>
<td>A</td>
<td>STRUCTURE ALLOCATED CC007B00</td>
</tr>
<tr>
<td>TESTCF</td>
<td>PREFERRED CF ALREADY SELECTED CC007B00</td>
</tr>
<tr>
<td></td>
<td>PREFERRED CF HIGHER IN PREFLIST</td>
</tr>
<tr>
<td>LF02</td>
<td>PREFERRED CF ALREADY SELECTED CC007300</td>
</tr>
<tr>
<td></td>
<td>EXCLLIST REQUIREMENT FULLY MET BY PREFERRED CF</td>
</tr>
<tr>
<td>SUPERSES</td>
<td>NO CONNECTIVITY 98007800</td>
</tr>
</tbody>
</table>
Automatic Restart Management (ARM)

If you have an active ARM policy, then:

- After system failure, ARM waits up to two minutes for survivors to finish cleanup processing for the failed system.
 - If cleanup does not complete within two minutes, ARM proceeds to restart the failed work anyway.

Problem: restart may fail if cleanup did not complete.

Issue: Two minutes may not be long enough for the applications to finish their cleanup processing.
z/OS V1R13 – New ARM Parameter

- **CLEANUP_TIMEOUT**
 - New parameter for the ARM policy specifies how long ARM should wait for survivors to cleanup for a failed system
 - Specified in seconds, 120..86400 (2 min to 24 hours)

- If parameter not specified
 - Defaults to 300 seconds (5 minutes, not 2)
 - Code 120 if you want to preserve old behavior

- If greater than 120:
 - Issues message IXC815I after two minutes to indicate that restart is being delayed
 - If the timeout expires, issues message IXC815I to indicate restart processing is continuing despite incomplete cleanup

- Available for z/OS V1R10 and up with APARs OA35357
z/OS V1R13 – New XCF API for Message Passing

- XCF Client/Server Interfaces
 - Allows authorized programs to send and receive signals within a sysplex without joining an XCF Group
 - XCF does communication and failure handling
 - Simplifies development, reduces complexity, implementation and support costs by eliminating some of the XCF exploitation costs
 - Servers run in task mode
z/OS V1R13 XCF Client/Server

- **IXCSEND** – send request to one or more servers
- **IXCSRVR** – start or stop a server instance
- **IXCSEND** – send response to client request
- **IXCRECV** – receive response(s) from server(s)
- **IXCYSRVR** – data mappings
Client must invoke IXCRECV on the same system that initiated the IXCSEND
 But the send/recv can be invoked from different work units running in different address spaces

Servers are identified by name
 Four 8 byte sections, case sensitive, start with component prefix
 Externally presented in the form A.B.C.D

Servers can have multiple instances
 At various release levels
 In various address spaces
 On various systems

All message data is delivered to user designated storage areas
z/OS V1R13 XCF Server

• A collection of tasks associated with a server name
• A server task:
 • Invokes IXCSRVR to define itself to XCF
 • Runs an infinite XCF Server Stub loop (until stopped)
 • XCF suspends the task if no work
 • XCF resumes task when work arrives
 • XCF calls user provided server exit to process the work
 • Is a server instance
 • Each instance has a unique Server ID
• A given server can have multiple instances to:
 • Handle volume of work
 • Support different application levels
 • Run in different spaces
 • Process selected request types
 • Process requests from certain clients or systems
• All definitions are maintained locally
XCF Client/Server – Server Task

XCF Server Stub
- Call Server Exit (init server)
- Loop:
 - Do while requests
 - Fetch request
 - Call Server Exit (R,P,T,SD)
- EndDo
- Wait for requests
- EndLoop

Server Definitions
- Server 1
- Server 2
-
- Server N

Server Name
- Instance#
- InstanceQ
- RequestQ

Server Instance Record
- Level
- FDI(i)
- Start(S) exit(X)
- UserData(SD)

Server Space

XCFAS
Key Concepts for Client Request

- Two ways to identify the target
 - Server name and system(s)
 - Server ID
- Receive Binds
 - Allow XCF to discard server responses if intended receiver terminates before invoking IXCRECV
 - Applies after traditional XCF sends client request to all targets
- Send Message Token
 - Identifies message, input to IXCRECV
Server Selection Criteria

- **Target by ServerID**
 - User has full responsibility for suitability
 - Relevant selection criteria are presented via SXPL for possible use

- **Target by Server Name**
 - XCF selects suitable server instance based on parameters specified by server when it was started, and client when it sent the request
 - **IXCSRVR**
 - MINLEVEL, MAXLEVEL
 - MINCLIENT, MAXCLIENT
 - FEATURES
 - **IXCSEND**
 - CRITERIA: MinServerLevel, MaxServerLevel
 - CLIENTLEVEL
 - CRITERIA: Features

- Server levels intersect
- Client level with range acceptable to server
- Server supports all features requested by client
Server Exit Processing

• Inputs (SXPL)
 • Base SXPL
 • Function Specific SXPL
 • SXPL_ServerCode
 • Initialize
 • Get Work Area
 • Process Request

• Outputs (via SXPL)
 • StopCode
 • State
 • WAD
 • RespBind
 • RefusalCode
 • ResultCode
Processing Client Request

- Servers likely to have one of the following behaviors
 - Server Exit invokes IXCSEND to send response
 - Server Exit arranges for 3rd party to send response from:
 - Local system
 - Some other system
 - Server Exit sets SXPL ResultCode or RefusalCode to have XCF send an acknowledgment
 - Failure

- Two forms of XCF acknowledgment (zero, one, or both may apply)
 - Intermediate: request was delivered to server
 - Final: request is complete (response not expected)
Receiving Results

- Client invokes IXCRECV to get the results
- IXCRECV can be invoked to:
 - Test for message completion
 - Return results when message completes (blocking)
 - Report on progress so far (nonblocking)
- Outputs
 - Return and reason code
 - ANSAREA metadata to describe results
 - DATAAREA response data sent by servers
IXCRECV Answer Area

AnsArea

- Header
- SendDesc

DataArea

- Reply 1
- Reply 2
- ...
- Reply N

TargDesc 1
- RespDesc 1
- ...
- RespDesc N

TargDesc 2
- ...
- ...

TargDesc N
Response Codes

- Each response has a 2 byte response code that encapsulates XCF’s understanding of the status of the message
- Primary response code indicates generic status
 - NotSent: Request was never sent
 - InProgress: Request is in flight
 - NoReceiver: Server does not exist
 - NotDelivered: Server never saw the request
 - Refused: Server refused to accept the request
 - Failed: Server failed while processing request
 - Delivered: Request was presented to server
 - Replied: Response received from server

- Secondary response code provides additional detail. For example, for “no receiver”
 - No instance of server is defined
 - No suitable instance of server is defined
 - Last suitable instance terminated
XCF Client/Server - Send/Receive

1. IXCSEND
 - function(R)
 - server(S)
 - msgdata(P)
 - timeout(x)
 - RetMsgToken(T)

Response containing results held by XCF until received or timeout expires

2. Server Exit
 - Arrange for processing of request R with data P
 - Remember T

3. IXCSEND
 - RespToken(T)
 - MsgData(D)

4. Client Side

5. Server Side

6. IXCRECV
 - msgtoken(T)
 - ansarea(A)
 - dataarea(D)
 - reqtype(B)

7. MetaData

8. Data

9. Notes:
 - Steps 1 and 8 must be done from the same system, could be multiple AS
 - Steps 4 and 5 could be on different systems
 - Steps 7 and 8 could run in either order
The DISPLAY XCF command was extended to display information about servers, server instances, and queued work.

D XCF, { SERVER | SRV }
[, {SYSNAME | SYSNM}={sysname | (sysname [,sysname]. . .)}]
[, {SERVERNAME | SRVNAME | SRVNM}={servername}]
[, SCOPE={ {SUMMARY | SUM} | {DETAIL | DET} }]
[, TYPE=NAME [, STATUS=(STALLED)]]
{INSTANCE | INST}
[, STATUS=([{WORKING | WORK}] [, STALLED])]
[, {INSTNUM | INST#}=inst#]]
Agenda

- Hardware Updates
 - CFCC Level 17
 - InfiniBand (IFB) coupling links
 - Server Time Protocol (STP)

- Software Updates
 - z/OS V1R13
 - z/OS V1R12
 - z/OS V1R11

- Summary
z/OS V1R12 Summary

- REALLOCATE
- Critical Members
- CFSTRHANGTIME
- Support for CFLEVEL 17
- Health Checks
- Auto Reply
- Run Time Diagnostics
- XCF Programming Interfaces

Due to time restrictions, only the topics in bold will be discussed. Slides for the remaining topics are included in the Appendix.
Background - REALLOCATE

- **SETXCF START,REALLOCATE**
 - Puts structures where they belong
- **Well-received, widely exploited for CF structure management**
- **For example, to apply “pure” CF maintenance:**
 - SETXCF START,MAINTMODE,CFNAME=cfname
 - SETXCF START,REALLOCATE to move structures out of CF
 - Perform CF maintenance
 - SETXCF STOP,MAINTMODE,CFNAME=cfname
 - SETXCF START,REALLOCATE to restore structures to CF
Background - REALLOCATE

But...

• Difficult to tell what it did
 • Long-running process
 • Messages scattered all over syslog
 • Difficult to find and deal with any issues that arose

• And people want to know in advance what it will do
z/OS V1R12 - REALLOCATE

- DISPLAY XCF,REALLOCATE,option

- TEST option
 - Provides detailed information regarding what REALLOCATE would do if it were to be issued
 - Explains why an action, if any, would be taken

- REPORT option
 - Provides detailed information about what the most recent REALLOCATE command actually did do
 - Explains what happened, but not why
Caveats for TEST option

- Actual REALLOCATE could have different results
 - Environment could change
 - For structures processed via user-managed rebuild, the user could make “unexpected” changes
 - Capabilities of systems where REALLOCATE runs differ from the system where TEST ran
 - For example, connectivity to coupling facilities

- TEST cannot be done:
 - While a real REALLOCATE (or POPCF) is in progress
 - If there are no active allocated structures in the sysplex
Caveats for REPORT option

- Can be done during or after a real REALLOCATE, but not before a real REALLOCATE is started
- A REPORT is internally initiated by XCF if a REALLOCATE completes with exceptions
Agenda

• Hardware Updates
 • CFCC Level 17
 • InfiniBand (IFB) coupling links
 • Server Time Protocol (STP)

• Software Updates
 • z/OS V1R13
 • z/OS V1R12
 • z/OS V1R11

• Summary
z/OS V1R11 - Summary

• SFM with BCPii
• System Default Action
• XCF FDI Consistency

Due to time restrictions, only the topic in bold will be discussed. Slides for the remaining topics are included in the Appendix.
z/OS V1R11 - SFM with BCPii

• Expedient removal of unresponsive or failed systems is essential to high availability in sysplex

• XCF exploits new BCPii services to:
 • Detect failed systems
 • Reset systems

• Benefits:
 • Improved availability by reducing duration of sympathy sickness
 • Eliminate manual intervention in more cases
 • Potentially prevent human error that can cause data corruption
z/OS Images (not VM guests)

XCF uses BCPii to
- Obtain identity of an image
- Query status of remote CPC and image
- Reset an image

Requires operational SE and HMC network
With BCPii, XCF can know that system is dead, and:

- Bypass the Failure Detection Interval (FDI)
- Bypass the Indeterminate Status Interval (ISI)
- Bypass the cleanup interval
- Reset the system even if fencing fails
- Avoid IXC102A, IXC402D and IXC409D manual intervention
- Validate “down” to help avoid corruption of shared data
z/OS V1R11 - SFM with BCPii

- SFM will automatically exploit BCPii as soon as the required configuration is established:
 - Pairs of systems running z/OS 1.11 or later
 - BCPii configured, installed, and available
 - XCF has security authorization to access BCPii defined FACILITY class resources or TRUSTED attribute
 - z10 GA2, or z196, or z114 *(all with appropriate MCL’s)*
 - New version of sysplex CDS is primary in sysplex
 - Toleration APAR OA26037 for z/OS 1.9 and 1.10
 - Does NOT allow systems to use new SSD function or protocols

Enabling SFM to use BCPii will have a big impact on availability. Make it happen!
Agenda

- Hardware Updates
 - CFCC Level 17
 - InfiniBand (IFB) coupling links
 - Server Time Protocol (STP)
- Software Updates
 - z/OS V1R13
 - z/OS V1R12
 - z/OS V1R11
- Summary
Highlights

- CFLEVEL 17 for z196 and z114
 - More structures and nondisruptive dumping
- Infiniband links for
 - Bandwidth
 High performance links at 150 meters
 Fewer physical links
 Additional connectivity with HCA3-O LR (four ports)
- STP recovery enhancements
- Automatic resolution of sympathy sickness
 - SFM with BCPii for better availability
 - CFSTRHANGTIME, Critical Members
- CF Structure Management
 - REALLOCATE test and report
Other Sysplex Related Sessions

- Tue 4:30 Introducing z196 and z114 PCIe I/O and coupling infrastructure
- Wed 1:30 Coupling Technology Overview and Planning
- Wed 3:00 z/OS Planned Outage Avoidance Checklist
- Wed 4:30 SFM History and Proven Practice
- Wed 4:30 Migrating from ICB4 to Infiniband
- Thu 8:00 Migrating from z10 ICBs to z196 Infiniband
- Thu 9:30 z/OS 1.13 SDSF Update
z/OS Publications

- MVS Setting Up a Sysplex (SA22-7625)
- MVS Initialization and Tuning (SA22-7591)
- MVS Systems Commands (SA22-7627)
- MVS Diagnosis: Tools and Service Aids (GA22-7589)
- z/OS V1R13.0 Migration (GA22-7499)
- z/OS V1R13.0 Planning for Installation (GA22-7504)
- z/OS MVS Programming: Callable Services for High Level Languages (SA22-7613)
 - Documents BCPii Setup and Installation and BCPii APIs
- Migration to the IBM zEnterprise System for z/OS V1R7 through z/OS V1R12 (SA23-2269)
Sysplex-related Redbooks

- System z Parallel Sysplex Best Practices, SG24-7817
- Considerations for Multi-Site Sysplex Data Sharing, SG24-7263
- Server Time Protocol Planning Guide, SG24-7280
- Server Time Protocol Implementation Guide, SG24-7281
- System z Parallel Sysplex Performance, SG24-7654
- Exploiting the IBM Health Checker for z/OS Infrastructure, REDP-4590

Available at www.redbooks.ibm.com
Parallel Sysplex Web Site

Parallel Sysplex

IBM SERVER TIME PROTOCOL (STP)
Time Synchronization for the Next Generation

→ Learn more

Overview
- CF structures
- CF levels
- IFB
Appendix

Material of potential interest, even though it was not presented due to time constraints.
Appendix – z/OS V1R13

- SETXCF MODIFY - Disable structure alter processing
- SDSF – Sysplex wide data gathering without MQ
- Runtime Diagnostics – Detects more contention
- zFS – Direct access to shared files throughout sysplex
CF Structure Alter Processing

- CF Structure Alter processing is used to dynamically reconfigure storage in the CF and its structures to meet the needs of the exploiting applications
 - Size of structures can be changed
 - Objects within structures can be reapportioned
- Alter processing can be initiated by the system, the application, or the operator
- There have been occasional instances, either due to extreme duress or error, where alter processing has contributed to performance problems
- Want an easy way to inhibit alter processing ….
z/OS V1R13 – Enable/Disable Start Alter Processing

- SETXCF MODIFY,STRNAME=pattern,ALTER=DISABLED
- SETXCF MODIFY,STRNAME=pattern,ALTER=ENABLED
 - STRNAME=strname
 - STRNAME=strprfx*
 - STRNAME=ALL | STRNAME=*
- D XCF,STRUCTURE, ALTER={ENABLED|DISABLED}
- Only systems with support will honor ALTER=DISABLED indicator in the active policy
 - So you may not get the desired behavior until the function is rolled around the sysplex
 - But fall back is trivial since downlevel code ignores it

- APAR OA34579 for z/OS V1R10 and up
 - OA37566 as well
z/OS V1R13 - SDSF

• SDSF provides sysplex view of panels:
 • Health checks; processes; enclaves; JES2 resources
• Data gathered on each system using the SDSF server
• Consolidated on client for display so user can see data from all systems
• Previously used MQ series to send and receive requests
 • Requires configuration and TCP/IP, instance of MQ queue manager on each system
• z/OS V1R13 implementation uses XCF Client/Server
 • No additional configuration requirements
z/OS V1R13 – Runtime Diagnostics

- Allows installation to quickly analyze a system experiencing “sick but not dead” symptoms
- Looks for evidence of “soft failures”
- Reduces the skill level needed when examining z/OS for “unknown” problems where the system seems “sick”
- Provides timely, comprehensive analysis at a critical time period with suggestions on how to proceed

- Runs as a started task in z/OS V1R12
 - S HZR
- Starts at IPL in z/OS V1R13
 - F HZR,ANALYZE command initiates report
z/OS V1R13 – Runtime Diagnostics …

Does what you might do manually today:

- Review critical messages in the log
- Analyze contention
 - GRS ENQ
 - GRS Latches
 - z/OS UNIX file system latches
- Examine address spaces with high CPU usage
- Look for an address space that might be in a loop
- Evaluate local lock conditions
- Perform additional analysis based on what is found
 - For example, if XES reports a connector as unresponsive, RTD will investigate the appropriate address space
z/OS V1R13 - zFS

- Full read/write capability from anywhere in the sysplex for shared file systems
 - Better performance for systems that are not zFS owner
 - Reduced overhead on the owner system
- Expected to improve performance of applications that use zFS services
 - z/OS UNIX System Services
 - WebSphere® Application Server
Appendix – z/OS V1R12

• Critical Members
• CFSTRHANGTIME
• Support for CFLEVEL 17
• Health Checks
• Auto Reply
• XCF Programming Interfaces
A system may appear to be healthy with respect to XCF system status monitoring, namely:
 • Updating status in the sysplex CDS
 • Sending signals

But is the system actually performing useful work?
 • There may be critical functions that are non-operational
 • Which in effect makes the system unusable, and perhaps induces sympathy sickness elsewhere in the sysplex

Action should be taken to restore the system to normal operation OR it should be removed to avoid sympathy sickness
A Critical Member is a member of an XCF group that identifies itself as “critical” when joining its group.

If a critical member is “impaired” for long enough, XCF will eventually terminate the member.

- Per the member’s specification: task, space, or system
- SFM parameter MEMSTALLTIME determines “long enough”

GRS is a “system critical member”

- XCF will remove a system from the sysplex if GRS on that system becomes “impaired”
z/OS V1R12 - Critical Members …

• New Messages
 • IXC633I “member is impaired”
 • IXC634I “member no longer impaired”
 • IXC635E “system has impaired members”
 • IXC636I “impaired member impacting function”

• Changed Messages
 • IXC431I “member stalled” (includes status exit)
 • IXC640E “going to take action”
 • IXC615I “terminating to relieve impairment”
 • IXC333I “display member details”
 • IXC101I, IXC105I, IXC220W “system partitioned”
z/OS V1R12 - Critical Members …

- **Coexistence considerations**
 - Toleration APAR OA31619 for systems running z/OS V1R10 and z/OS V1R11 should be installed before IPLing z/OS V1R12
 - The APAR allows the down level systems to understand the new sysplex partitioning reason that is used when z/OS V1R12 system removes itself from the sysplex because a system critical component was impaired
 - If the APAR is not installed, the content of the IXC101I and IXC105I messages will be incorrect
z/OS V1R12 - Critical Members …

• Potential migration action
 • Evaluate, perhaps change MEMSTALLTIME parameter
XES Connector Hang Detection

- Connectors to CF structures need to participate in various processes and respond to relevant events
- XES monitors the connectors to ensure that they are responding in a timely fashion
- If not, XES issues messages (IXL040E, IXL041E) to report the unresponsive connector
- Users of the structure may hang until the offending connector responds or is terminated
 - Impact: sympathy sickness, delays, outages
- Need a way to resolve this automatically …
z/OS 1VR12 – CFSTRHANGTIME …

• CFSTRHANGTIME
 • A new SFM Policy specification
 • Indicates how long the system should allow a structure hang condition to persist before taking corrective action(s) to remedy the situation

• Corrective actions may include:
 • Stopping rebuild
 • Forcing the user to disconnect
 • Terminating the connector task, address space, or system
z/OS V1R12 – CFSTRHANGTIME Processing

IXL049E Taking action at time T

IXL040E or **IXL041E**
Has not responded

120 seconds

Dump*

CFSTRHANGTIME

IXL050I taking action to relieve hang

Max(CFSTRHANGTIME,2min)

If escalation is needed

IXL050I taking action to relieve hang

Dump*

Dump* = Base release, dump is taken either when hang is announced or just prior to termination.

With OA34440, dump taken only when hang is announced
New Messages

IXL049E HANG RESOLUTION ACTION FOR CONNECTOR NAME: conname TO STRUCTURE strname, JOBNAME: jobname, ASID: asid: actiontext

IXL050I CONNECTOR NAME: conname TO STRUCTURE strname, JOBNAME: jobname, ASID: asid HAS NOT PROVIDED A REQUIRED RESPONSE AFTER noresponsetime SECONDS. TERMINATING termtarget TO RELIEVE THE HANG.
Coexistence

- Toleration APAR OA30880 for z/OS V1R10 and z/OS V1R11 makes reporting of the CFSTRHANGTIME keyword with IXCMIAPU utility possible on those releases.
- However the capability to take action to resolve the problem is not rolled back to previous releases.
z/OS 1.12 – Support for CFLEVEL 17

- Large CF Structures
 - Increased CF structure size supported by z/OS to 1TB
 - Usability enhancements for structure size specifications
 - CFRM policy sizes
 - Display output

- More CF Structures can be defined
 - New z/OS limit is 2048 (CF limit is 2047)

- More Structure Connectors (CF limit is 255)
 - Lock structure – new limit is 247
 - Serialized list – new limit is 127
 - Unserialized list – new limit is 255
A new version of the CFRM CDS is needed to define more than 1024 structures in a CFRM policy.

May need to roll updated software around the sysplex for any exploiter that wants to request more than 32 connectors to list and lock structures.

- Not aware of any at this point (so really just positioning for future growth).
z/OS 1.12 – Support for CFLEVEL 17 …

• z/OS requests non-disruptive CF dumps as appropriate

• Coherent Parallel-Sysplex Data Collection Protocol
 • Exploited for duplexed requests
 • Triggering event will result in non-disruptive dump from both CFs, dumps from all connected z/OS images, and capture of relevant link diagnostics within a short period
 • Prerequisites:
 • Installation must ENABLE the XCF function DUPLEXCFDIAG
 • z/OS 1.12
 • z/OS 1.10 or 1.11 with OA31392 (IOS) and OA31387 (XES)
 • Note that full functionality requires that:
 • z/OS image initiating the CF request reside on a z196
 • CF that “spreads the word” reside on a z196
z/OS 1.12 Health Checks

- **XCF_CF_PROCESSORS**
 - Ensure CF CPU’s configured for optimal performance

- **XCF_CF_MEMORY_UTILIZATION**
 - Ensure CF storage is below threshold value

- **XCF_CF_STR_POLICYSIZE**
 - Ensure structure SIZE and INITSIZE values are reasonable
z/OS 1.12 Health Checks …

• XCF_CDS_MAXSYSTYPEM
 • Ensure function CDS supports at least as many systems as the sysplex CDS

• XCF_CFRM_MSGBASED
 • Ensure CFRM is using desired protocols

• XCF_SFM_CFSTRHANGTIME
 • Ensure SFM policy using desired CFSTRHANGTIME specification

 Initially complained if more than 300 (5 minutes). APAR OA34439 changed it to 900 (15 minutes) to allow more time for operator intervention and more time for all rebuilds to complete after losing connectivity to a CF
z/OS 1.12 Auto-Reply

- Fast, accurate, knowledgeable responses can be critical
- Delays in responding to WTOR’s can impact the sysplex
- Parmlib member defines a reply value and a time delay for a WTOR. The system issues the reply if the WTOR has been outstanding longer than the delay

- Very simple automation
- Can be used during NIP!
For example:

```
IXC289D REPLY U TO USE THE DATA SETS LAST USED
FOR typename OR C TO USE THE COUPLE DATA SETS
SPECIFIED IN COUPLExx
```

The message occurs when the couple data sets specified in the COUPLExx parmlib member do not match the ones in use by the sysplex (as might happen when the couple data sets are changed dynamically via SETXCF commands to add a new alternate or switch to a new primary)

Most likely always reply “U”
z/OS 1.12 - XCF Programming Interfaces

- IXCMSGOX
 - 64 bit storage for sending messages
 - Duplicate message toleration
 - Message attributes: Recovery, Critical

- IXCMMSGIX
 - 64 bit storage for receiving messages

- IXCJOIN
 - Recovery Manager
 - Critical Member
 - Termination level
Appendix – z/OS V1R11

- System Default Action
- XCF FDI Consistency
z/OS 1.11 - System Default Action

- SFM Policy lets you define how XCF is to respond to a Status Update Missing condition.
- Each system “publishes” in the sysplex couple data set the action that is to be applied by its peers.
- The system “default action” is published if:
 - The policy does not specify an action for it.
 - There is no SFM policy active.

- Prior to z/OS 1.11, the “default action” was PROMPT.
- With z/OS 1.11, the system default action is ISOLATETIME(0).
z/OS 1.11 - System Default Action

- The resulting behavior for system “default action” depends on who is monitoring who:
 - z/OS 1.11 will isolate a peer z/OS 1.11
 - z/OS 1.11 will PROMPT for lower level peer
 - Lower level system will PROMPT for z/OS 1.11

- D XCF,C shows what the system *expects*
 - *But it may not get that in a mixed sysplex*

- Note: z/OS 1.11 may fence even if action is PROMPT
 - Lower level releases performed fencing only when the system was taking automatic action to remove the system (ISOLATETIME)
z/OS 1.11 - XCF FDI Consistency

- Enforces consistency between the system Failure Detection Interval (FDI) and the excessive spin parameters
- Allows system to perform full range of spin recovery actions before it gets removed from the sysplex
- Avoids false removal of system for a recoverable situation

Helps prevent false SFM removals
Effective Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERVAL</td>
<td>165</td>
</tr>
<tr>
<td>MAXMSG</td>
<td>3000</td>
</tr>
<tr>
<td>CLEANUP</td>
<td>60</td>
</tr>
<tr>
<td>RETRY</td>
<td>10</td>
</tr>
<tr>
<td>CLASSLEN</td>
<td>956</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERVAL (SSUM)</td>
<td>165</td>
</tr>
<tr>
<td>INTERVAL (PARMLIB)</td>
<td>60</td>
</tr>
<tr>
<td>INTERVAL (SETXCF)</td>
<td>165</td>
</tr>
<tr>
<td>INTERVAL (USER)</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTERVAL (DERIVED SPIN)</td>
<td>165</td>
</tr>
</tbody>
</table>

User FDI Spin FDI User OpNotify

- **Absolute**
- **Relative**

OPTIONAL FUNCTION STATUS:

<table>
<thead>
<tr>
<th>FUNCTION NAME</th>
<th>Status</th>
<th>Default</th>
</tr>
</thead>
<tbody>
<tr>
<td>DUPLEXCF16</td>
<td>ENABLED</td>
<td>DISABLED</td>
</tr>
<tr>
<td>SYSSTATDETECT</td>
<td>ENABLED</td>
<td>ENABLED</td>
</tr>
<tr>
<td>USERINTERVAL</td>
<td>DISABLED</td>
<td>DISABLED</td>
</tr>
</tbody>
</table>