

Migrating from z10 ICBs to z196 Infiniband- a Detailed Performance Study and User Experience

Meral Temel Garanti Technology

15 March 2012 10593

Agenda

Who is GT?

- **GT-Parallel Sysplex Configuration**
- **General Information About PSIFB**

Life Cycle Of CF Requests

- How Does Sync/Async Heuristic Algorithm Work ?
- Effect Of Upgrade To Performance Items

RMF Mon III, I panels That Are Used and Key Fields

More Information & Backup Slides

Who is GT?

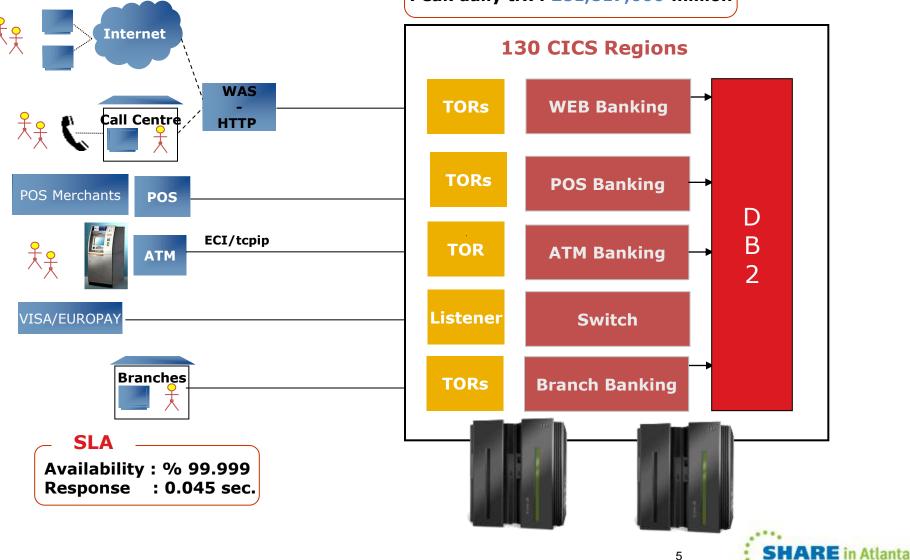
GARANTI V

- A wholly-owned subsidiary of Garanti Bank, the second largest private bank in Turkey owned by Doğuş Group and BBVA.
- One of the largest private internal IT service providers in Turkey
- Most up-to-date IT infrastructure
- Tightly integrated and fully in-house developed, custom-fit IT solutions
- Uninterrupted transaction capability and infrastructure security
- Well-reputed as a company of "firsts"
- Visionary and continuous investment in technology since 90's

- Fast decision making and strong communication from top to down
- Centralized management reporting systems, enable management to take timely actions
- Advanced CRM applications
- Paperless banking

Our Customor

Our Customers



GT- CICS Configuration – TORs & AORs

Average daily trx : 205 million Peak daily trx : 281,817,000 million

2012 5

GT Is A Member Of ...

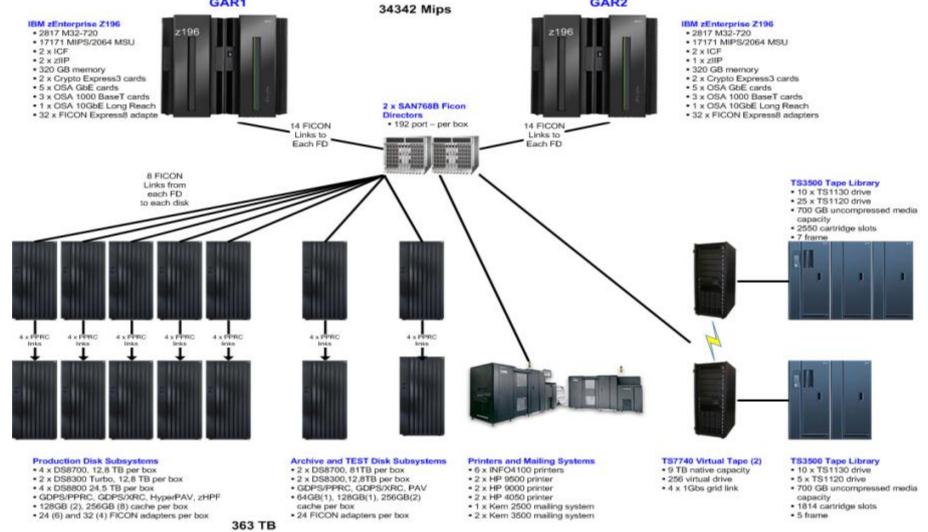
RE Technology - Connections - Results

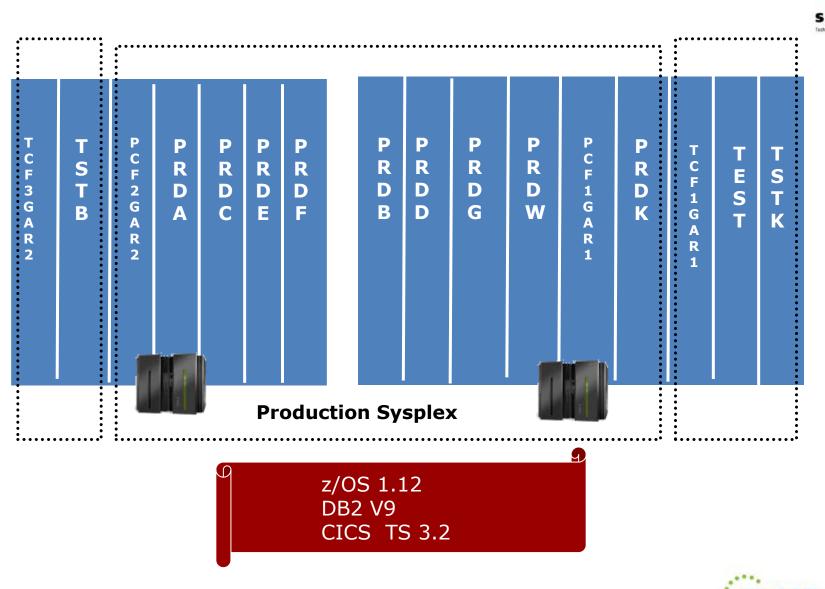
CMG Computer Measurement Group

GDPS Design Council

GT Parallel Sysplex Configuration

GT-Mainframe Configuration GAR1 GAR2

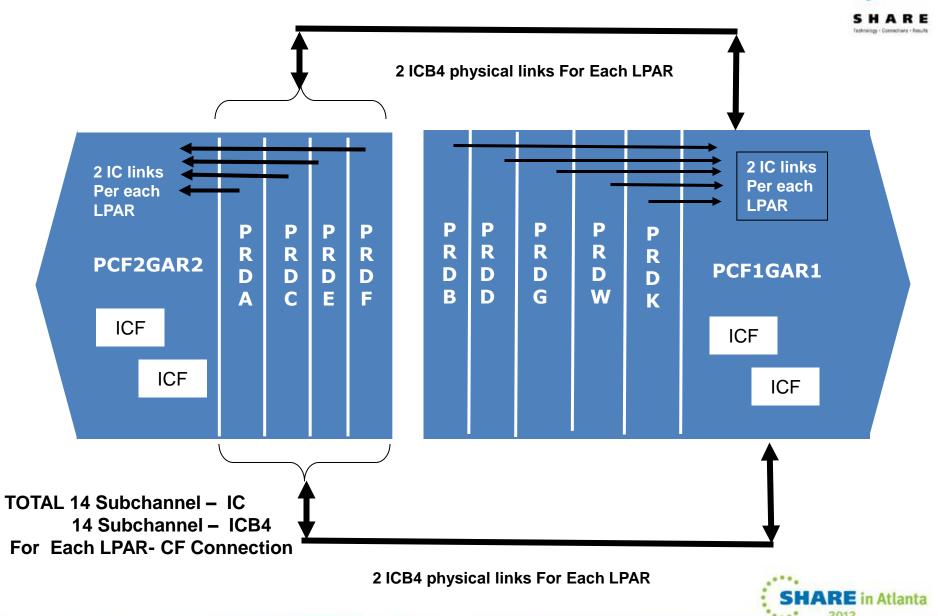



SHARE in Atlanta

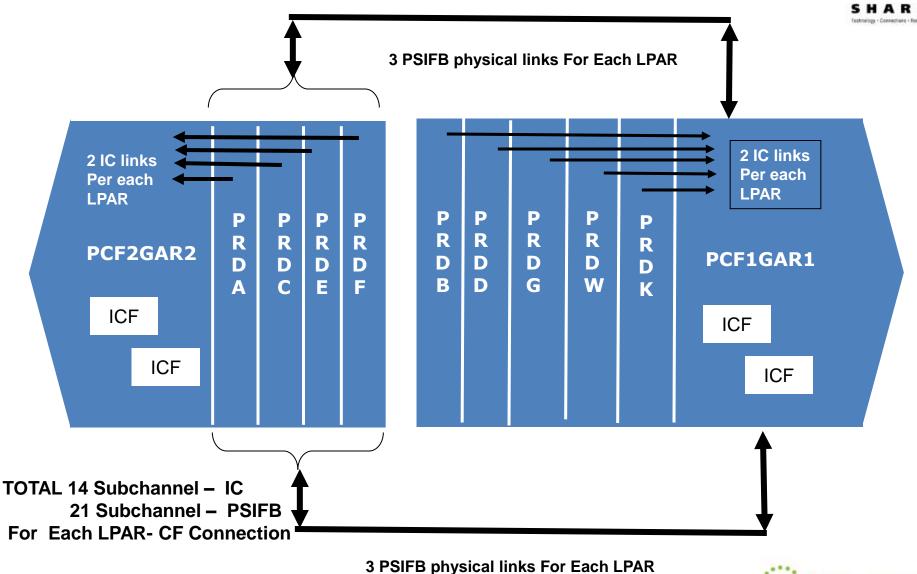
2012

· . . *

8



GT Parallel Sysplex Configuration - LPARS



in Atlanta

GT Parallel Sysplex Configuration - ICFs & CF Links z10

GT Parallel Sysplex Configuration - ICFs & CF Links z196

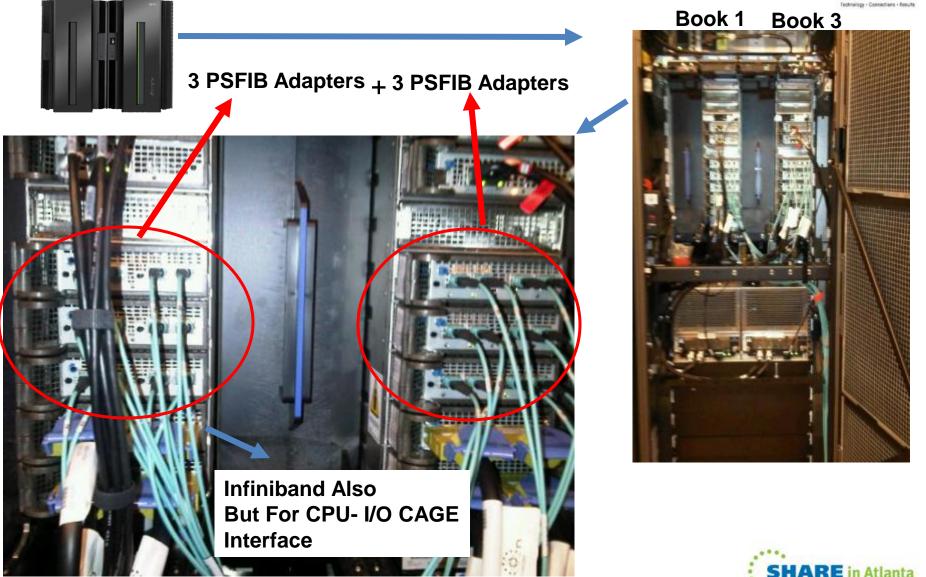
SHARE in Atlanta

z196 Infiniband Adapters & Chpids

GAR1

6 Infiniband Adapters 12 Physical Ports/Links

GAR2



6 Infiniband Adapters 12 Physical Ports/Links

z196 Infiniband Adapters & Chpids

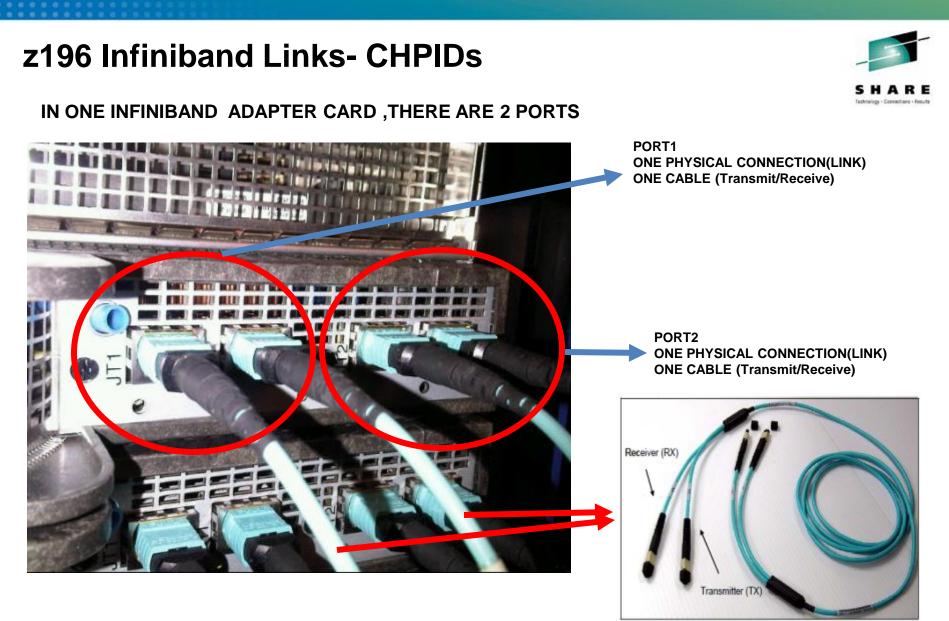
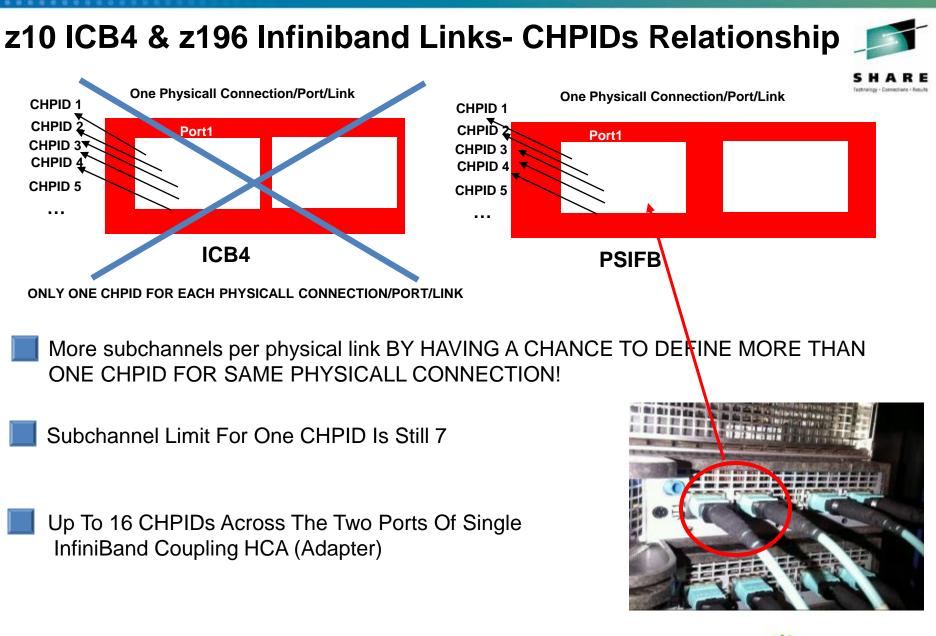
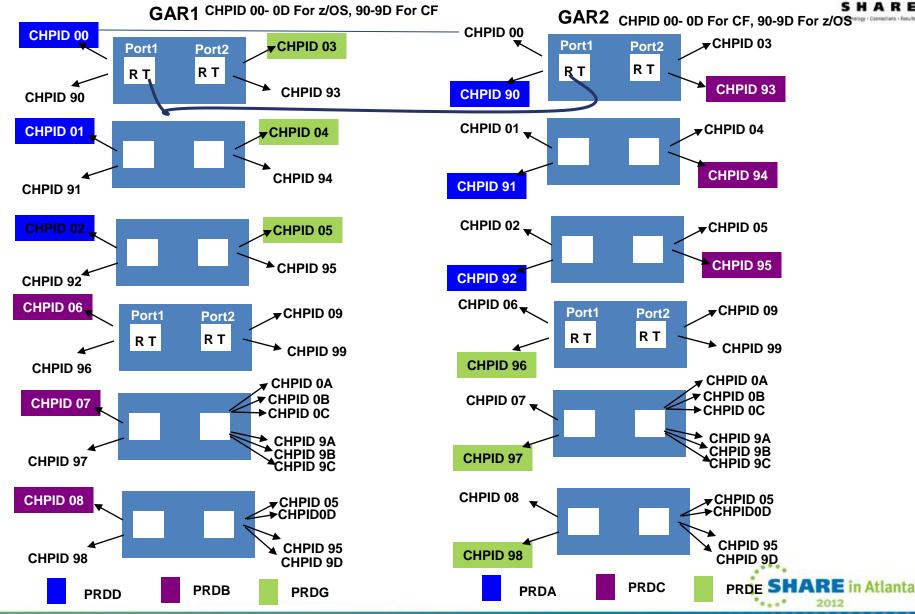



Figure 2-10 Optical InfiniBand cable, including TX and RX labels


SHARE in Atlanta

z196 Infiniband Cables & CHPIDs

z196 Where Are My ICFs ?

GAR1

KM confing CPU-	17 SAP	-0 IC	2 1	FL=0	ZAA	P=0	211P	-2 5	-13	UKNI	-0 (JP=21	AD	IP-V	STA	0 28.	11						
ode Number(Phy)	01 0		- 01	01	01	01	01	_	01	01	01	01	_	01	01	01	01	01	01	_	01	01	01
PU Number	17 1		16	03	04	05	06		07	08	09	0A		OB	oc	01	OE	OF	10		00	12	ZF
hysical PU Number	100 1			104						10A				10E					113			116	
PU Number	17 0		16	03	04	05	06		07	08	09	0A		0B	01	01	0E	0F	02		00	12	00
pertional Mode CPU			_			05	06		07	08	09	0A		-	-		0E	OF			00	12	
ICF									_		_		_		_		_	-	_				_
SAP														<u> </u>					1	1	12	<u> </u>	20
MSAP		_	_								_	_	_		01			_	02		_	_	_
XSAP				_	_	A-	-	-	<u> </u>		-	-	-	_	HE	-	-	-0	-	P-	_		00
IFL			- 6	0	ЭΚ	U		-14	4	ы	-	_	4	74		S	- 5		А	P 9	5		
ZAAP				_		-	·	-	-	-	_		_	_	_	-	_	_	-	_			
ZIIP			16		_	_	_												_	_			
Spare		0																					-
Unknown PU Type edicate				-	-	-	-	-								_			-		_		-
pertional		_	Y	v	v	v	v	_	~	Y	-	-	_	~	Y	Y	Y	Y	v		v	10	20
lock Stopped	T		- T	T	r	T	T	_	1	1	1	1	_	1	1	1	1	1	Y	_		T	T
Idek Scopped		1102	1102	100				0	<u> </u>	0				0.00	0	0000	000	0	8000	0000	0000	0	10
ode Number(Phy)	0	3 03	03	03	03	03	03	03	03	03		03		03	03	03	03	03	03		03	03	03
ore Number	- o			01	01	01	01	02	02	02		03		03	03	04	04	04	04	5	05	05	05
PU Number	2			21	22	18	19	14	18	1C		10		16	1F	13	02	0D	23		24	25	26
hysical PU Number	3	01 30	2 303	304	305	306	307	308	309	30A	-3	30C			30F	310		312		3		316	
PU Number	0		15	00	00	00	00	00	00	00	_	00	_			13	02	0D	04		00		05
pertional Mode CPU											_		_			13	02	OD		_			
ICF		14	15																				
MSAP	==			_	_	_	_	_	_	_	_	_	_	_	03	_	_	_	04	_	_	_	05
XSAP			_	- 1	-	-0	-	-					2	-		-	2			-			-
IFL				50	О	ĸЦ	5		_		4					S	5	34	11	S			
ZAAP	22		_		-		-	_	_		-			-		_	_			-			<u> </u>
ZIIP	- 0			00	00	00	00	00	00	00	_	00	_	00		_	_		_	_	00	00	-
					00	00	00	00	00	00				00		-	-	-	-		00	00	_
Unknown PU Type		Y	Y							_													_
Unknown PU Type	=	Y	Y	=	=	Ξ	=	Ξ	\equiv	Ξ	=	=	Ξ	=	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	Y	Y	Y	Y	Ξ	Ξ	Ξ	Y

ERM config CPU-17 SAP-6 ICF-2 IFL-0 zAAP-0 zIIP-2 SP-13 UKNW-0 OP-27 XSTP-0 z196 2817

z196 Where Are My ICFs ?

GAR2

ERM config CPU=	17 5	AP=6	ICF	=2 1	FL=0	ZAA	P=0	ZIIP	=1 5	P=14	UKN	w=0 (OP=2	6 X5	TP=0	z19	6 28:	17						
Node Number(Phy) Core Number IPU Number Physical PU Number PU Number Opertional Mode CPU ICF SAP		01 00 0A 101 0A 0A	01 00 16 102 16	01 00 11 103 00	01 01 104 01 01	01 01 04 105 04 04	01 05 106 05 05	01 01 06 107 06 06	01 02 07 108 07 07		01 02 08 10A 08 08	01 02 09 10B 09 09	01 03 02 10C 02 02		01 03 08 10E 08 08	01 03 0C 10F 01	01 04 0D 110 0D 0D	01 04 0E 111 0E 0E	01 04 0F 112 0F 0F	01 04 10 113 02	01 05 00 114 00 00		01 05 12 116 12 12	01 05 2F 117 00
MSAP XSAP IFL ZAAP ZIIP Spare Unknown PU Type	Ξ	=	16	B 00	0	ok	0	Ē	1	5 (CI	PU		Ē	zĦ	01 P	3	S	A	02 25				00
Dedicate Opertional Clock Stopped	Ξ	Y	Y	Ξ	Y	Y	<u>Y</u>	Y	Y	Ξ	Y	Y	Y	Ξ	<u>Y</u>	Y	Y	¥	Y	Y	Y	Ξ	Y	Y
Node Number(Phy) Core Number IPU Number Physical PU Number Opertional Mode CPU ICF	03 00 24 300 00	03 00 14 301 14 14	03 00 15 302 15 15		03 01 25 304 00	03 01 17 305 00	03 01 18 306 00	03 01 19 307 00		03 02 1A 309 00	03 02 18 30A 00	03 02 1C 30B 00	03 03 1D 30C 00		03 03 1E 30E 00	03 03 1F 30F 03	03 04 20 310 00	03 04 21 311 00	03 04 22 312 00	03 04 23 313 04	03 05 13 314 13 13		03 05 03 316 03 03	03 05 26 317 05
SAP MSAP XSAP	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	03	Ξ	Ξ	Ξ	04	Ξ	Ξ	\equiv	05
IFL ZAAP ZIIP Spare Unknown PU Type	00	Ξ	\equiv	E	BO 00	00		3	2	C	P 00	00	200	#	G	S	3	S 00	A	Ps	Ξ	Ξ	\equiv	Ξ
Dedicate Opertional Clock Stopped	Ξ	Ŷ	Ŷ	\equiv	\equiv	\equiv	\equiv	\equiv	\equiv	\equiv	Ξ	Ξ	\equiv	\equiv	\equiv	Y	\equiv	\equiv	\equiv	Y	Y	Ξ	Y	Y

Book Configuration – GAR1 CEC- After Upgrades

ERM contig CPU=20 Node Number (Phy) Core Number Physical PU Number PU Number Opertional Mode CPU ICF SAP MSAP XSAP IFL ZAAP ZIIP	01 00 1E 100 00 	=6 I 01 00 13 101 13 13 	CF=2	01 00 15 103 15	01 01 0D	01 00 105 00	01 06 106 06	01 04 107 04 04 04		01 07 109 07 07	01 02 08 10A 08 08	01 02 09 10B 09 09	01 03 03 10C 03 03 03	\equiv	01 03 0B 10E 0B 0B	01 03 0C 10F 01	01 04 01	2817 01 04 0E 1111 0E 0E 	01 04 0F 112 0F 0F	01 04 10 113 02 02 02		01 05 02 02 02 02 	01 05 12 126 12 12 12 12 12 12 12 12	01 05 2F 117 00
Unknown PU Type Dedicate Opertional			_						_					_							_			<u> </u>
clock stopped			_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>
Node Number(Phy) Core Number IPU Number Physical PU Number Opertional Mode CPU ICF SAP MSAP XSAP IFL ZAAP		03 00 18 301 18 	03 00 19 302 19 	03 00 22 303 00	03 01 24 304 00	03 01 16 305 16 16 16	17	03 01 21 307 00	03 02 18 308 00 	03 02 20 309 00 	03 02 25 30A 00		03 03 11 30C 11 11 11	_	00	03	00	_	03 04 14 312 14 14 14 	03 04 23 313 04 		03 05 315 05 05 05	03 05 0A 316 0A 0A	03 05 26 317 05 05
ZIIP Spare		18	19	00	00		_	00	00	00	00	_		_	00		00	00			_		_	
Unknown PU Type Dedicate Opertional Clock Stopped		Y	Y			Y Y	Y Y						Y			Y			Y	Y		Y	Y	 Y

Number of CPU = 20 Number of SAP = 6 XSAP = Node Number=01 Physical PU Number=117 Number of CF = 2 Number of IFL = 0 Number of ZAAP = 0 Number of Spare = 10

Book Configuration – GAR2 CEC – After Upgrades

ERM contig CPU=20 Node Number (Phy) Core Number IPU Number Physical PU Number Opertional Mode CPU ICF SAP MSAP XSAP IFL ZAAP ZIIP Spare Unknown PU Type Dedicate Opertional Clock Stopped	01 00 1E 100 00 	01 00 13 101 13 13 		01 00 15 103 15 15 	01 0D 104 0D 0D	01 00 105 00 00 	01 06 106 06 06 	01 01 04 04 04 		01 02 07 07 07 07 	01 02 08 10A 08 08 	01 02 09 10B 09 09 	01 03 03 10c 03 03 	01 03 0B 10E 0B 0B 	01 03 0C 10F 01 01	01 04 01 110 01 01 		02	02 02	00
Node Number(Phy) Core Number IPU Number Physical PU Number Opertional Mode CPU ICF SAP MSAP XSAP IFL ZAAP ZIIP Spare Unknown PU Type Dedicate Opertional Clock Stopped		00 18 301 18 	19 19 	00	00	16 	17 17 	00	00	 00	00		03 11 30c 11 11 	03 1C 30E 00	03 03 03 	00	00	04	_	03 05 26 317 05 05

Number of CPU = 20 Number of SAP = 6 XSAP = Node Number=01 Physical PU Number=117 Number of CF = 2 Number of IFL = 0 Number of ZAAP = 0 Number of ZIIP = 2 Number of Spare = 10

GT Parallel Sysplex Configuration - Structures

DSNPD01 GBP0 DSNPD01 GBP1 DSNPD01 GBP16K0 DSNPD01_GBP16K1 DSNPD01_GBP2 **DSNPD01 GBP21 DSNPD01 GBP22 DSNPD01 GBP23 DSNPD01 GBP24** DSNPD01_GBP31 **DSNPD01 GBP32 DSNPD01 GBP32K** DSNPD01 GBP33 DSNPD01 GBP34 DSNPD01_GBP5 **DSNPD01 GBP6** DSNPD01 GBP7 **DSNPD01 GBP8K0 DSNPD01 LOCK1** DSNPD01_SCA

DSNPDRM_GBP0 DSNPDRM_GBP1 DSNPDRM_GBP2 DSNPDRM_GBP8K0 DSNPDRM_LOCK1 DSNPDRM_SCA

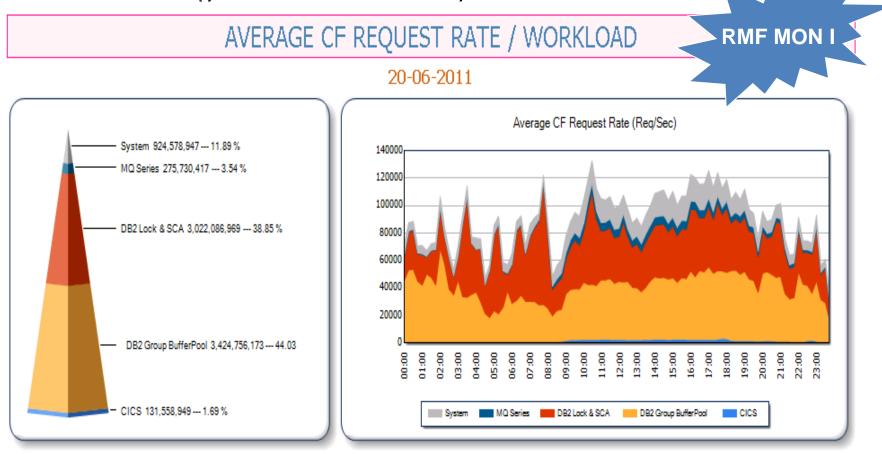
PQS1APPLSTR PQS1CSQ_ADMIN PQS1FFMCSTR PQS1FFMDSTR PQS1LOGOSTR PQS10LASTR PQS10TPSTR PQS1SMSSTR PQS1SYSPSTR PQS1UTLSTR EZBEPORT EZBEPORT0111 EZBEPORT0113 ISTGENERIC

DFHNCLS_PRODNC1 DFHXQLS_PRODTSQ1 LOG_DFHLOG_WUI LOG_DFHSHUNT_WUI

IXCSIG1 IXCSIG11 IXCSIG2 IXCSIG21 IXCSIG3 IXCSIG31 IXCSIG4 IXCSIG5 IXCSIG6

IXCSIG7

CKPT1 **RLS APL1 RLS APL2** RRSSTR1 SYSARC_HSMPP_RCL SYSIGGCAS ECS SYSTEM OPERLOG **SYSZWLM 0E162817 SYSZWLM 0E262817** HSA LOG HZS_HEALTHCHKLOG IBMBDG **IGWLOCK00**


ISGLOCK

SHARE in Atlanta

GT-CF Configuration – z196 179 Structures Defined In CFRM Policy

• 27205 MB Storage In Each CF – Today 46 GB

There are now customers processing more than 500,000 requests per second in each CF, and benchmarks in IBM have driven nearly 1,500,000 requests a second to a single CF.

n Atlanta

General Information About PSIFB

Infiniband Technology - Drivings Of Innovation (WHY?)

Problem

Efficient Systems Must Provide Balance Between

- CPU Performance
- Memory Bandwidth
- I/O Capabilities

Semiconductor Technology Evolves Much Faster Than I/O Interconnect Speed.

New Technology is needed to keep up with the speed of processors

Solution

In 1999 Two Competing I/O Standards called •Future I/O (Developed By Compaq.IBM,HP) •NextGeneration I/O (Developed By Intel,Microsoft,Sun) Merged Into Unified I/O Standard Called INFINIBAND

http://www.infinibandta.org/itinfo/IL

InfiniBand offers a powerful interconnect architecture that by its nature is better able to scale with increasing processor speeds. Up to 120 Gbps

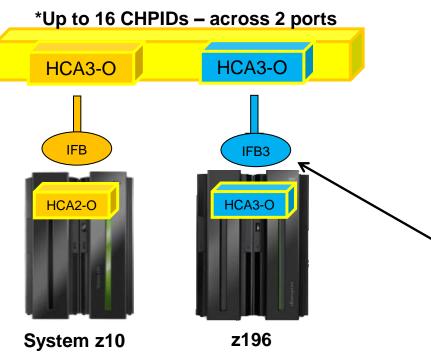
Infiniband Technology - Advantages

- ✓ Superior Performance Up To 120 Gbps
- ✓ Reduced Complexity
- ✓ Highest Interconnect Efficiency
- ✓ Reliable & Stable Connection
- □ First Used As Connection Between Books & I/O Cage, starting with z10.
- □ With z10 and supported by z9 also, it started to be used as CF link.

PSIFB Configuration Disadvantages

In Every Document – There Is One NOTE

Note: The InfiniBand link data rates of 6 GBps, 3 GBps, 2.5 Gbps, or 5 Gbps do not represent the performance of the link. The actual performance is dependent upon many factors including latency through the adapters, cable lengths, and the type of workload. With InfiniBand coupling links, while the link data rate may be higher than that of ICB (12x IB-SDR or 12x IB-DDR) or ISC-3 (1x IB-SDR or 1x IB-DDR), the service times of coupling operations are greater, and the actual throughput may be less than with ICB links or ISC-3 links.


Note: The InfiniBand link data rate of 6 GBps or 3 GBps does not represent the **performance** of the link. The actual performance depends on many factors, such as latency through the adapters, cable lengths, and the type of workload. With InfiniBand coupling links, while the link data rate might be higher than that of ICB links, the service times of coupling operations are greater.

So As Expected IBM Created A New Adapter & Protocol

New PSIFB Protocol & Infiniband Fanout Cards

New 12x InfiniBand fanout cards, exclusive to z196 and z114

Attachment to System z9 HCA1 not supported

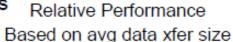
Two protocols (IFB & IFB3)

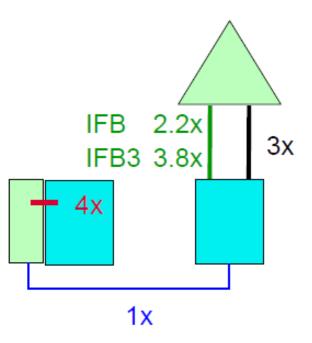
- 1. 12x IFB = HCA3-O to HCA2-O
- 2. 12x IFB3 = HCA3-O to HCA3-O (see below)
- Improved service times, 12x IFB3 service times are designed to be <u>40% faster</u> than 12x IFB

12x IFB3 protocol activation requirements

- Maximum of four CHPIDs per HCA3-O port
 - If more than four CHIPDs are defined per port, links will run at normal 12x IFB service times
 - IFB3 protocol activated as long as 4 CHPIDs or less are defined. No configuration settings required.
 - Performance considerations may reduce the number of CHPIDs per port

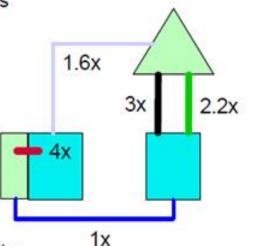
Note: The InfiniBand link data rates of 6 GBps, 3 GBps, 2.5 Gbps, or 5 Gbps do not represent the performance of the link. The actual performance is dependent upon many factors including latency through the adapters, cable lengths, and the type of workload.





Infiniband As Coupling Link Choice - PSIFB

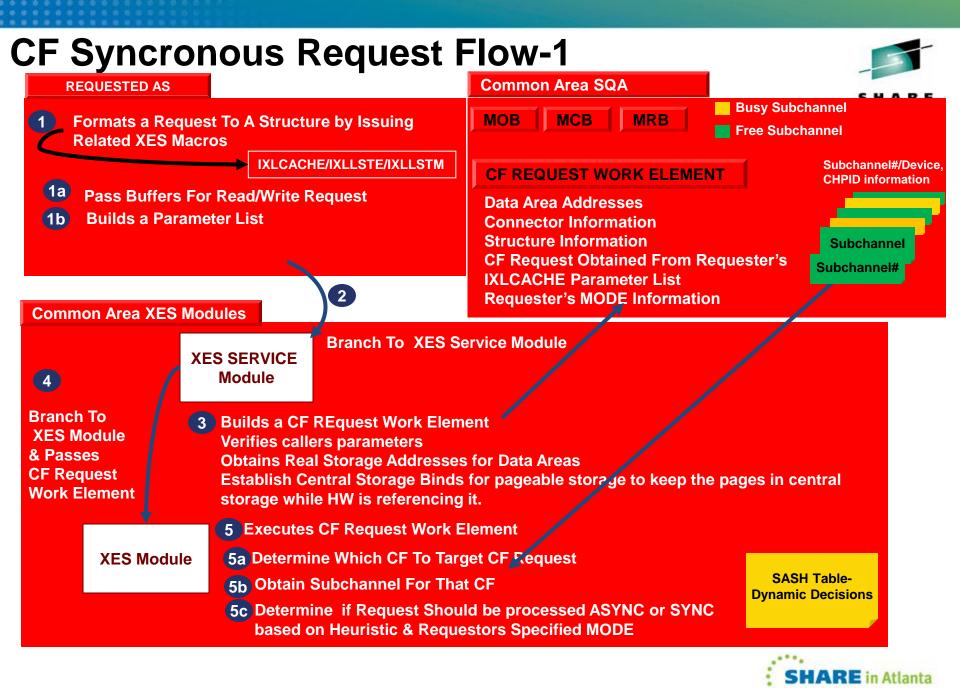
- ISC (Inter-System Channel)
 - Fiber optics
 - I/O Adapter card
 - 10km and longer distances with qualified WDM solutions
- ICB (Integrated Cluster Bus)
 - Copper cable plugs close to memory bus
 - 10 meter max length
 - Not available on z196
- IC (Internal Coupling Channel)
 - Microcode no external connection
 - Only between partitions on same processor
- I2X IFB and I2X IFB3 (intro z196 GA2)
 - 150 meter max distance optical cabling
 - Supports multiple CHPIDs per physical link
 - Multiple CF partitions can share physical link

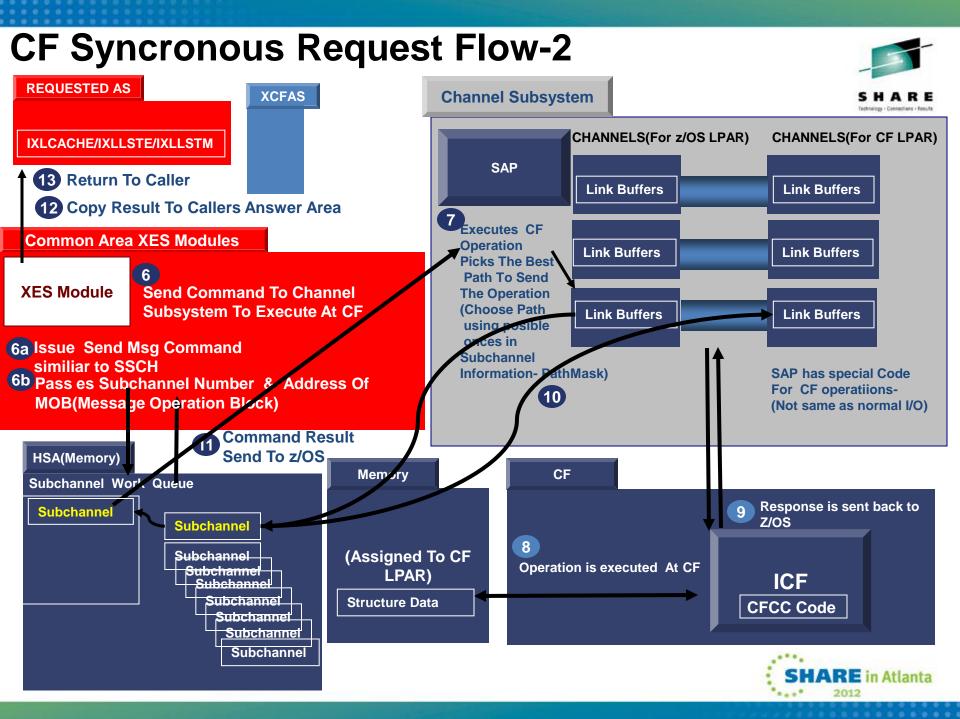


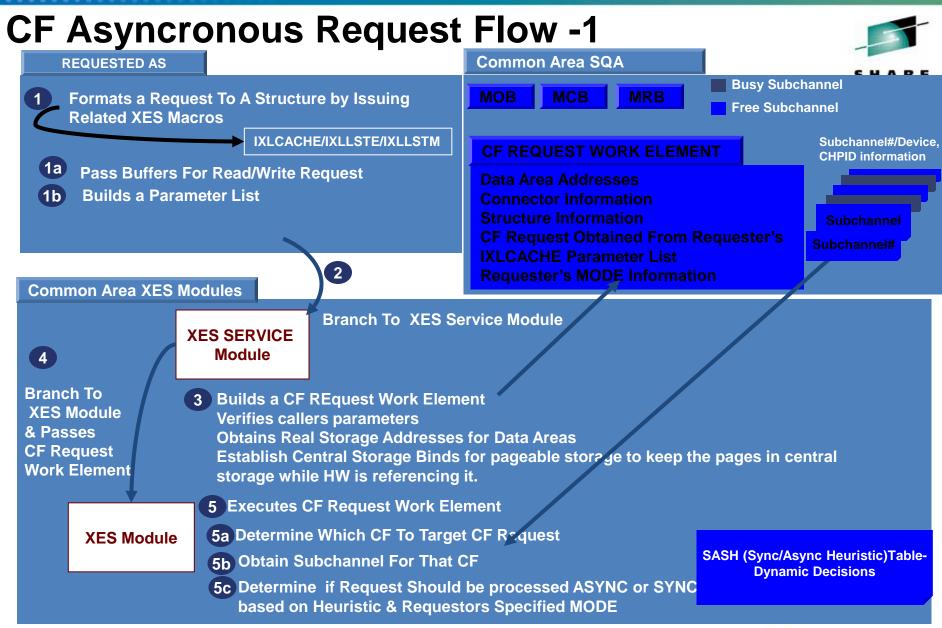
PSIFB Configuration Advantages

PSIFB Configuration Advantages

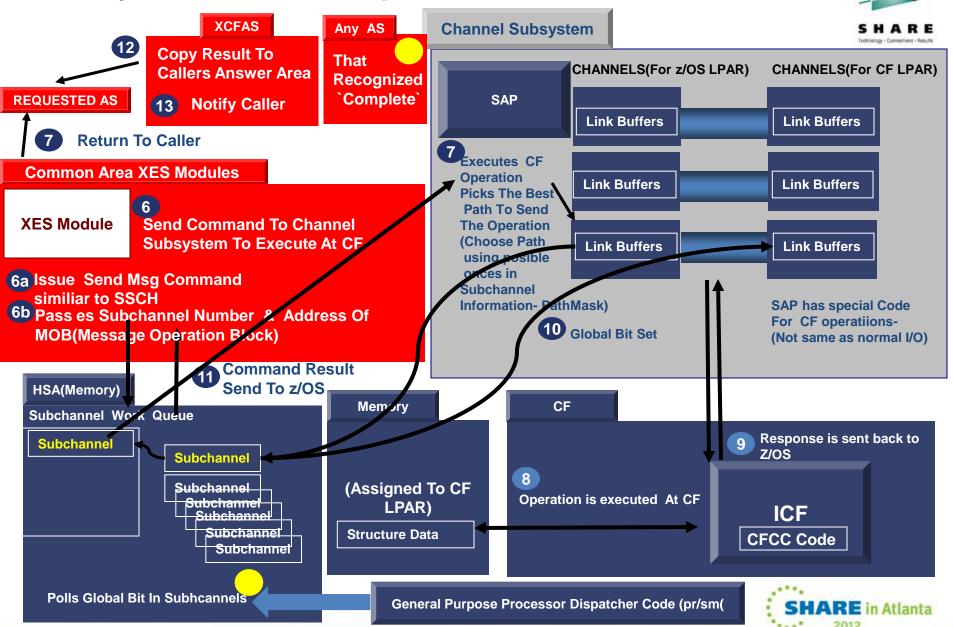
- Pure Capacity
 - 1 12x PSIFB replaces 1 ICB4
 - 1 12x PSIFB replaces 4 ISC3s
- Eliminating subchannel and path delays
 - Often >2 ICB4s configured not for capacity but for extra subchannels/paths to eliminate delays
 - 2 12x PSIFB links with multiple CHPIDs can replace >2 ICB4s in this case
- Multiple sysplexes sharing hardware
 - Production, development, test sysplexes may share hardware – each needs own ICB4 or ISC3 links
 - 2 PSIFB links with multiple CHPIDs can replace >2 ICB4s or ISC3s in this case
- Multiple CHPID recommendations
 - Max 16 per HCA (2 ports per HCA)
 - Use up to all 16 for lightly loaded connectivity
 - Limit to use up to 8 per HCA for heavy loads

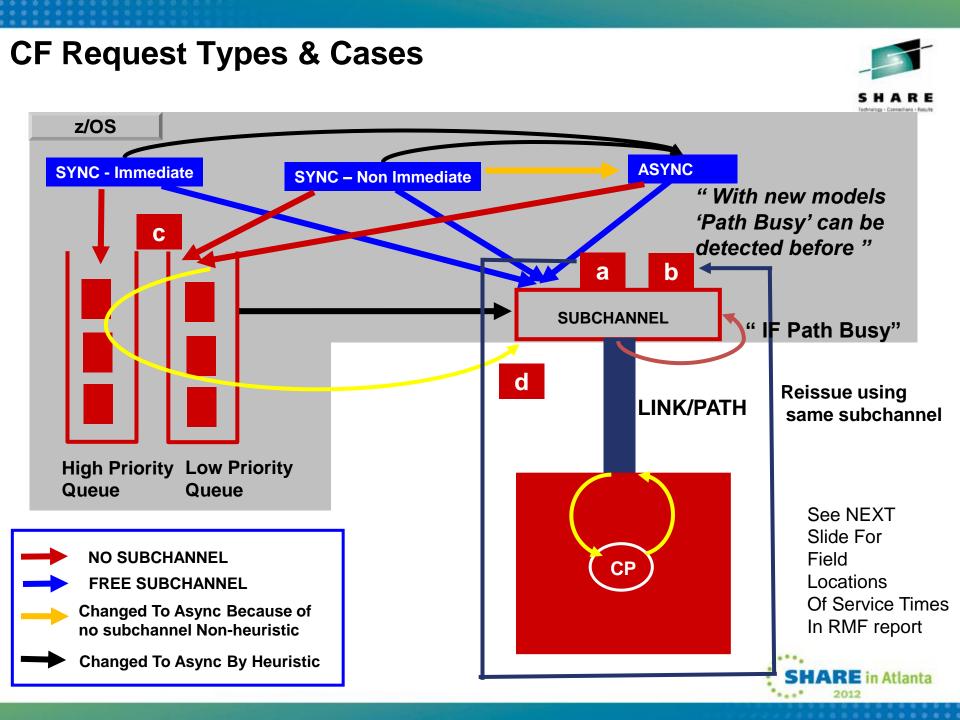




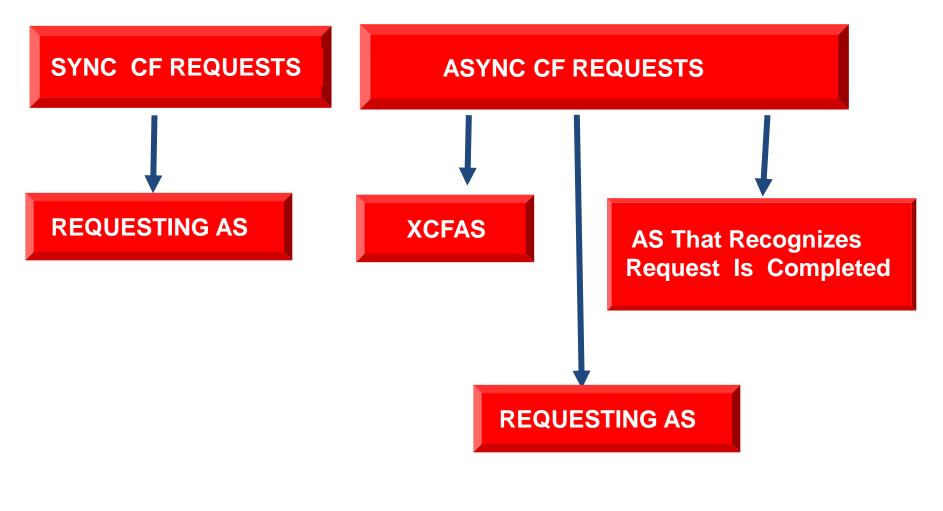


Life Of A CF Request





CF Asyncronous Request Flow -2



CF Request Types & Cases – RMF Report															
														S	HARE
							b	—	а			d		С	
Service Time is calculated as Delayed Time is calculated as															
							SUBC	HANNEL A	CTIVITY						
	ö REQ						REQI	JESTS				DEL	ayed re	QUESTS	
SYSTEM	TOTAL	CF	LINK	S	PTH			ERVICE TI	ME(MIC)-		ö	% OF		AVG TIME(MIC)	
Name	AVG/SEC	TYPE	GEN	USE	BUSY		REQ	AVG	STD_DEV		REQ	REQ	/DEL	STD_DEV	/ALL
PRDA	2391K	CIB	3	3	Θ	SYNC	1579K	13.0	4.7	LIST/CACHE	358	0.0	42.5	33.6	0.0
	2656.3	SUBCH	42	21		async	788047	111.8	161.0	LOCK	Θ	0.0	0.0	0.0	0.0
						Changed	Θ		IN ASYNC	TOTAL	358	0.0			
DDDD	FOCOV	TOD	4	4	4005	UNSUCC	0 400 44	0.0	0.0		44 5	• •	700 0	C01 7	0.1
PRDB	5869K 6521.0		4 56	4 28	1935	sync Async	4234K 1589K	3.9 41.7	34.9 395.3	LIST/CACHE LOCK	415 13	0.0 0.0	789.0 207.0	601.7 159.9	0.1 0.0
	0321.0	зорсп	JU	20		CHANGED	413		IN ASYNC	TOTAL	428	0.0	207.0	109.9	0.0
						UNSUCC	- 415	0.0	0.0	TOTIL	420	0.0			
PRDC	6364K	CIB	3	3	Θ	SYNC	4671K	12.9	4.0	LIST/CACHE	3052	0.1	707.5	573.0	0.8
	7071.1		42	21		ASYNC	1645K	72.8	88.7	LOCK	60	0.0	115.5	125.4	0.0
						Changed	2492	INCLUDED		TOTAL	3112	0.0			
						UNSUCC	Θ	0.0	0.0						
PRDD	11892K		4	_4	2718	SYNC	9162K	4.1	31.9	LIST/CACHE	582	0.0	961.6	1544	0.1
	13213	SUBCH	56	28		ASYNC	2757K	36.0	475.6	LOCK	86	0.0	393.3	1096	0.0
						Changed	627	INCLUDED	IN ASYNC	TOTAL	668	0.0			

CPU COST OF CF REQUESTS

Sync/Async Conversion

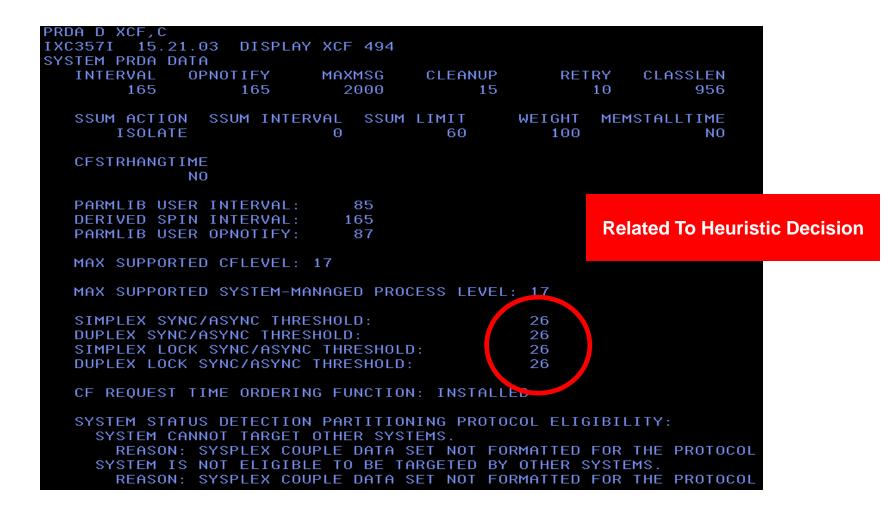
Sync/Async Conversion

Sync/Async Conversion

NON-HEURISTIC

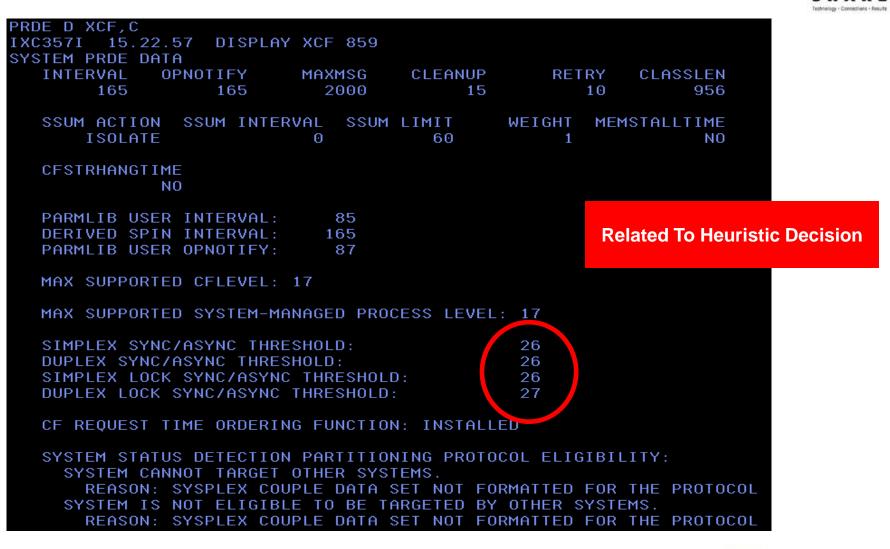
HEURISTIC

- Subchannel Busy Condition
- Path Busy Condition
- Serialized List or Lock Contention


Introduced with z/OS v1r2...

- CF Link Technology
- Types Of Workload Variable Workload Amount
- Range Of CF Utilization, Shared CP or not,...
- □ Actual Observed Sync Request Service Time
- Amount Of Data That Needs To Be Transfered
- □ Other items that effect CF response ex:Distance
- Moving Weighted Averages Of Actual CF Requests
- Every 1 of N Request not converted and send as Sync

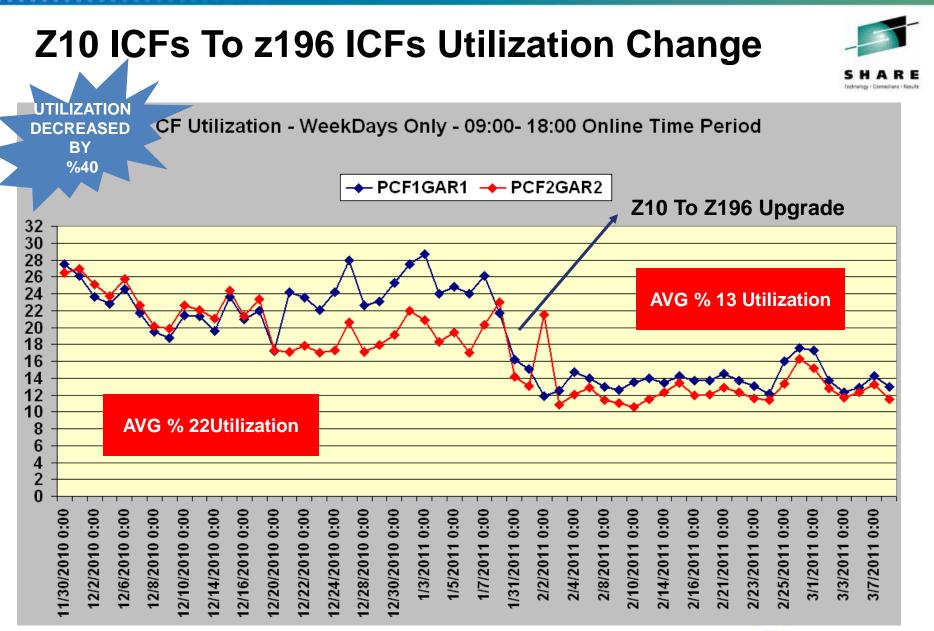
How To Display sync/async Conversion Threshold Value

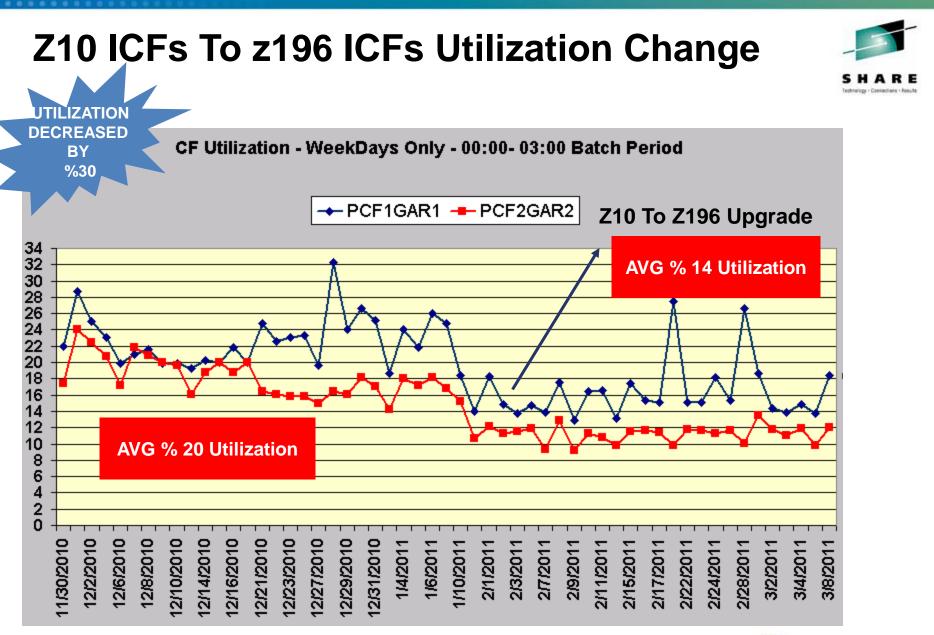


With z/OS V1R11 (APAR OA28603 for z/OS v1r8 and above)

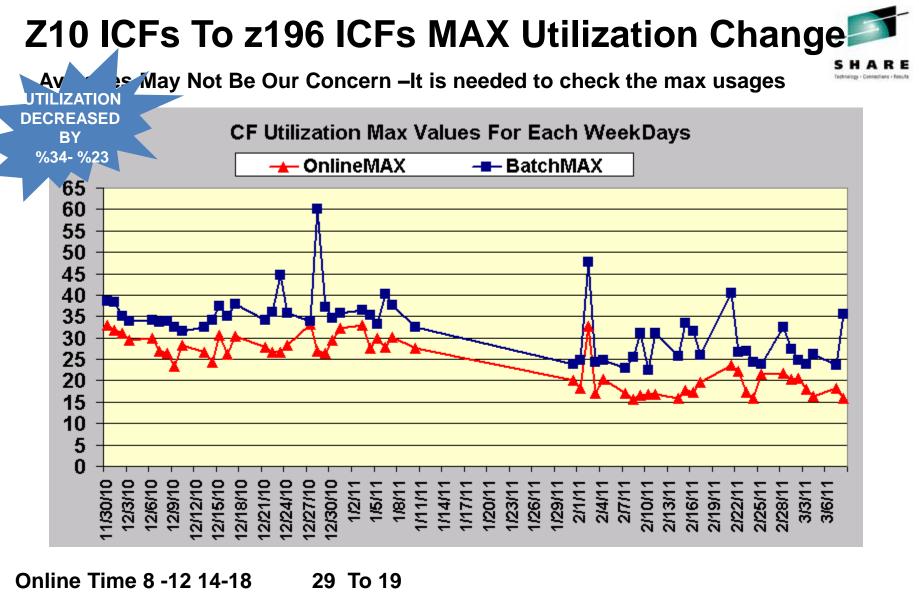
How To Display sync/async Conversion Threshold Value

Performance Differences


IBM - Sync Service Times For Different CF Link Types

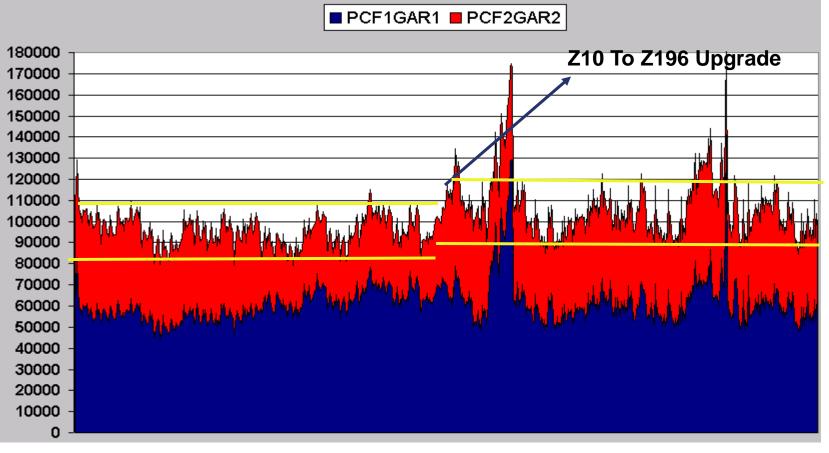

	ISC3	1x IB	12 x IFB	ICB4	IC
z10					
Lock	20-30	14-18	11-15	8-12	3-8
List/Clache (4k)	25-40	18-25	15-20	10-16	6-10
z196					
Lock	20-30	14-17	10-14	NA	2-8
List/Clache (4k)	25-40	16-25	14-18	NA	4-9

IBM POK CF Performance Group



SHARE in Atlanta

SHARE in Atlanta



Batch Period 0-8 & 18-24 36 To 28

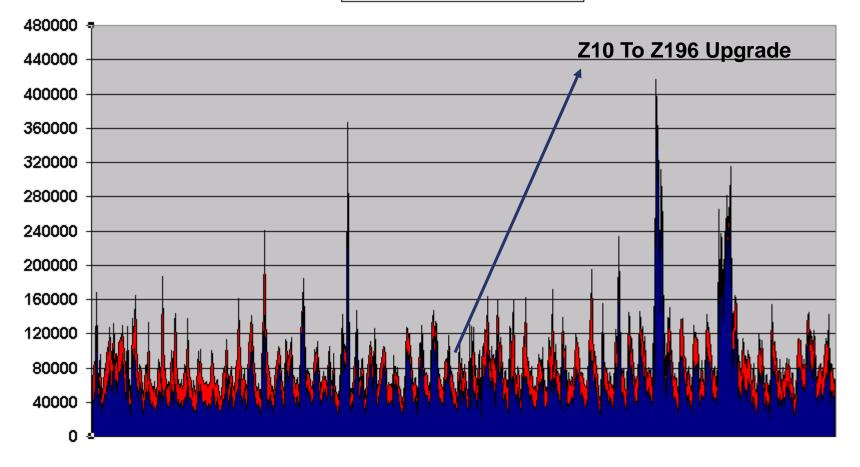
Z10 & z196 CF Request Rates Online

Between 90.000 - 110.000 During 14:00 - 17:00 For Each Week-Day

30-11-2010

Average 96000 To 107300 CF Request Rate increased by %12

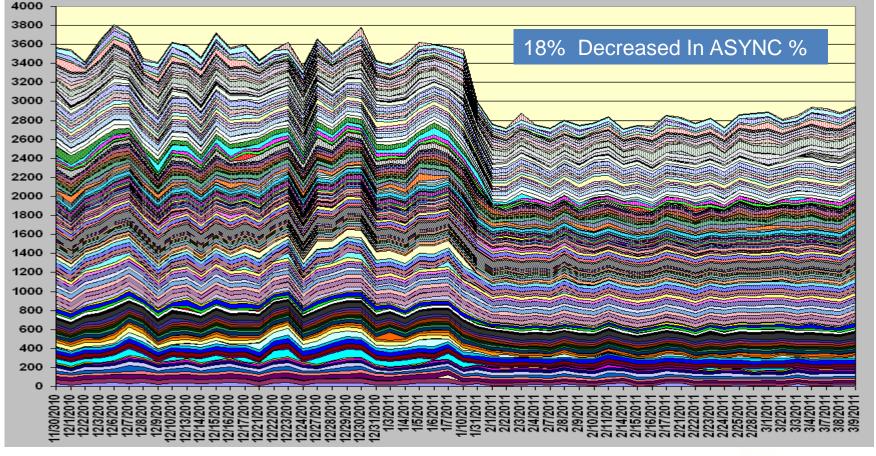
7-3-2011


SHARE in Atlanta

Z10 & z196 CF Request Rates Batch

Range is wider than online 80.000 – 120.000 During 00:00 – 03:00 For Each Week-Day

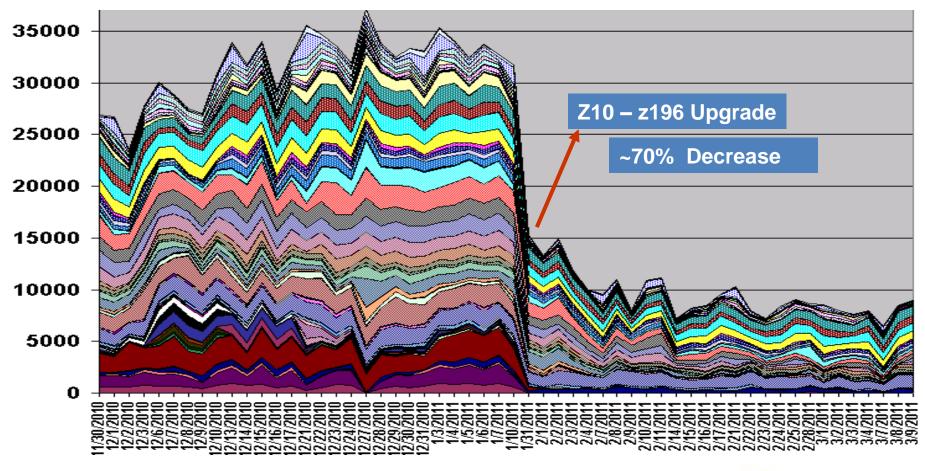
PCF1GAR1 PCF2GAR2



Asyncronous Request %

Async Request Percentage For DB2 GBP Structures 09:00-18:00 – Weekdays Only

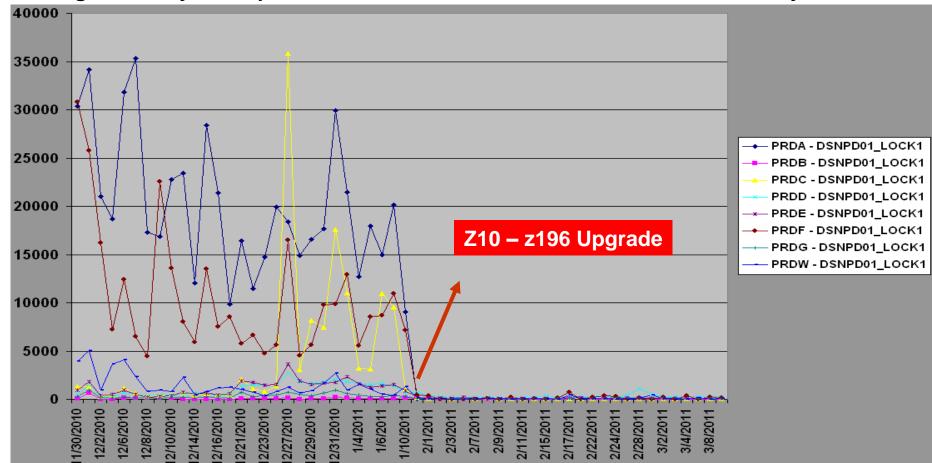
Stacked Area Graph



Number Of Asynchronous Requests Converted by Non-Heuristic

SHARE Intrology - Consoling - Fasulti

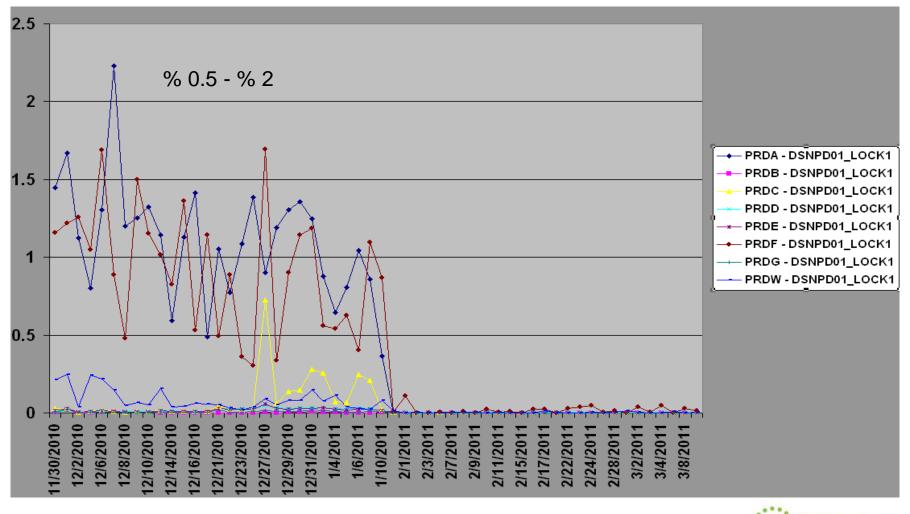
Requests Changed To async by Non-heuristic Method For DB2 GBP Structures 09:00-18:00 – Weekdays Only - Stacked Area Graph


CHANGED Request Fields in RMF Report- `No subchannel ` reason

Configuration Change Effect on # Of Async Requests For DB2 Lock Structure

Average # Of Async Requests For DB2 Lock Structure 09:00-18:00 – Weekdays

Probability of CF utilization decrease being main reason of this decrease is high



Configuration Change Effect on % Of Async Requests For DB2 Lock Structure

n Atlanta

Async Request % For DB2 Lock Structures 09:00-18:00 – Weekdays

Sync Requests Daily Online Period Average Service Times sys Service TIME strname DECREASED Average of stsync 40 BY ~20% PRDA - DSNPD01_GBP16K0 35 PRDA - DSNPD01_GBP16K1 30 PRDA - DSNPD01_GBP21 - PRDA - DSNPD01_GBP22 PRDA - DSNPD01_GBP23 25 PRDA - DSNPD01_GBP24 PRDA - DSNPD01_GBP31 20 PRDA - DSNPD01_GBP32 . PRDA - DSNPD01_GBP32K 15 PRDA - DSNPD01_GBP33 PRDA - DSNPD01_GBP34 10 PRDA - DSNPD01_GBP5 PRDA - DSNPD01_GBP6 PRDA - DSNPD01_GBP7 5 PRDA - DSNPD01_GBP8K0 PRDA - DSNPD01_LOCK1

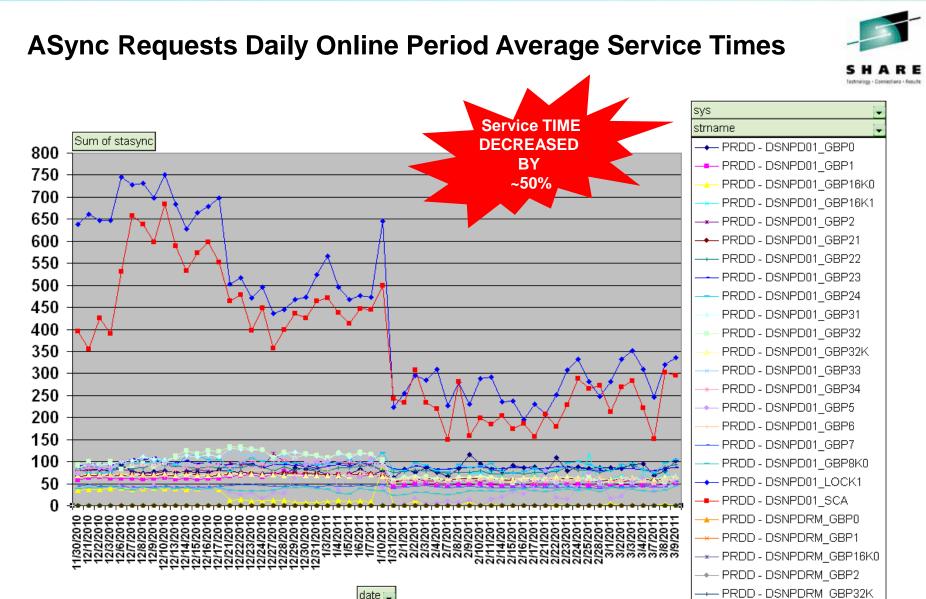
8

8

ಣಕ

ന്എന്നി

0

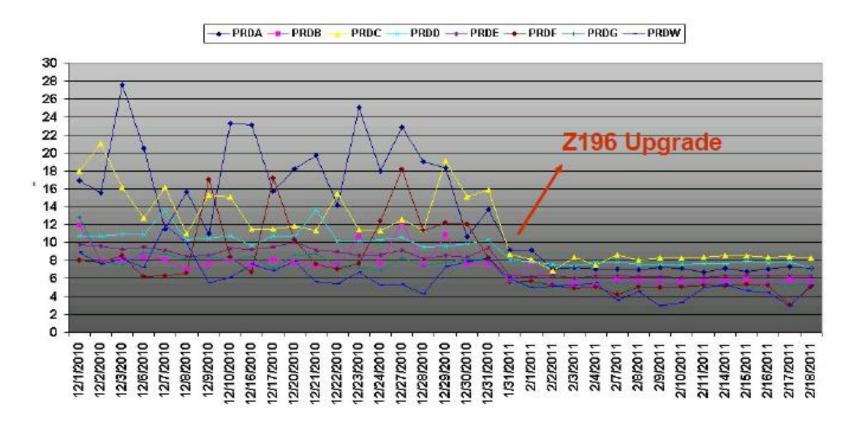


PRDA - DSNPD01_SCA

PRDB - DSNPD01_GBP0

PRDB - DSNPD01_GBP1

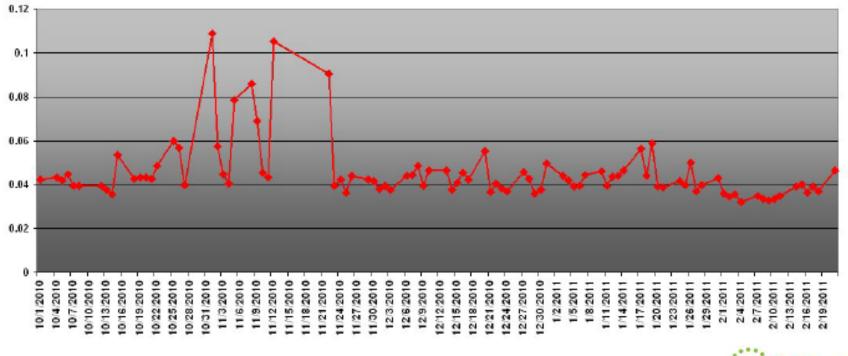
3/7/201 3/8/201 3/8/201


RE in Atlanta

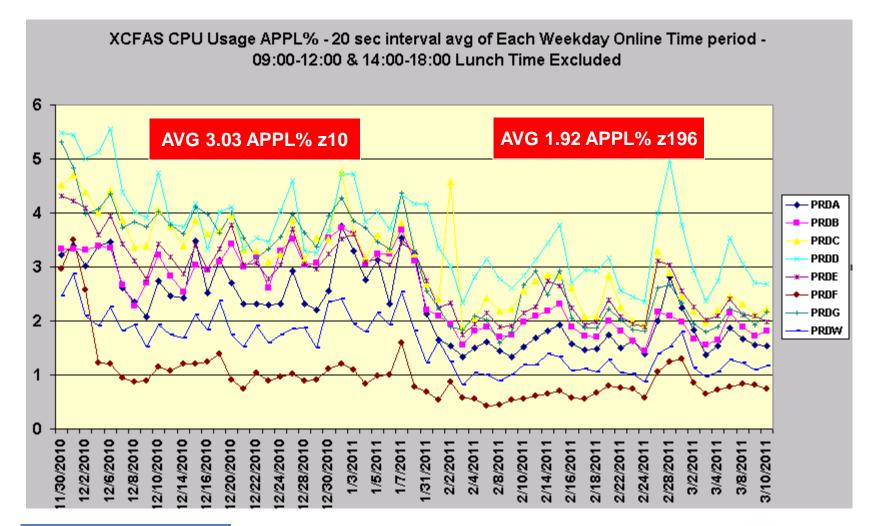
date 🦕

z196 Effect

Online Period Average CPI (Cycle Per Instruction) Values

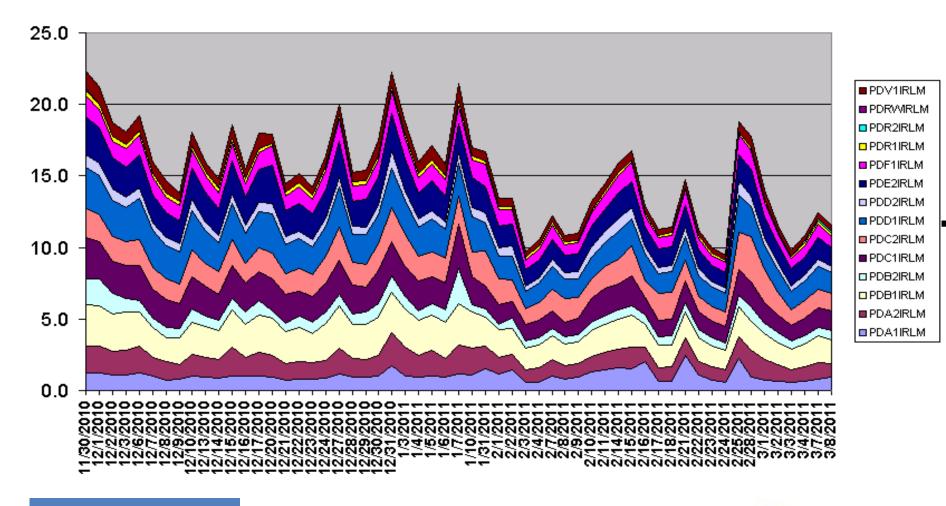

z196 Effect

n Atlanta


Z10 Online Time ALL Trx Avg ResponseTime 0.0042 14.5% Decrease Z196 Online Time ALL Trx Avg ResponseTime 0.0036

z10 & z196 Online Period All Trx Average Response Time (Seconds)

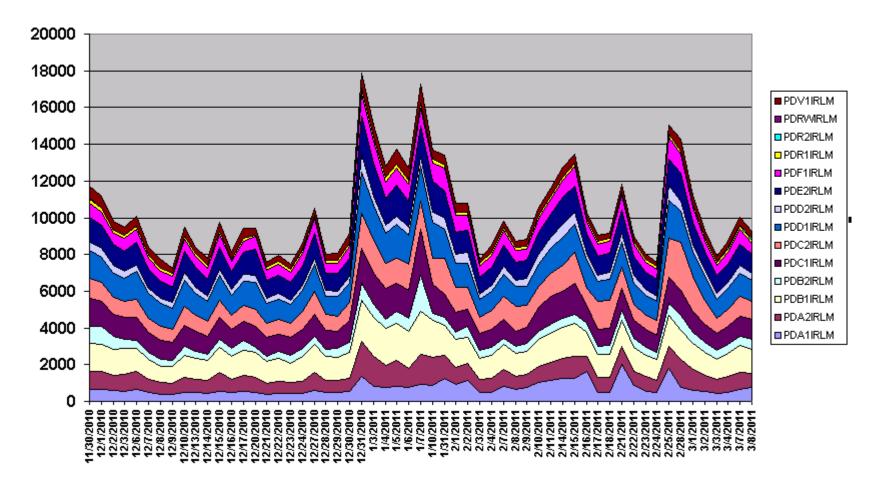
ASYNC Requests CPU USAGE CHARGED TO XCFAS Address Space

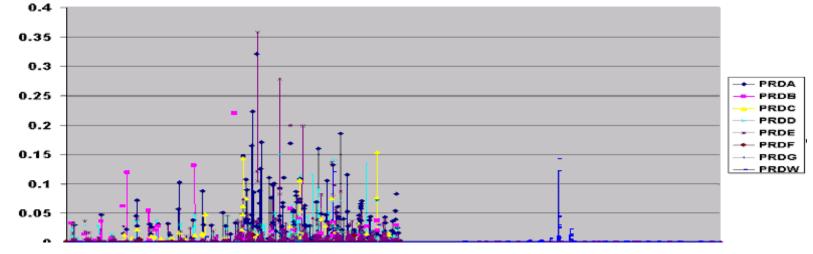

Without Normalization

SYNC Requests CPU USAGE CHARGED TO Requested AS: Sample IRLM

IRLM Address Spaces' CPU Usage(*CP/100) WeekDay OnlineTime Period

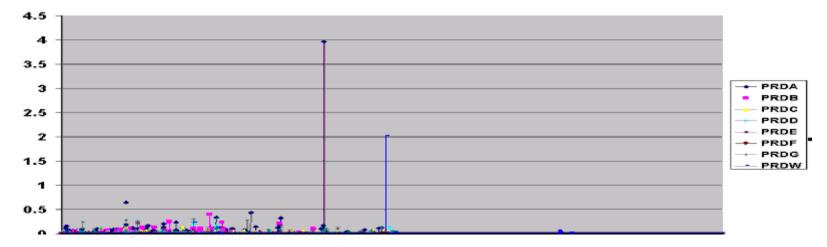
Without Normalization





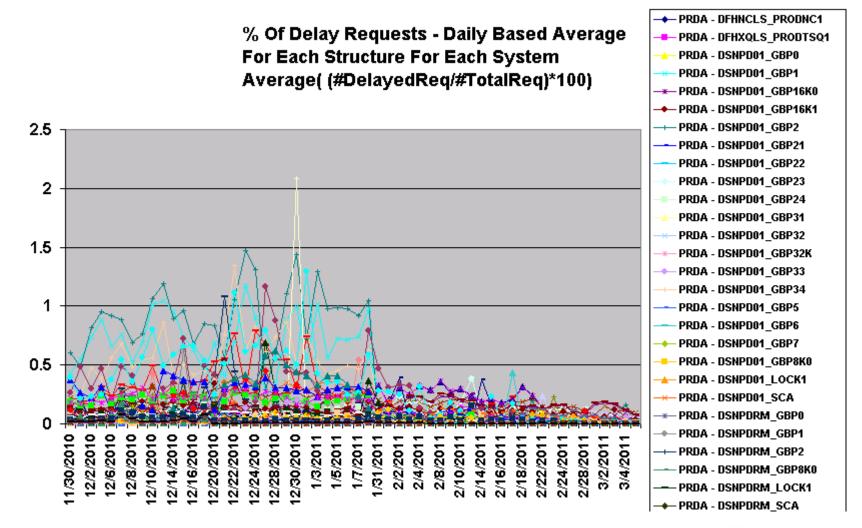
SYNC Requests CPU USAGE CHARGED TO Requested AS: Sample IRLM

IRLM Address Spaces' CPU Usage(MIPS) WeekDay OnlineTime Period

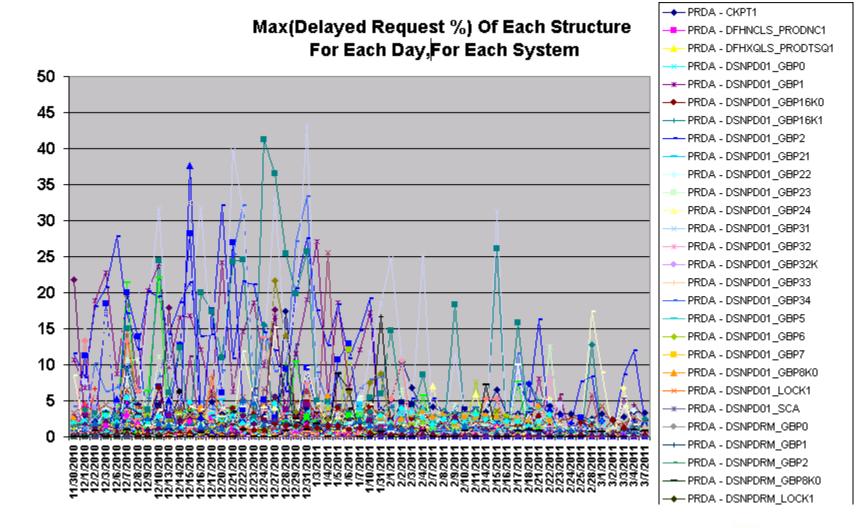


ROT Path Busy < %10 Of Total Req

PCF1GAR1 Path Busy %



ROT Delayed Request % < %10 Of Total Req



ROT Delayed Request % < %10 Of Total Req

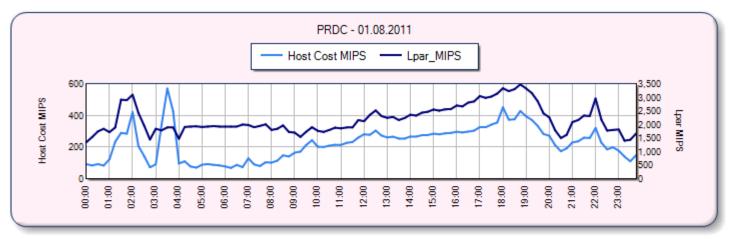
Host Cost (Data Sharing Cost)

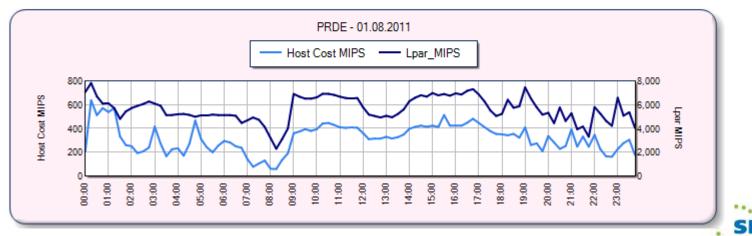
Assumes 9 CF requests / MI

Thanks To Gary King

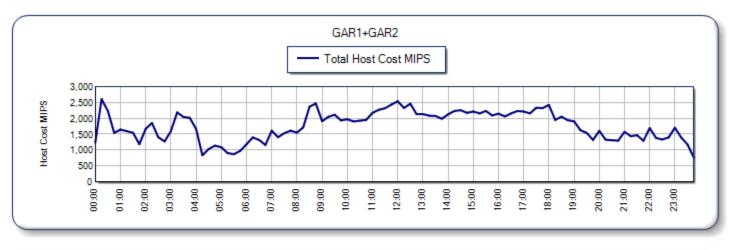
Host	z890	z990	z9 BC	z9 EC	z10 BC	z10 EC	z196
z890 ISC	13%	15%	16%	17%	19%	21%	NA
z890 ICB	9%	10%	10%	11%	12%	13%	NA
z990 ISC	13%	14%	14%	15%	17%	19%	NA
2990 ICB	9%	9%	9%	10%	12%	13%	NA
z9 BC ISC	12%	13%	14%	15%	17%	19%	23%
z9 BC PSIFB 12X	NA	NA	NA	NA	13%	14%	16%
z9 BC ICB	8%	9%	9%	10%	11%	12%	NA
z9 EC ISC	12%	13%	13%	14%	16%	18%	22%
z9 EC PSIFB 12X	NA	NA	NA	NA	13%	14%	16%
z9 EC ICB	8%	8%	8%	9%	10%	11%	NA
z10 BC ISC	12%	13%	13%	14%	16%	18%	22%
z10 BC PSIFB 12X	NA	NA	11%	12%	13%	14%	15%
z10 BC ICB	8%	8%	8%	9%	10%	11%	NA
z10 EC ISC	11%	12%	12%	13%	15%	17%	22%
z10 EC PSIFB 12X	NA	NA	10%	11%	12%	13%	15%
z10 EC ICB	7%	7%	7%	8%	9%	10%	NA
z196 ISC	NA	NA	11%	12%	14%	16%	21%
z196 PSIFB 12X	NA	NA	9%	10%	11%	12%	14%

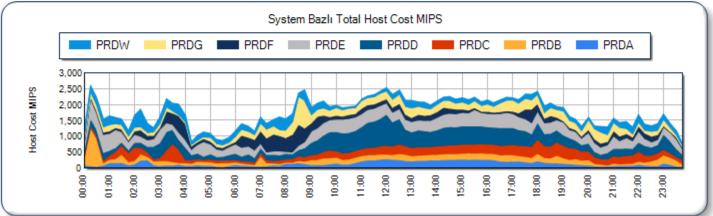
The table does not take into consideration any extended distance effects or system managed duplexing

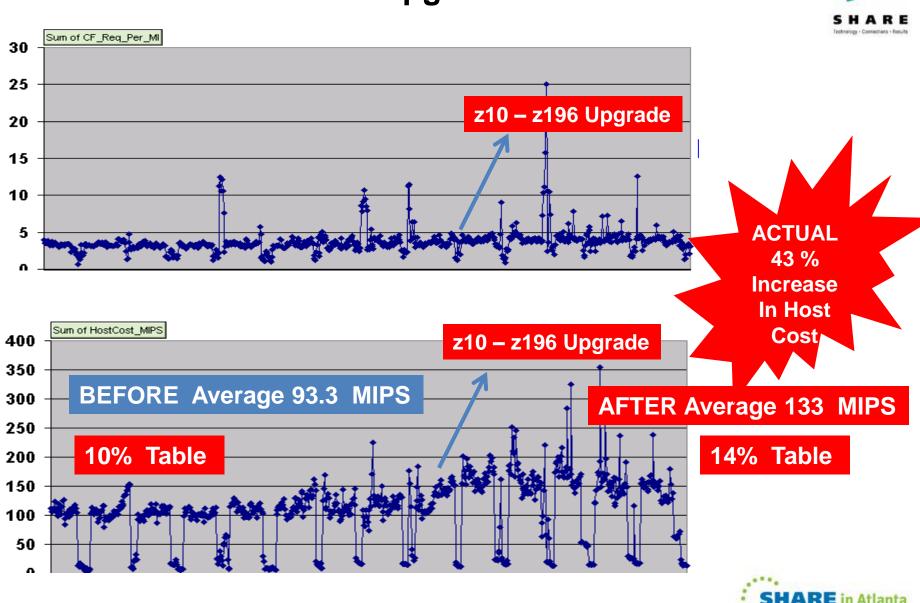



Calculating Host Cost (Data Sharing Cost)

in Atlanta


One can calculate the coupling intensity by simply summing the total req/sec of the CFs and dividing by the used MIPS of the attached systems (MIPS rating times CPU busy). Then, the values in the table would be linearly scaled. For example, if the workload was processing 4.5 CF operations per million instructions (or 4.5 CF ops/second/MIPS), then all the values in the table would be cut in half.




Calculating Host Cost (Data Sharing Cost)

Host Cost Before & After Upgrade – One LPAR

Host Cost With New IFB3 Protocol

Thanks To Riaz Ahmad For This Information

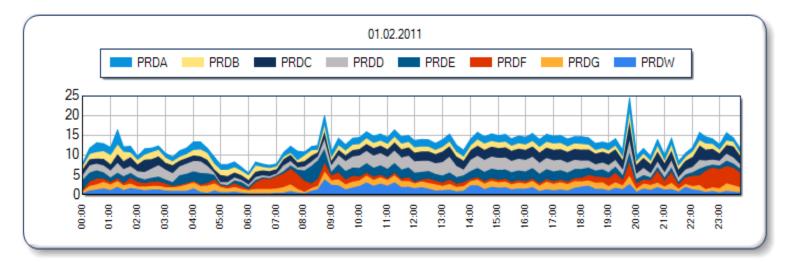
Host	Z890	zəəo	zэ вс	Z9 EC	Z10 BC	Z10 EC	Z114	Z196
CF								
Z890 ISC	13	15	16	17	19	21	-	-
Z890 ICB	9	10	10	11	12	13	-	-
Z990 ISC	13	14	14	15	17	19	-	-
Z990 ICB	9	9	9	10	12	13	-	-
Z9 BC ISC	12	13	14	15	17	19	18	23
Z9 BC 12x IFB	-	-	-	-	13	14	13	16
Z9 BC ICB4	8	9	9	10	11	12	-	-
Z9 EC ISC	12	13	13	14	15	18	17	22
Z9 EC 12x IFB	-	-	-	-	13	14	13	16
Z9 EC ICB	8	8	9	9	10	11	-	-
Z10 BC ISC	12	13	13	14	16	18	17	22
Z10 BC 12x IFB			11	12	13	14	13	15
Z10 BC ICB	8	8	9	9	10	11	-	-
Z10 EC ISC	11	12	12	13	15	17	17	22
Z10 EC 12x IFB			10	11	12	13	12	15
Z10 EC ICB	7	7	7	8	9	10	-	-
Z114 ISC3			14	14	16	18	17	21
Z114 12x IFB			10	10	12	13	12	15
Z114 12x IFB3							10	12
Z196 ISC			11	12	14	16		21
Z196 12x IFB			9	10	11	12	11	14
Z196 12x IFB3							9	11

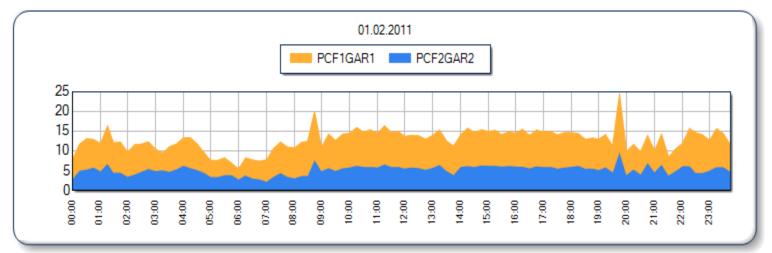
CF SUBCHANNEL UTILIZATION

Calculate Yourself Using SMF Records

Utilization % = (((Sync #Req * Sync service time) + (Async #Req * Async service time)) / Interval time * #Subchannels in use) * 100

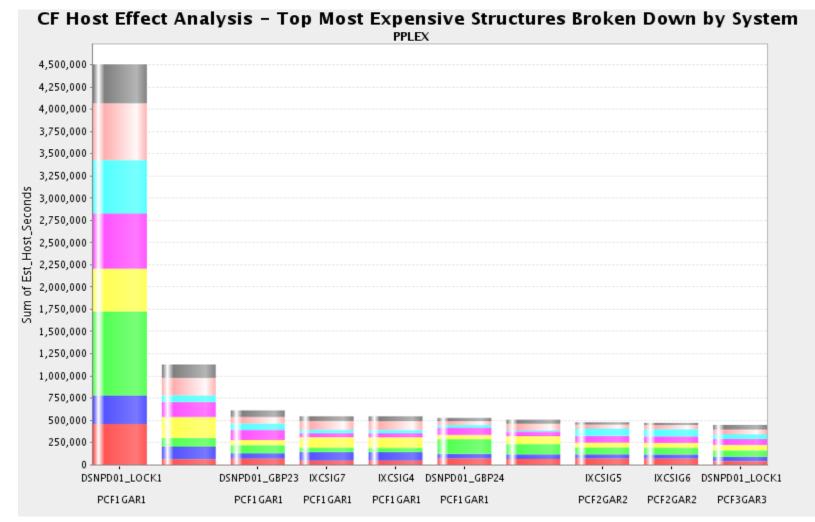
OR


Using RMF Overview Report

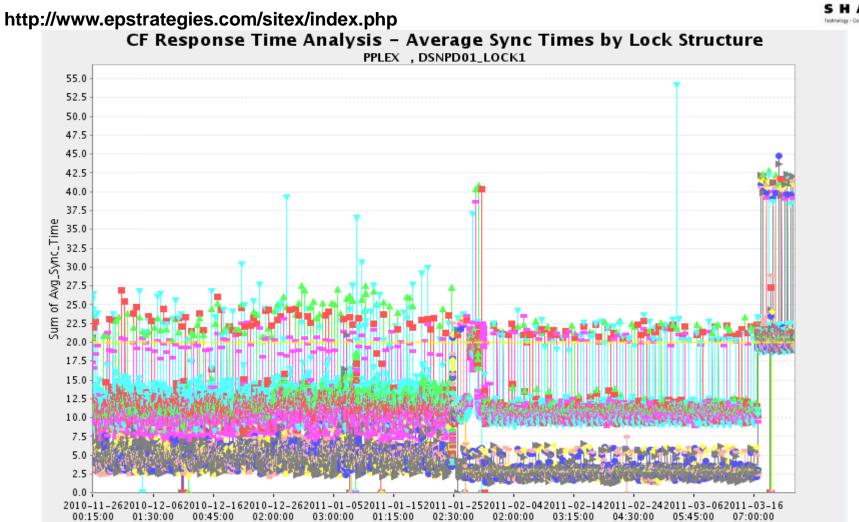

OVERVIEW(REPORT) OVW(CF1P(SUBCHBP(PCF1GAR1))) OVW(CF2P(SUBCHBP(PCF2GAR2)))

Subchannel busy percentage	SUBCHBP	cfname	R744SSRC R744SSTM R744SARC R744SATM R744FSCU	((R744SSRC * R744SSTM) + (R744SARC * R744SATM)) *100 / Interval * R744FSCU	S

CF SUBCHANNEL UTILIZATION – ONE DAY



Pivotor Product of Peter Enrico



http://www.epstrategies.com/sitex/index.php

Pivotor Product of Peter Enrico

RMF Mon III,I Panels & Key Fields

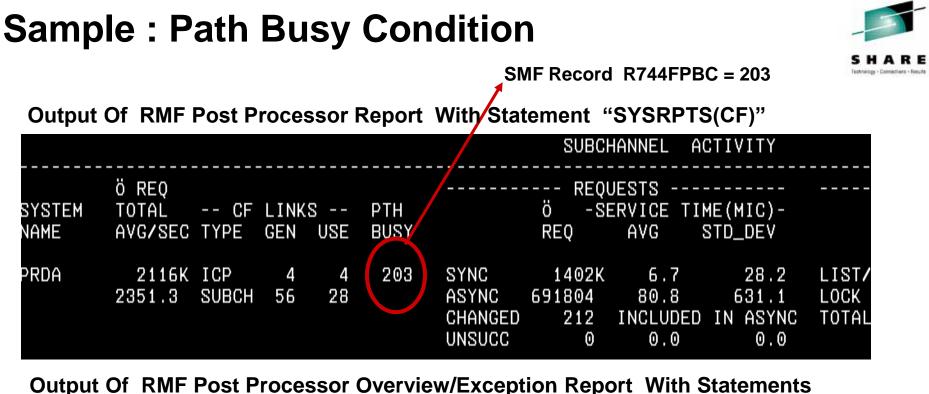
RMF Mon III,I Panels & Key Fields

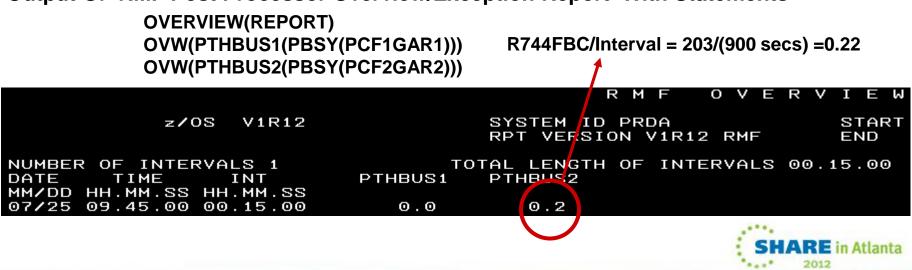
Understanding Data Types In Reports

RMF Monitor I Post Processor Report Fields

RMF Monitor I Overview/Exception Report Fields

RMF Monitor III Report Fields




SMF Record Fields (RMF Related Records 70-79)

If explanation in books is not clear,

- Cross Check Related Fields in Other Types Of Data
- Google It For APARs, Redbooks, WSC Documents
- Ask IBM Open PMR For Information Request

RMF Mon I Post Processor Reports – CF Reports

Postprocessor Statement – SYSRPTS(CF) - See sample JCL in backup slides

Coupling Facility Usage Summary

Coupling Facility Structure Activity

Subchannel Activity

RMF Subchannel Activity Section

Service Times Do NOT include Delay Times

Delay Reason Is Related No Subchannel

Path Busy is NOT included But IBM recognises path busy before And reissue request using same subchannel

											-				
							SUBCI	Hannel a(CTIVITY						
SYSTEM Name	ö req Total Avg/sec	CF Type		S USE	PTH BUSY	.		ERVICE TIN	ME(MIC)- STD_DEV		ö REQ			QUESTS AVG TIME(MIC) STD_DEV	
PRDA	2391K 2656.3		3 42	3 21	Θ	sync Async Changed Unsucc	1579K 788047 0 0	13.0 111.8 INCLUDED 0.0	4.7 161.0 IN ASYNC 0.0	LIST/CACHE LOCK TOTAL	358 0 358	0.0 0.0 0.0	42.5 0.0	33.6 0.0	0.0 0.0
PRDB	5869K 6521.0	ICP SUBCH	4 56	4 28	1935	SYNC ASYNC CHANGED UNSUCC	4234K 1589K 413 0	3.9 41.7 INCLUDED 0.0	34.9 395.3 IN ASYNC 0.0	LIST/CACHE LOCK TOTAL	415 13 428	0.0 0.0 0.0	789.0 207.0	601.7 159.9	0.1 0.0
PRDC	6364K 7071.1		3 42	3 21	Θ	SYNC ASYNC CHANGED UNSUCC	4671K 1645K 2492 0		4.0 88.7 IN ASYNC 0.0	LIST/CACHE Lock Total	3052 60 3112	$0.1 \\ 0.0 \\ 0.0$	707.5 115.5	573.0 125.4	0.8 0.0
PRDD	11892K 13213	ICP SUBCH	4 56	4 28	2718	SYNC Async Changed	9162K 2757K 627		31.9 475.6 IN ASYNC	LIST/CACHE Lock Total	582 86 668	0.0 0.0 0.0	961.6 393.3	1544 1096	$\begin{array}{c} 0.1 \\ 0.0 \end{array}$

RMF CF Usage Summary Section

			(COUPLING	FACILITY	USAGE	SUMMARY					
STRUC	fure summary											
Түре	structure Name	status chg	ALLOC SIZE	% OF CF STOR	Ö REQ	% OF ALL REQ	% OF CF UTIL	avg Req/ Sec	LST/DIR Entries Tot/cur	DATA Elements Tot/cur	LOCK ENTRIES TOT/CUR	DIR REC/ DIR REC XI'S
LIST	DSNPDRM_SCA	ACTIVE	11M	0.0	2403	0.0	0.0	2.67	11K 158	22K 458	N/A N/A	N/A N/A
	DSNPD01_SCA	ACTIVE	70M	0.3	36277	0.1	0.1	40.31	80K 1013	159K 2617	N/A N/A	N/A N/A
	HSA_LOG	ACTIVE	14M	0.1	3	0.0	0.0	0.00	2977 153	9009 366	N/A N/A	N/A N/A
	HZS_HEALTHCHKLOG	ACTIVE	15M	0.1	379	0.0	0.0	0.42	3575 2322	32K 22K	N/A N/A	N/A N/A
	IBMBDG	ACTIVE	16M	0.1	971	0.0	0.0	1.08	731 56	25K 2938	N/A N/A	N/A N/A
	IXCSIG1	ACTIVE	15M	0.1	164244	0.3	0.8	182.49	1537	1522	N/A	N/A

RMF CF Usage Summary Section

At the end of this section ,Summary part exists

STRUCTURE TOTALS		3G 47.5	47169K	100	100	52410
STORAGE SUMMARY						
		ALLOC SIZE				SPACE X % REQUESTED
TOTAL CF STORAGE USED BY STRUCTUR TOTAL CF DUMP STORAGE TOTAL CF STORAGE AVAILABLE	RES	12929M 49M 14227M	47.5 0.2 52.3	0.0		Θ.Θ
TOTAL CF STORAGE SIZE		27205M				
		ALLOC SIZE	% ALLOCATE	D		
TOTAL CONTROL STORAGE DEFINED TOTAL DATA STORAGE DEFINED	27205М ОК	47.7 0.0				
PROCESSOR SUMMARY						
COUPLING FACILITY 2817 M	IODEL M32	CFLEVEL	17	DYNDISP O	IFF	
AVERAGE CF UTILIZATION (% BUSY)	14.0	LOGICAL	PROCESSORS :	DEFINED SHARED		EFFECTIVE 2.0 AVG WEIGHT 0.0

RMF Structure Activity Section

STRUCTUR	e name = d	SNPD01_	LOCK1	TYPE	= TOCK	status =	ACTIVE							
	ö REQ			- REQUE	STS				- Delay	'ed requi	ESTS			
SYSTEM	TOTAL		ö	% OF	-SERV TI	ME(MIC)-	REASON	Ö	% OF	AV	/G TIME(MIC)		external requ	EST
Name	avg/sec		REQ	ALL	AVG	STD_DEV		REQ	REQ	/DEL	STD_DEV	/ALL	CONTENTIONS	
PRDA	992K	SYNC	992K	3.8	11.8	3.5	NO SCH	0	0.0	0.0	0.0	0.0	REQ TOTAL	1323K
	1102	async	0	0.0	0.0	0.0	PR WT	Θ	0.0	0.0	0.0	0.0	REQ DEFERRED	11K
		CHNGD	Θ	0.0	INCLUDED	IN ASYNC	PR CMP	Θ	0.0	0.0	0.0	0.0	-CONT	11K
													-False cont	5615
PRDB	3521K	SYNC	3521K	13.4	3.4	35.0	NO SCH	13	0.0	207.0	159.9	0.0	REQ TOTAL	4412K
	3912	async	13	0.0	1037.2	506.1	PR WT	0	0.0	0.0	0.0	0.0	REQ DEFERRED	25K
		CHNGD	13	0.0	INCLUDED	IN ASYNC	PR CMP	Θ	0.0	0.0	0.0	0.0	-CONT	25K
													-FALSE CONT	9039
PRDC	3772K	SYNC	3772K	14.4	12.2	3.0	NO SCH	60	0.0	115.5	125.4	0.0	REQ TOTAL	4052K
	4191	async	53	0.0	541.4	372.3	PR WT	Θ	0.0	0.0	0.0	0.0	REQ DEFERRED	11K
		CHNGD	53	0.0	INCLUDED	IN ASYNC	PR CMP	Θ	0.0	0.0	0.0	0.0	-CONT	11K
													-FALSE CONT	6088

RMF Structure Activity Section

STRUCTURE	NAME = D Ö REQ	SNPD01_	GBP23	type Reques	= CACHE	status =	ACTIVE PR		. NELOV	EN REVITE	sts	
SYSTEM	TOTAL		Ö	% OF	-SERV TI	• •	REASON	ö	% OF	AV	G TIME(MIC)	
Name	AVG/SEC		REQ	ALL	AVG	STD_DEV		REQ	REQ	/DEL	STD_DEV	/ALL
PRDA	56964	SYNC	55K	1.6	16.2	7.5	NO SCH	Θ	0.0	0.0	θ.θ	0.0
	63.29	async	2149	0.1	214.4	215.3	PR WT	Θ	0.0	0.0	0.0	0.0
		CHNGD	Θ	0.0	INCLUDED	IN ASYNC	PR CMP	Θ	0.0	0.0	0.0	0.0
							DUMP	Θ	0.0	0.0	0.0	0.0
PRDB	319K	SYNC	309K	9.0	5.4	33.0	NO SCH	138	0.0	407.3	390.7	0.2
	354.4	async	10K	0.3	109.9	361.5	PR WT	Θ	0.0	0.0	0.0	0.0
		CHNGD	138	0.0	INCLUDED	IN ASYNC	PR CMP	Θ	0.0	0.0	0.0	0.0
							DUMP	Θ	0.0	0.0	0.0	0.0
PRDC	128K	SYNC	111K	3.2	14.5	7.9	NO SCH	7	0.0	561.4	696.3	0.0
	141.7	async	17K	0.5	119.1	164.2	PR WT	Θ	0.0	0.0	0.0	0.0
		CHNGD	7	0.0	INCLUDED	IN ASYNC	PR CMP	0	0.0	0.0	0.0	0.0
							DUMP	0	0.0	0.0	0.0	0.0

Important SMF Fields Analized in SMF 74(4)

ASYNC*REQUESTS	R744SARC
AVERAGE*SERVICE TIME*PER ASYNC	R744SATM
SYNC*REQUESTS	R744SSRC
AVERAGE*SERVICE TIME*PER SYNC	R744SSTM
REQUESTS*CHANGED FROM*SYNC TO ASYNC	R744SSTA
REQUESTS*QUEUED	R744SQRC
REQUESTS*WAITING ON*HI PRTY QUEUE	R744SHTO
REQUESTS*WAITING ON*LO PRTY QUEUE	R744SLTO
TIMES CF*REQUEST FAILED*DUE TO PATH BUSY	R744FPBC
TOTAL REQUESTS*FROM THIS*SYSTEM	R744FTOR

Special THANKS TO

GEORGETTE KURDT – IBM Very Special Thanks to Georgette for her many help

GARY KING - IBM

CHERYL WATSON – Watson & Walker

PETER ENRICO - EPS Strategies

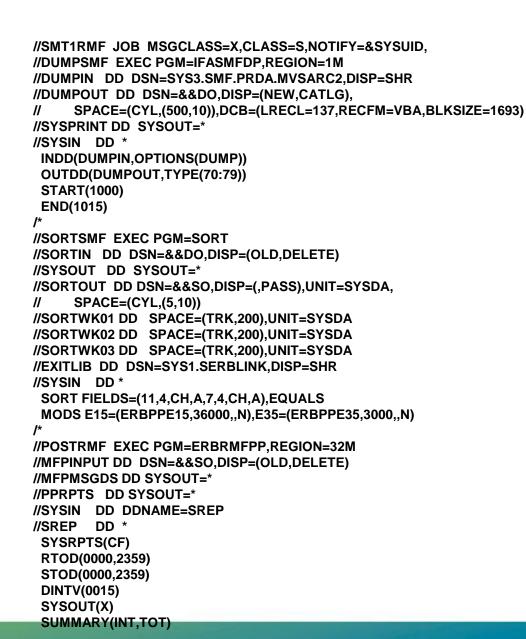
MARIANNE HAMMER – IBM

BARBARA WEILER – IBM

REFERENCES

- □ z/OS 1.12 Setting Up Sysplex
- □ IBM z/OS Parallel Syplex Operational Senarious
- System z Parallel Sysplex Best Practices
- □ Coupling Facility Performance : A Real World Perspective
- □ z196 PR/SM Guide , z196 Technical Guide, z196 Connectivity Handbook
- □ Previous SHARE prezentations Parallel Sysplex Update and many more...
- □ IBM WSC Papers & Flashes
- System 390 Parallel Sysplex Performance
- www.research.ibm.com
- https://www-304.ibm.com/servers/resourcelink/svc03100.nsf?Opendatabase
- □ IBM XES Related APARs Really Good Information in APARs.
- www.freepatentsonline.com For Understanding Alternatives At Least

MORE INFORMATION & BACKUP SLIDES



RMF REPORT SAMPLES

RMF Report Sample JCL * CF report

SHARE in Atlanta

Select 0 'Defaults' To Update Dump Dataset

----- IPCS Default Values ------ Command ===>

You may change any of the defaults listed below. The defaults shown before any changes are LOCAL. Change scope to GLOBAL to display global defaults.

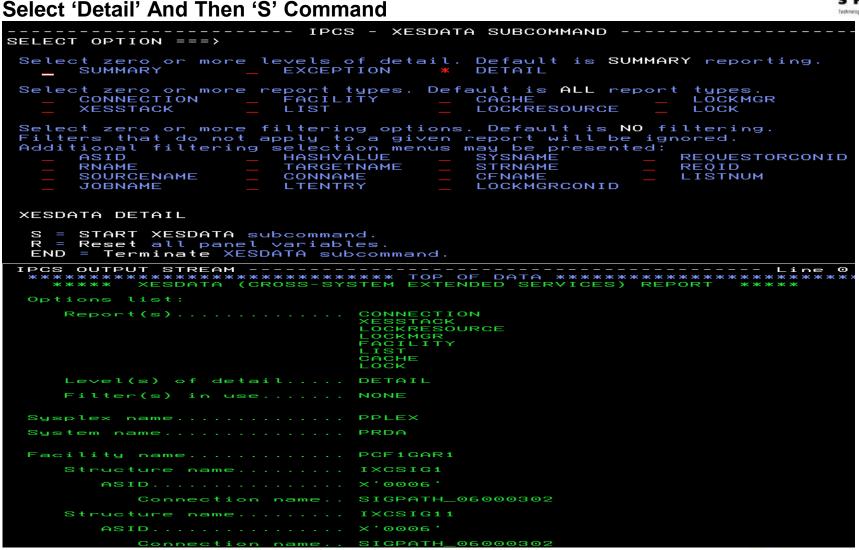
Scope ==> LOCAL (LOCAL, GLOBAL, or BOTH)

If you change the Source default, IPCS will display the current default Address Space for the new source and will ignore any data entered in the Address Space field.

```
Source ==> DSNAME('SYSDMP.PRDA.ÖMASTERÖ.DMP000001')
Address Space ==> ASID(X'00A5')
Message Routing ==> NOPRINT TERMINAL NOPDS
Message Control ==> CONFIRM VERIFY FLAG(WARNING)
Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL
```

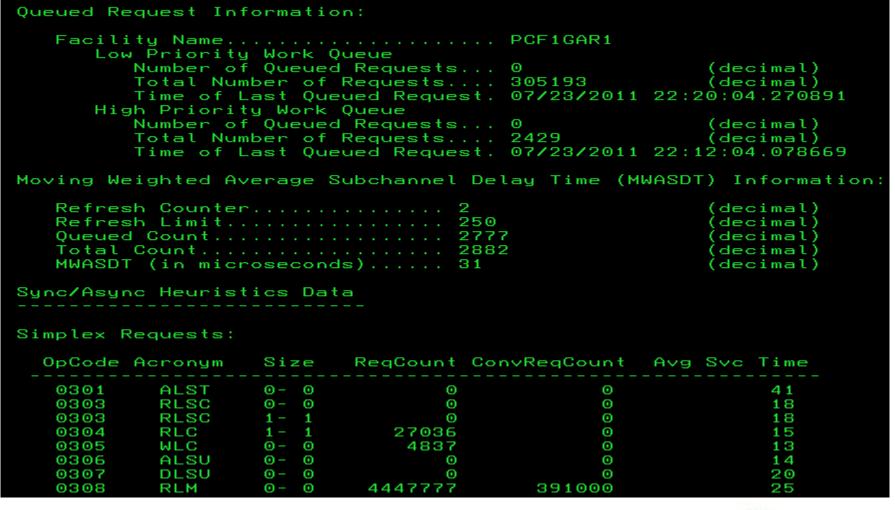
Press ENTER to update defaults.

Use the END command to exit without an update.


Select 2 'Analysis' And Then 6 'Component'

----- IPCS MVS ANALYSIS OF DUMP CONTENTS -----To display information, specify the corresponding option number. 1 SYMPTOMS - Symptoms ***** 2 STATUS - System environment summary * USERID - IMT3 - System environment worksheet з * DATE - 11/07/26 WORKSHEET 4 SUMMARY - Address spaces and tasks * JULIAN - 11.207 5 - Resource contention CONTENTION TIME - 23:54 * PREFIX 6 COMPONENT - MVS component data 7 - Trace formatting TRACES * TERMINAL- 3278 PF KEYS - 24 ****** Enter END command to terminate MVS dump analysis. ---- IPCS MVS DUMP COMPONENT DATA ANALYSIS ----To display information, specify US option nameU or enter **S** to the left of the option desired. Enter **?** to the left of an option to display help regarding the component support. <u>Abstract</u> Nucleus CSECT Map OAM Control Block Analysis <u>S Name</u> NUCMAP OAMDATA OpenMVS analysis OMVSDATA RACF control block analysis TCP/IP Resolver Analysis RACEDATA RESOLVER RMM Control Block Analysis RMM PDA Trace Analysis RMMDATA RMMPDA RSMDATA

Real storage manager summary Format SADMP console messages SADMPMSG SMS control block analysis SMSX Control Block Formatter SRM control block analysis SMSDATA SMSXDATA SRMDATA SSIDATA Subsystem Interface analysis Coupling Facility Structure Data STRDATA Format summary dump data Static Symbol Table Formatter Format symptoms Format system trace SUMDUMP SYMDEF SYMPTOMS SYSTRACE Tcp/Ip Dump Analysis TCP/IP Analysis TCPIP TCPIPCS TSO analysis Virtual Lookaside Facility data Virtual Lookaside Facility trace VSM control block analysis TSODATA VLFDATA VLFTRACE VSMDATA VTAM Vtam Dump Analysis VTAMMAP VTAM control block analysis Work load manager data WLMDATA <u>X</u>ESDATA XES analysis



Sample MWASDT 31 microseconds For PCF1GAR1

Sample MWASDT 6 microseconds For PCF1GAR1

Queued Request Information:

Low Priority Number of 0 Total Number High Priority Number of 0	Queued Requests er of Requests	0	(decimal) (decimal) (decimal) (decimal)
Low Priority (Number of (Total Number Time of Las High Priority Number of (Total Number	Queued Requests er of Requests st Queued Request.	0 115497 07/23/2011 0 21	21:41:39.330957 (decimal) (decimal)
Moving Weighted Ave	rage Subchannel De	lay Time (M	WASDT) Information:
Refresh Counter. Refresh Limit Queued Count Total Count MWASDT (in micros			(decimal) (decimal) (decimal) (decimal) (decimal)
Sync/Async Heuristi	cs Data 		
Simplex Requests:			
OpCode Acronym	Size ReqCount Co	nvReqCount	Avg Svc Time
	0 – 0 0 0 – 0 0	0	30 29

SHARE in Atlanta

GT Structure Distribution – 2 CFs

GT Parallel Sysplex Configuration - CFs & Structures

PCF1GAR1

DSNPD01_LOCK1
DSNPD01_SCA
DSNPDRM_GBP0
DSNPDRM_GBP1
DSNPDRM_GBP2

DSNPDRM_GBP8K0

DSNPDRM_LOCK1

DSNPDRM_SCA

EZBEPORT

HSA_LOG

HZS_HEALTHCHKLOG

IBMBDG

IXCSIG1

IXCSIG11

IXCSIG2

IXCSIG7

DSNPD01 GBP0 DSNPD01 GBP1 DSNPD01_GBP16K0 DSNPD01 GBP16K1 DSNPD01_GBP2 DSNPD01_GBP21 DSNPD01 GBP22 DSNPD01_GBP23 DSNPD01 GBP24 DSNPD01 GBP31 DSNPD01_GBP32 DSNPD01_GBP32K DSNPD01 GBP33 DSNPD01_GBP34 **IXCSIG21**

RLS APL2 RRSSTR1 SYSTEM_OPERLOG **SYSZWLM_0E162817** LOG_DFHLOG_WUI LOG_DFHSHUNT_WUI PQS1CSQ ADMIN PQS10LASTR PQS1SMSSTR PQS1SYSPSTR DSNPD01_GBP5 DSNPD01_GBP6 **DSNPD01 GBP7** DSNPD01_GBP8K0 **IXCSIG4**

GT Parallel Sysplex Configuration - CFs & Structures

DSNPDRM GBP0 DSNPDRM GBP1 DSNPDRM GBP2 DSNPDRM GBP8K0 EZBEPORT0111 EZBEPORT0113 **IGWLOCK00** ISGLOCK **ISTGENERIC** IXCSIG3 IXCSIG31 **DSNPD01 GBP33 DSNPD01 GBP34** DSNPD01 GBP5 **DSNPD01 GBP6**

IXCSIG5 IXCSIG6 PQS1APPLSTR PQS1FFMCSTR PQS1FFMDSTR PQS1LOGOSTR PQS10TPSTR PQS1UTLSTR **RLS APL1** SYSARC_HSMPP_RCL SYSIGGCAS ECS DSNPD01 GBP31 DSNPD01 GBP32 DSNPD01 GBP32K DSNPD01 GBP7

SYSZWLM 0E262817 TOPSTR1 CKPT1 **DFHNCLS PRODNC1** DFHXQLS PRODTSQ1 DSNPD01 GBP0 DSNPD01 GBP1 DSNPD01 GBP16K0 DSNPD01 GBP16K1 **DSNPD01 GBP2 DSNPD01 GBP21 DSNPD01 GBP22 DSNPD01 GBP23 DSNPD01 GBP24 DSNPD01 GBP8K0**

