
Free MQ!
MQ Clients and what you can do with them

Craig Both – bothcr@uk.ibm.com
IBM Hursley

14th March 2012
10542

Agenda

• What are the MQ clients ?
• The MQ client and how it works
• How to connect a client to a server

• Channel Table Configuration

• What facilities are available to clients
• Security
• Exits

What is a client?

• Allows access to messaging API on a
different machine than the queue manager
• Simpler administration
• Same programming capabilities (almost)
• Cheaper

• Free in most cases

• However.....

MQ
Queue

Manager

MQ
Queue

Manager

MQ ClientMQ Client

ApplicationApplicationNo network – No messaging.No network – No messaging.

N

O

T

E

S

What is a client?

• In this world of client/server architectures, thin-clients, thick-clients and network clients the
word client is a much overused word which means different things to different people.

• For the purposes of this presentation a ‘client’ is merely an application which is issuing
messaging APIs but there is a network connection between it and the queues and/or
destinations.

• In most cases this means the client application is on a different physical machine that the
server hosting the queues/destinations but this is by no means mandatory. It is perfectly legal,
and sometimes necessary, to run a client application on the same machine as the queue
manager server.

• The advantages of using a client architecture is that there is no requirement to have servers
defined and managed on all the outlying machines. An enterprise may well have thousands of
applications wishing to do messaging but using clients the administration can be limited to a
few well controlled machines. The disadvantage is that if the network is down for any reason
the applications will not be able to connect to the servers and do any messaging. It should also
be noted that messaging in a client applications is generally slower than in a locally connected
application.

Messaging Clients

WebSphere
Platform

Messaging

WebSphere
Platform

Messaging

Direct IP &
Multicast

C++ Java
.NET

MQI
C, COBOL, PL/1, RPG

etc
JMS

WMQEXMS
C C++ C# (.NET)

WebSphere
MQ

WebSphere
MQ

WBI
Event Broker

Message Broker

WBI
Event Broker

Message Broker
WMQEWMQE

N

O

T

E

S

Messaging Clients

• There are a number of messaging clients designed to suit different
environments, different programming languages and different
programming languages.

• In the MQ world there are essentially two programming models.
• MQI
• JMS (for non-Java languages use XMS)

• These programming models are available in a number of languages
• C
• C++
• C#
• Java
• COBOL
• Etc..

Which client to use

• Power of MQI vs Portability of JMS
• JMS does not tie you to a provider (99% portable)
• JMS available for non-JAVA languages in XMS

• XMS is IBM specific though

• Multiple backend servers required?
• Choose JMS/XMS to talk to both WMQ and WPM

• Communications Protocol
• SNA, SPX and NetBIOS only support by MQ C Client

• How important is speed?
• C tends to be faster than Java
• MQI tends to be faster than JMS/XMS

N

O

T

E

S

Which client to use

• For the majority of cases the same application can be written using any of the
clients. There are a few exceptions to this where there is a particular function
available in only one client

• For example MQ supports the notion of message grouping whereas JMS doesn’t.
• JMS has the notion of selectors, MQ doesn’t

• The decision as to which client to use often comes down to which one fits in best
with the current application environment. For example, if an enterprise codes all of
its applications in Java then clearly choosing one of the Java clients would be
sensible rather than using JNI to call the C client.

• The other major decision is what programming model should be used. This comes
down to choosing between the MQI and JMS. The MQI is particular to WebSphere
MQ and while it is extremely common and powerful it is not provided by any other
messaging provider. As a consequence porting an application written to the MQI to
another provider would require considerable effort. JMS is the standard way of
doing messaging in a Java environment and, as such, applications written to JMS
should port easily to another provider. Note, however, than a JMS application on
one provider can not necessarily communicate with a JMS application on another
provider.

ApplicationServer
Model

MQ Server
Library

MQ
Server

Network
Communications

Client
Model

MQ
Server

Inter process
Communications

local or bindings mode

Application

MQ Client
Library

What is an MQ Client?

N

O

T

E

S

What is an MQ Client?

• The WebSphere MQ Client support is part of the WebSphere MQ product
that can be installed and used separately from the MQ server. It provides a
set of libraries which can be linked with your applications to provide access
to WebSphere MQ queues without requiring the application to run on the
same machine as the queues.

• Generally speaking an application is linked either with the client libraries or
with the server libraries (often called ‘local’ or ‘bindings’ mode). In bindings
mode the application communicates with the Queue Manager via an inter-
process communications link of some kind. In client mode the application
communicates via a network connection. However, as can be seen from
the diagram, the two models are logically equivalent. For this reason the
functionality provided at the client is almost identical to that provided by
local applications.

• For further explanation please see “Overview of WebSphere MQ clients” in
the info center.

MQ Client
Library

MQCONN MQCONNX MQDISC
MQOPEN MQCLOSE MQSUB
MQPUT MQPUT1 MQGET
 MQCB MQCTL
MQSTAT
MQINQ MQSET
MQCMIT MQBACK

MQI Channel

How does a client work ?

Application

MQ Server

MQI Calls

• Requires network access
• Each MQI Call shipped to server
• Response returned to application

N

O

T

E

S

How does a client work ?

• An application that you want to run in a WebSphere MQ client environment must
first be linked with the relevant client library.

• All the standard MQI functions, except MQBEGIN, are available to clients. The key
MQI call at this point is clearly MQCONN(X). It is this call which determines either
directly or indirectly which Queue Manager the application will try to connect to.
We’ll cover this in more detail later – let’s assume that we manage to connect to a
Queue Manager somewhere.

• As the application issues each MQI call, MQ client code directs the request to the
queue manager over the communication link. The MQI request is essentially
serialized, sent over the communications link. The server receives the request and
issues the request on behalf of the client application. It then send back a reply to the
client.

• The surrogate application issuing these requests on behalf of the client is a running
channel of type SVRCONN. Each remotely connected client will have a SVRCONN
channel running on its behalf. It is possible to have many thousands of these
channels running into a single Queue Manager.

1. Install a MQ client and MQ server system
Install MQ server using the SERVER CD ROM
Install the MQ client using the CLIENT CD ROM

2. Install MQ client and server on the same machine
Install MQ server from SERVER CD ROM
and select MQ clients you wish to install

3. Install MQ client from SupportPacs site
Download SupportPac
Extract and run installation program

See the platform Quick Beginnings for specific details

How to install a client

N

O

T

E

S

How to install a client

• For example, information about installing a client on AIX is available here
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqaac.doc/aq10510_.htm

• WebSphere MQ SupportPacs can be downloaded from
• General Index

• https://www-304.ibm.com/support/docview.wss?uid=swg27007197
• MQC7 – MQ V7 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24019253
• MQC6 – MQ V6 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24009961
• MQC5 – MQ Client for VSE

• https://www-304.ibm.com/support/docview.wss?uid=swg24010051
• MQC4 – MQ Client for OpenVMS

• https://www-304.ibm.com/support/docview.wss?uid=swg24009031

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqaac.doc/aq10510_.htm
https://www-304.ibm.com/support/docview.wss?uid=swg27007197
https://www-304.ibm.com/support/docview.wss?uid=swg24019253
https://www-304.ibm.com/support/docview.wss?uid=swg24009961
https://www-304.ibm.com/support/docview.wss?uid=swg24010051
https://www-304.ibm.com/support/docview.wss?uid=swg24009031

What about Licensing ?

• Installable clients can be downloaded for
free
• Available on many platforms

• Client attachment feature required
for z/OS

• Extended Transactional (XA) Clients are
not free

N

O

T

E

S

What about Licensing ?

• The Client Attachment Feature for z/OS is
chargeable.
• In MQ V7 5 Administration client connections, for

example for use by MQ Explorer, are allowed for free

• Extended Transactional (XA) Clients are also
chargeable.

Building a client application

• Compile your application as you would for local application

• Make sure you link your application with CLIENT libraries
• libmqic* for "C" applications on UNIX systems
• mqic32.lib for "C" applications on Windows
• imqb23* imqc23* for "C++" applications

• Take care when linking threaded programs
• e.g. libmqic_r.a for AIX

• Ensure that the correct runtime libraries are available
• e.g.mqic32.dll for Windows

N

O

T

E

S

Building a client application

• MQ Client applications are essentially the same as normal, locally bound
applications. The source and therefore the object deck is identical. The decision as
to whether to run as a client is normally made at link time depending on whether the
application is linked with the client or server libraries.

• Some applications delay this decision still further until run time. By dynamically
loading the server or client library at run time the same application program can run
either in client or server mode depending on the environment settings at run time. It
is even possible for the same application to run both as a local application and a
client at the same time !

• (an example of this is SupportPac MO71).

• For further information see “Building a WebSphere MQ application” in the info
center. For example
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzal.doc/fg16130_.htm

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzal.doc/fg16130_.htm

Client machine Server machine

 MQI Calls

Application

CLNTCONN SVRCONN

How to connect a client to a server
• The client must be able to identify which channel it should use to

communicate with the queue manager

• How to specify the client's connection to a queue manager:
• Explicitly on the MQCONNX verb
• MQSERVER variable
• Client channel tables

• Java client programs use either the MQEnvironment Java class or
JNDI (using JMS)

N

O

T

E

S

How to connect a client to a server

• A channel is a logical communication link (see the WebSphere MQ Intercommunications
manual). Clients communicate with a server using channel called a client connection
(CLNTCONN). On the server there must be a server connection (SVRCONN) channel available
to connect to.

• The client identifies which channel should be used when the application issues an
MQCONN/MQCONNX call.

• The choice about which channel to use is made by checking the following (in this order):
• The ClientConnOffset or ClientConnPtr in the MQCNO structure (if an MQCONNX was

issued).
• The MQSERVER environment variable.
• The client channel definition table. This can be found as described by the MQCHLLIB and

MQCHLTAB environment variables or using the Active Directory on Windows.
• The channel definition table found in the default path.

• Java clients don't use the above method. The standard MQ java classes use the
MQEnvironment class to identify the channel, while JMS clients use the Java Naming and
Directory Interface (JNDI) to identify channels.

Environment variables can be used to configure the way the client
works:
ƒ MQSERVER defines a minimal client channel

ƒ MQCCSID overrides the client machines CCSID

ƒ MQCHLLIB Path to the directory containing the client channel
definition table
can point to a shared drive

ƒ MQCHLTAB Name of the file containing the client channel
definition table (default: amqclchl.tab)

ƒ MQNAME specifies the local NetBIOS name of the client

ƒ MQSSLKEYR specifies the location of an SSL key repository

Configuring the client

N

O

T

E

S

Configuring the client

• See “Using the WebSphere MQ environment variables”
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs12280_.htm

• Not all the available environment variables are listed.
See the above chapter for descriptions of variables used less
often.

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs12280_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs12280_.htm

Using the MQSERVER variable

• The easiest way to define a client channel.
• BUT has default CLNTCONN properties, ie.

• No security, such as SSL
• No exits
• Etc…

• Takes precedence over channel tables
• but is superseded by the use of the MQCNO structure.

• MQSERVER=ChannelName/TransportType/ConnectionName
• In Windows: use Control Panel -> System -> Advanced ->Environment Variables
• In UNIX: export MQSERVER

• Examples:
• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/127.0.0.1
• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/127.0.0.1(1415)
• MQSERVER=SYSTEM.DEF.SVRCONN/TCP/JUPITER.SOLAR.SYSTEM.UNI
• MQSERVER=SYSTEM.DEF.SVRCONN/LU62/BOX99

N

O

T

E

S

Using the MQSERVER variable

• See “Using WebSphere MQ environment variables” in Info Center.

• Using the MQSERVER has the advantage that a client channel definition does not have to be
created on a server and then the client channel table distributed as required.

• However, MQSERVER cannot be used if more advanced options are required on the channel
(such as SSL) and the variable has to be set on each client machine.

• A SERVER side channel still needs to be defined (a SVRCONN channel).

• Channel name is case sensitive and it names a SVRCONN type channel.

• Channel definition is a vanilla definition with no security or exits.

• Use upper case for the transport type (TCP, LU62, NETBIOS, SPX).
• If you don’t you’ll get a 2058 reason code on the connect

• ConnectionName is IP address, host name or partner LU name (or destination)

Channel definition tables

• A channel definition table is:
• A binary file (not editable by a user)

• Created by RUNMQSC (or other MQ mechanism) as
AMQCLCHL.TAB (by default) when client channels are defined
• Use CSQUTIL MAKECLNT function on z/OS

• Located in directory (by default):
• <mq root>\qmgrs\QMGRNAME\@ipcc (Windows)
• <mq root>/qmgrs/QMGRNAME/@ipcc (UNIX)

• Read by the client if no MQSERVER variable defined and
MQCONNX options are not used

N

O

T

E

S

Channel definition tables

• See “Client channel definition table”
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs12100_.htm

• Never remove the channel definition table from its default location; always copy it.

• You cannot append channel definition tables together. If you want to define multiple
client connection channels then you need to define all the channels on one of the
servers.

• Channel definitions can be shared by more than one client. In other words, the client
definition table can be located on a file server.

• To make a client channel definition table on z/OS you use the CSQUTIL
MAKECLNT function. For details see z/OS System Administration Guide.

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs12100_.htm

AMQCLCHL.TAB

RUNMQSC
def chl(...) chltype(clntconn) ….

<mq root>\qmgrs\QMGRNAME\@ipcc (Win)
<mq root>/qmgrs/QMGRNAME/@ipcc (Unix)

copy
c:\mqm\qmgrs\qmgrname\@ipcc\AMQCLCHL.TAB

to
z:\mytable.tbl

MYTABLE.TAB

How do I create and deploy a channel
table?

N

O

T

E

S

How do I create and deploy a channel
table?

• Choose one of your MQ server machines to define all your
CLNTCONN definitions. Find the AMQCLCHL.TAB file and
copy it to a location which is accessible by the client
machines. The name of the file can be changed if required but
you must use the MQCHLTAB environment variable to MQ
what you called it.

• By default, the client looks for the AMQCLCHL.TAB file in
Unix : /var/mqm
Windows : \<mq data root>

• Environment variables, MQCHLLIB and MQCHLTAB, can be
used to enable the clients to locate the channel table

mars

venus
MQCONN ("venus",hConn,cc,rc);

chl2

connected via channel chl2 to “venus"

MQ ClientAMQCLCHL.TAB

Using Channel Definition Tables: Example
1

• How is the QMNAME client channel attribute used?
• def chl(chl1) chltype(clntconn) trptype(tcp) conname(host1) qmname(mars)
• def chl(chl2) chltype(clntconn) trptype(tcp) conname(host2) qmname(venus)

N

O

T

E

S

Using Channel Definition Tables: Example
1

• In this example the user has defined two client channels.

• The client searches through the client channels in alphabetical channel name order. It looks for
a channel definition with a QMNAME field which matches what the application specified on the
MQCONN call. We therefore find channel ‘chl2’. If we did not find any channel definitions which
match the application would receive a 2058 (Queue Manager name error) reason code.

• The transmission protocol and associated connection are extracted from the channel definition
and an attempt is made to start the channel to the machine identified (venus). In order for the
connection to be successful clearly there must be started listener at the remote machine and
the queue manager itself must be started.

• If the connection can not be established then a 2059 (Queue Manager not available) reason
code is returned to the application. If you believe the Queue Manager is running then look in
the client error log for an error message explaining the reason for the failure.

• The error log is in <mq install path>\errors\AMQERR01.LOG

mars

venus
MQCONN ("venus",hConn,cc,rc);

chl2

connected via channel chl3 to “venus"

MQ ClientAMQCLCHL.TAB

chl3

Using Channel Definition Tables: Example
2

• Multiple routes to the same Queue Manager
• def chl(chl1) ….trptype(tcp) conname(host1) qmname(mars)
• def chl(chl2) ….trptype(tcp) conname(tokenring) qmname(venus)
• def chl(chl3) ….trptype(tcp) conname(ethernet) qmname(venus)
• def chl(chl4) ….trptype(tcp) conname(dialup) qmname(venus)

N

O

T

E

S

Using Channel Definition Tables: Example
2

• In this example there are three channels, that all connect to the same queue
manager using different connections (ethernet, tokenring and dialup). This provides
a level of redundancy.

• The client has to pick one, but which one?

• The client attempts to start channel 'chl2' (since the search is in alphabetical
channel name order); its QMNAME attribute matches the name in the MQCONN.
However the communication link is currently broken.

• Channel 'chl3' is now started instead because QMNAME still matches what was
specified on the MQCONN call.

• So the client is connected to queue manager “venus" but via Ethernet.

mars

venus

MQCONN (“planet",hConn,cc,rc);

THIS DOESN’T WORK (quite!)

MQ ClientAMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example
3

• How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname(planet)
• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname(planet)
• …..
• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname(planet)

N

O

T

E

S

Using Channel Definition Tables: Example
3

• In this example the client tries to connect to a queue manager first using "chl1" but
the communication link is down.

• Secondly it tries "chl2" but the queue manager is not currently running.

• Finally the client tries to connect using channel "chl5". The communications link is
running and the queue manager is running.

• However, the name of the queue manager "pluto" does not match the one specified
on the MQCONN call “planet” and so this connection fails.

• There are no remaining client channel definitions and so the MQCONN call fails
with reason code MQRC_Q_MGR_NOT_AVAILABLE.

• What we need is a way to tell MQ that we, the application, don’t really care what the
actual Queue Manager name is.

mars

venus

MQCONN (“*planet",hConn,cc,rc);

This works !
Notice the ‘*’ preceding the Queue Manager name

MQ ClientAMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example
4

• How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname(planet)
• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname(planet)
• …..
• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname(planet)

N

O

T

E

S

Using Channel Definition Tables: Example
4

• This example is only different to example 3 in that the user
has specified "*planet“ rather than just “planet”.

• The * specifies that the client does not care if the actual name
of the Queue Manager does not match the name given.

mars

venus

MQCONN (“ ”,hConn,cc,rc);

This works too !

MQ ClientAMQCLCHL.TAB

pluto

Using Channel Definition Tables: Example
5

• How do we have back-up Queue Managers ?
• def chl(chl1) ….trptype(tcp) conname(ip.mars) qmname()
• def chl(chl2) ….trptype(tcp) conname(ip.venus) qmname()
• …..
• def chl(chl5) ….trptype(tcp) conname(ip.pluto) qmname()

N

O

T

E

S

Using Channel Definition Tables: Example
5

• This example shows it also possible for a client to specify a
blank Queue Manager name, in fact this is a common
scenario.

• In a local application this means ‘connect to the default Queue
Manager’. In a client application is means ‘connect to any of
the ‘default’ Queue Managers’. In other words, any
CLNTCONN channel with a blank Queue Manager field.

• Now, since the application has not specified the name of the
Queue Manager there is no problem with whatever the target
Queue Manager happens to be. In other words, “<blank>” is
equivalent to “*”.

MQCONN(*planet)

Name CHLTYPE TRPTYPE CONNAME QMNAME CLNTWGHT AFFINITY

chl1 CLNTCONN TCP ip.mars planet 4 NONE

chl2 CLNTCONN TCP ip.venus planet 4 NONE

chl3 CLNTCONN TCP ip.pluto planet 2 NONE

40%

40%

20%

mars

venus

pluto

Workload Balancing client connections

N

O

T

E

S

Workload Balancing client connections

• When using a client channel definition table (CCDT) to configure the client connectivity used by
your client applications, you can provide a number of destination queue managers to choose
from in order to provide redundancy and alternate destinations when one fails.

• You can define these destinations with a weighting so that the spread of client connections
between the group of queue managers is as you require.

• You can then use the same CCDT with all your clients – no need to produce different copies of
the CCDT to spread out your client connections across all the back-end servers.

• The default value of CLNTWGHT is 0 – which retains the V6 behaviour of primary then
secondary choices chosen by alphabetical order.

• By default client channels have AFFINITY(PREFERED) set. This means that any particular
client application will attempt to connect to the same queue manager each time. This is the
same behaviour that was available in V6 with the mechanism that the primary connection was
attempted first, then if it was not available, the secondary connection was attempted, and so
on. If it is desired that connections from the same machine are to be workload balanced as
above, AFFINITY(NONE)
can be chosen.

Limiting client connections
Queue Manager

SVRCONN
MAXINST(4)

MAXINSTC(2)

Starting MQSC for queue manager TEST1.

DEFINE CHANNEL(SALES.CONNECT) CHLTYPE(SVRCONN)
 MAXINST(4) MAXINSTC(2)

N

O

T

E

S

Limiting client connections

• New attributes on your server-connection channels allow you to
restrict the number of client-connection instances that can
connect in. Now you can configure your system so that server-
connection instances cannot fill up your maximum number of
channels.

• There are in fact two attributes on your server-connection
definition.

• MAXINST restricts the number of instances in total for the
specific channel name.

• MAXINSTC restricts the number of instances from a specific IP
address for that channel name.

MQCONNX (qmgr name, CNO, Hconn, cc, rc)

...

If used, overrides MQSERVER and Client Channel Tables

MQCD - Channel Definition

. . .
MQCHAR ChannelName[20]; /* Channel definition name */
. . .
MQCHAR ConnectionName[264]; /* Connection name */

MQCNO - Connection Options:
MQCHAR4 StrucId; /* Structure identifier */
MQLONG Version; /* Structure version number */
MQLONG Options; /* Options that control the action of MQCONNX */
. . .
MQLONG ClientConnOffset; /* Offset of MQCD structure for client connection */
MQPTR ClientConnPtr; /* Address of MQCD structure for client connection*/
. . .

Using MQCONNX

N

O

T

E

S

Using MQCONNX

• MQCONNX calls provide an alternative way to identify which channel a client
should use. This method overrides the use of both the MQSERVER environment
variable and the use of channel definition tables.

• The MQCNO structure allows you to pass an MQCD (channel definition) structure to
use directly to the client library. This means the channel can be provided
programmatically at run time.

• The MQCD definition can either be provided via a pointer or via an offset. The offset
field is for those languages which often don’t have pointers such as COBOL.

• You can provide SSL related information in the MQSCO structure of the MQCONNX
call.

• See sample amqscnxc.

MQCD cd = {MQCD_CLIENT_CONN_DEFAULT};

cno.Version = MQCNO_VERSION_2; // CD ignored if CNO not V2 or greater

cno.ClientConnPtr = &cd;

strcpy(cd.ChannelName,"SYSTEM.DEF.SVRCONN“);

strcpy(cd.ConnectionName,"VENUS.SOLAR.SYSTEM.UNI“);

MQCONNX (“”, &cno, &hQm, &cc, &rc)

Using MQCONNX

N

O

T

E

S

Using MQCONNX

• The ClientConnOffset or ClientConnPtr can be used to specify
the location of the channel definition structure. In order for the
location to be picked up by the client the version of the
MQCNO structure must be 2 or greater.

• The details about the channel can now be placed in the
MQCD structure.

• Note: MQCNO_STANDARD_BINDING and
MQCNO_FASTPATH_BINDING are ignored when calling
MQCONNX from a client. Whether the channel actually runs
using standard or fastpath is controlled via the MQIBINDTYPE
setting in the server configuration.

Debugging Connection problems

• Check the error logs!
• Server error log <root>\qmgrs\<QM>\errors\AMQERR01.LOG
• Client error log <root>\errors\AMQERR01.LOG

• Double check the MQSERVER variable

• Does the amqsputc sample work?

• Is the network working?
• Can you "tcp ping" the host?

• Is there an MQ listener running?

• Is the channel table specified correctly
• Do the environment variables point to the right place?

N

O

T

E

S

Debugging Connection problems

• These are some of the simple ways to try and diagnose why you can't
connect to a queue manager.

• Don’t forget about the error logs. Both the client and the server machine
have error logs which will tell you why an MQCONN is failing.

• Try your configuration with a tried and trusted application such as the
sample AMQSPUTC.

• Check that the server you are trying to connect to is available, the network
connection is available, that the queue manager is running and that a
listener for that queue manager has been started.

• Check that you have correctly identified the whereabouts of your channel
definition table.

JMS Applications

JVM

JMS API layer

Standard MQ Java
layer

MQ
Server

(Server) JNI TCP/IP (Client)

MQ Java Client

• Java classes for accessing MQ

• May be optional Install
component (e.g. Windows)

• JMS interface also provided

N

O

T

E

S

MQ Java Client

• The MQ Java client can be used to access a server directly
using the Java Native Interface (JNI) or as a client using the
TCP/IP protocol.

• The MQ Java interface maps fairly closely to the MQI in many
ways, however a JMS interface which complies with Sun
standards is also provided.

• The MQ API is more complex but offers more control.

• JMS is a simpler, higher-level API, although it does offer some
facilities not available in the MQ API. For example: the
publish/subcribe model, and message selectors.

import com.ibm.mq.*; // Include the MQ package

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

MQEnvironment.hostname = "VENUS.SOLAR.SYSTEM.UNI";
MQEnvironment.channel = "SYSTEM.DEF.SVRCONN";

try
{
 MQQueueManager qmgr = new MQQueueManager("");
}
catch (MQException ex) { ex.printStackTrace(System.err);}

Connecting Clients in Java

N

O

T

E

S

Connecting Clients in Java

• This is a simple example showing how a Java client identifies
which queue manager it wishes to connect to.

• The presence of a non blank hostname informs the client that
the bindings mode (direct server connection) cannot be used.

• The other MQEnvironment variables (such as channel) can be
used to configure the client connection to the queue manager.

import com.ibm.mq.*; // Include the MQ package

MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,
 MQC.TRANSPORT_MQSERIES);

URL chanTab = new URL(ftp://ftp.server/mq/AMQCHLCL.TAB);
try
{
 MQQueueManager qmgr = new MQQueueManager(“venus“,chanTab);
}
catch (MQException ex) { ex.printStackTrace(System.err);}

Connecting Clients in Java

ftp://ftp.server/mq/AMQCHLCL.TAB

N

O

T

E

S

Connecting Clients in Java

• This is a simple example showing how a Java client identifies
which queue manager it wishes to connect to.

• The presence of a non blank hostname informs the client that
the bindings mode (direct server connection) cannot be used.

• The other MQEnvironment variables (such as channel) can be
used to configure the client connection to the queue manager.

import javax.jms.*;
import javax.naming.*;
import javax.naming.directory.*;
 .
java.util.Hashtable environment = new java.util.Hashtable();
environment.put(Context.INITIAL_CONTEXT_FACTORY, icf);
environment.put(Context.PROVIDER_URL, url);
Context ctx = new InitialDirContext(environment);

QueueConnectionFactory factory;
factory = (QueueConnectionFactory)ctx.lookup("cn=ivtQCF");

Connecting Clients in JMS

N

O

T

E

S

Connecting Clients in JMS

• This is a short and incomplete example showing the start of a
JMS application which connects to a queue manager.

• The application provides the location of a context where
objects are placed which can be used by JMS to start a
connection to a queue manager.

• The QueueConnectionFactory object can contain a channel
name and other details which identify how the application is to
connect to a queue manager.

WMQ V7 Enhancements for Client Performance
Read Ahead

"Read Ahead" for Receiving Messages/Publications:
• Messages sent to a client in advance of MQGET, queued internally

• Administrative choice – no application changes needed
• Higher performance in client

ClientClientMQCONN

MQOPEN

MQGET

MQGET

MQGET

ServerServer

Request for
‘n’ messages

N

O

T

E

S

• While WebSphere MQ non-persistent messages do not have assured delivery, they traditionally have still been
more reliable than is necessary for some application scenarios. With V7 it is possible to have additional trade-
off options for performance versus reliability. WMQ provides a comprehensive range of qualities of service for
message delivery, ranging from assured delivery to lightweight non persistent.

• Message read ahead is supported between clients and servers removing the need for the WMQ client to
specifically request every message that is sent to it by the server. Certain profiles of applications can benefit
from providing the message criteria that they wish to consume and having these messages sent to the client
without the need for the client to repeatedly tell the server the same message criteria.

• Read ahead works best when you are fairly certain that the messages really are intended for this client, you are
fairly certain they will be consumed by the client, and you know ahead of time in what manner they will be
consumed. The ideal scenario is a non-durable subscribe of non-persistent messages using an asynchronous
consumer. By contrast, a point to point get of a persistent message in a transaction is not suitable for read
ahead. As another example, a queue that has the messages processed by many cloned applications all
opening the same queue at the same time is not a suitable application to use read ahead.

• Read ahead provides a significant performance improvement to an application requiring a lower Quality of
Service by removing many of the network replies. The messages are stored in memory in the client process
and so if the application is not ended gracefully these messages are lost. Read ahead is a negotiated option
between the client and the server and therefore does not provide any support to a back level client as it will be
negotiated to off. It is set by a configuration option on an individual queue level; application code does not need
changes.

• Read ahead only applies to non-persistent messages, so the class of service for persistent messages is not
being changed in any way. When there is a mixture of persistent and non-persistent messages on a queue,
read ahead stops until the persistent message is explicitly requested by the application.

WMQ V7 Enhancements for Client Performance
Read Ahead

WMQ V7 Enhancements for Client Performance
Asynchronous Put

"Asynchronous Put" for Sending/Publishing Messages:
• Application can indicate it doesn't want to wait for the real return code

• Maybe look for return code later – MQSTAT verb

• Maintains transactional semantics
• Higher performance in client

ClientClient

MQCONN

MQOPEN

MQOPEN

MQPUT

MQPUT

MQPUT

MQPUT

MQCMIT

ServerServer

N

O

T

E

S

WMQ V7 Enhancements for Client Performance
Asynchronous Put

• This is an option that allows an application to indicate that it is not immediately interested in the return code
from a put of a message (although it may be interested enough to ask for the return code later). It allows
unacknowledged messages to be sent removing the expense of the line turnaround on a client.

• An application can indicate that it is willing to have unacknowledged, or asynchronous, communication with
the server when it is producing messages either to be placed on a named queue, or published to a topic,
by supplying the put message option indicating this. Using this option does not guarantee that no line
turnarounds will occur, but simply that the application does not require any synchronization with the server.
For example, in the case of persistent messages outside of sync-point, this option has no effect, since a
line turnaround is still required. For this case, however an error will not be given with the use of this option.
This behaviour can also be configured by administrative means so that application code does not have to
be changed.

• Messages that are given to the server using this option may be within a transaction. The commit of the
transaction always does a line turn-around and still provides a return code, which may indicate that a
previous put had failed and that the transaction has not been committed. In this case the application can
request the last asynchronous return code using a verb to get the last asynchronous error to determine
what the problem was. The error returned to this verb is only the error from an asynchronous call. Any
subsequent synchronous calls which experience an error do not have any impact on the result provided
when using this verb.

• In order for this option to be used, both the client and the server must understand it, and therefore it does
not provide any advantage to a back level client. It is however applicable to both point-to-point and
publish/subscribe applications and is available in the MQI. JMS applications
get a benefit from this without any application code changes at all.

WMQ V7 Enhancements
Sharing Conversations

• Controlled by SHARECNV channel attribute
• 0 All sharing is off ; channel operates in MQ V6 mode
• 1 Sharing is off but channel still operates in MQ V7 mode
• Many Sharing up to negotiated value : Default 10

S
erver

MQCONN
MQOPEN
MQPUT

Q2

One socket for ‘n’ conversations
Socket is bi-directional
Heartbeats occur at all times

C
lien

t

Q3

Q1

MQCONN
MQOPEN
MQPUT

MQCONN
MQOPEN
MQPUT

N

O

T

E

S

WMQ V7 Enhancements
Sharing Conversations

• SHARECNV controls how the network communication is done between the server and client. A
value of 0, prevents any sharing, it also prevents many of the other MQ V7 client features such
as Async. Consume. Essentially with a SHARECNV value of 0 the client will operate in the
same way as it did in MQ V6.

• With a non-zero value for SHARECNV the client can share conversations up the same socket;
it can also communicate in full duplex. The advantage of this is that the server and client can
do heartbeating at any time to check the health of the socket. This reduces the reliance on
TCP/IP KEEPALIVE.

• With a value greater than 1 there is the potential to reduce the number of sockets into the
server. If a client application makes multiple connections from the same process to the same
server then the connections may well go up the same socket. The most obvious case of this
would be a simple application which uses on connection for putting and another for getting
which is fairly common. Another example is application host environments such as WebSphere
Application Server. It is possible to configure the channel to allow a large amount of sharing but
often this is of little benefit since very few applications make large numbers of MQ connections.
One must also bear in mind that ultimately these connections are being serialised and putting
too many connections up the same socket could adversely affect performance.

As always If you don't want to lose messages, code MQ*_SYNCPOINT on
MQGET and MQPUT calls then issue MQCMIT

Programming Considerations
• Take care when specifying the queue manager name on MQCONN if using client

channel definition table...

• Most MQI calls are SYNCHRONOUS and tend to be slower than in a server
environment.

• Always be prepared for MQRC_CONNECTION_BROKEN.

• Always code MQGMO_FAIL_IF_QUIESCING.

• For optimum performance don’t use really short lived connections (MQCONNs)

• Carefully code MQWI_UNLIMITED on MQGET calls.

• Use Asynchronous MQPUT and Read Ahead if appropriate

N

O

T

E

S

Programming Considerations

• In general the rules for programming clients is the same as for local applications. However,
effects tend to be exaggerated – calls are slower, more can go wrong and windows tend to
be larger..

• Because there’s a real network and the Queue Manager is usually on a different machine
than the client a client is much more likely to receive an MQRC_CONNECTION_BROKEN
reason code from an MQI call. Be prepared for this and deal with it appropriately.

• The most expensive call is the MQCONN itself. For optimum performance it is imperative
you don’t connect too often and do a reasonable amount of work under each connection.

• As in local applications make sure all the processing of messages you care about are done
under a transaction. This means MQPUT and MQGET calls should use the SYNCPOINT
option. Failure to do so could lead to messages becoming lost. This behaviour tends to be
more obvious in the client environment because the failure windows are much larger.

• If large numbers of non-persistent messages are involved it is worth considering using
Asynchronous MQPUT and/or Read Ahead to avoid a line turnaround from the client per
message.

Automatic Client Reconnection
• Client library provides reconnection logic on detection of a failure
• Tries to hide queue manager failures by restoring state automatically

• Can reconnect to the same or different QMgr
• Re-opens queues, re-establishes subscriptions …

QM1QM1

MQ ClientMQ Client

ApplicationApplication

QM3QM3

QM2QM2

Automatic Client Reconnection:
What causes reconnection?

• Only explicit ends or failures
• Communications failure
• Queue Manager or Listener failure
• endmqm –s or endmqm –r

Automatic Client Reconnection:
MQI Considerations

• Some MQI options will fail if you have reconnection
enabled
• Using MQPMO/MQGMO_LOGICAL_ORDER, MQGET gives

MQRC_RECONNECT_INCOMPATIBLE

• New MQCONNX options
• MQCNO_RECONNECT
• MQCNO_RECONNECT_Q_MGR
• MQCNO_RECONNECT_DISABLED

• MQPUT of PERSISTENT message outside of syncpoint
• May return MQRC_CALL_INTERRUPTED

• Event handler notified of reconnection ‘events’
• MQSTAT may return only a ‘subset’ of information

• Reconnection may have occurred during a message sequence
• Can be used to query reconnection status

N

O

T

E

S

Automatic Client Reconnection

• In an ideal world all applications would sensible, appropriate retry logic to cope with all
connection failures and Automatic Client Reconnection would not be needed. One could still
argue that reconnection is better done by the application since the application itself knows what
state is important. However, for a large number of applications the Automatic Client
Reconnection provides a ‘good enough’ reconnection service and requires virtually no effort to
use.

• The application must merely state at connect time that it’s willing for the connection to be
reconnected automatically and whether, if that happens, the connection must go back to the
same Queue Manager. Clearly it is better if the application can avoid this type of affinity but for
some conversational applications, which contain a lot of ongoing state, getting back to the
same Queue Manager may be paramount.

• When an application is in reconnect mode it can very easily look like an application hang since
the MQI call be issued at the time of the connection failure just doesn’t return. If the application
is a user facing application it may be useful to show to the user that the application is
attempting to reconnect. This is one of the reasons the application may with to register an
event handler so that the application gets control when reconnects occur. The application can
also affect the reconnect process by adjusting the reconnect timeouts or cancelling the
reconnect altogether.

MQ Client

MQGMO_GET WAIT +
MQGMO_NO_SYNCPOINT

MQ Server

MQGMO_GET WAIT +
MQGMO_NO_SYNCPOINT

Message Arrives

Transactions

Message Is Lost!Message Is Lost!

Application
Dies!

N

O

T

E

S

Transactions

• This slide demonstrates the second to last point on the Programming Considerations slide.

• Message data can be lost if applications end while performing an MQGET with wait without
being in syncpoint:

• An application issues an MQGET with MQWI_UNLIMITED, but not in syncpoint.
• There are currently no messages available on the server so the server starts waiting for

one to arrive.
• Meanwhile, the application ends unexpectedly before the MQGET returns.
• A message now arrives, so the server gets it from the queue to send it to the application.
• The server finds the application dead and so the message is discarded.

• By getting messages in syncpoint if they are not correctly delivered they will not be
discarded.

• It is recommended that an application always explicitly states MQGMO_SYNCPOINT or
MQGMO_NO_SYNCPOINT because the syncpoint default varies between servers. (z/OS the
default is syncpoint, Distributed the default is no syncpoint).

• The key point here, though, is that the syncpoint model for local and client machines is
identical.

MQPUT/GET

EXEC SQL

SQL COMMIT

MQCMIT

MQ
Server

MQ
Server

Global Transactions

Database
Server

Database
Server

Multiple Resource Managers involved in the transaction

N

O

T

E

S

Global Transactions

• The MQ client available for free download can only commit a unit of work
carried out on the queue manager it is connected to. The client cannot be
used to manage work carried out on other resource managers. Therefore
the MQBEGIN call is not available within normal MQ clients.

• Work between different resource managers can only be loosely
coordinated, as shown by the slide, where different resource managers are
accessed using their native interfaces and under different units of work.

• However, this is often sufficient. In the example shown the MQGET
operation is not committed until a successful commit of the database
update. This means that if the application crashes the request message is
rolled back to the queue and can be reprocessed. If the application
crashes after the database update but before the MQ transaction is
committed then the transaction would merely be replayed.

Database
client

App

Queue
Manager

XA
TM

NODE 1

Database Server

NODE 2

Local
Application

Database
client

App

Extended MQ
Client

 XA
TM

NODE 1

Database Server

NODE 2

NODE 3

Queue
Manager

Extended
Transactional
Client

Extended Transactional Client

N

O

T

E

S

Extended Transactional Client

• The function provided by the Extended Transactional Client allows a client to
participate in units of work coordinated by an XA transaction manager.

• Externally coordinated transactions can now work with queue managers located
on different machines from where the transaction coordination takes place.

• The Extended Transactional Client still does not support the MQBEGIN call - all
units of work must be started using the XA interface by an external transaction
manager.

• Potentially allows simpler administration by separating the machines with the
databases on from the machines with the queue managers on.

• Note: you will only find benefit in the Extended Transactional Client if you use
another resource manager other than WebSphere MQ!

Client Server

Transport (Security)

Security Exit to Exit

Userid (real)
from

Environment
Userid to Exit

SSL

Security Security

Client Security

N

O

T

E

S

Client Security

• See “Setting up WebSphere MQ client security” in the Info center
• Channel security exits

• The channel security exits for client to server communication can work in the same way as
for server to server communication. A protocol independent pair of exits provide mutual
authentication of both the client and the server.

• See next slide for SSL

• If no client security exit, userid passed in MQCD
• Windows and Unix -- pass the logged on UserID
• Windows only - Security ID (SID) passed in "Accounting" field in the message descriptor

• If the MQ server and client are both on Windows NT/2K/XP, and if the MQ server has access to
the domain on which the client user ID is defined, MQ supports user IDs of up to 20 characters.

• On all other platforms and configurations, the maximum length
 for user IDs is 12 characters.

Client Server

DEF CHANNEL ('SYSTEM.DEF.SVRCONN')
 CHLTYPE(SVRCONN)
 SSLCAUTH(REQUIRED)
 SSLCIPH('RC4_MD5_US')
 SSLPEER('CN="*", O="IBM", C="UK"')
 Authentication,

Encryption, Integrity

DEF CHANNEL('SYSTEM.DEF.SVRCONN')
 CHLTYPE(CLNTCONN)
 SSLCIPH('RC4_MD5_US')
 SSLPEER('CN=“user", O="IBM",C="UK"')

SSL facility
ƒ key repository
ƒ MQSSLKEYR
environment variable

SSL facility
ƒ key repository

Client Security - SSL

N

O

T

E

S

Client Security - SSL

• See “The Secure Sockets Layer (SSL) on WebSphere MQ clients” in the Info Center.

• The Secure Sockets Layer (SSL) provides an industry standard protocol for transmitting data in
a secure manner over an insecure network. The SSL protocol is widely deployed in both
Internet and Intranet applications. SSL defines methods for authentication, data encryption, and
message integrity for a reliable transport protocol, usually TCP/IP.

• SSL can be enabled on client channels by specifying a CipherSpec on the client and server
connection channel definitions.

• SSL cannot be used if using the MQSERVER environment variable.

• If using the MQCNO structure to pass in the client channel on an MQCONNX call, a
CipherSpec can be set in the MQCD structure.

• If using Active Directory on Windows you can use the setmqcsp control command to publish
the client-connection channel definitions in Active Directory. One or more of these definitions
can specify the name of a CipherSpec.

Security

Send

Receive

Security

Receive

Send

Client Server

Message exits and Retry Exits are not applicable

MQCONN(..)

MQOPEN(..)

MQPUT(..)
…

Exits

N

O

T

E

S

Exits
• The ExitPath stanza of the ini file determines location of exits, if not fully

qualified on the DEF CHL command

• Client : (mqclient.ini)

ClientExitPath:
 ExitsDefaultPath=path

• Server: (qm.ini)

ExitPath:
 ExitsDefaultPath=path

• Conversion is always done on the server to which the client is connected
• Conversion exits, therefore, must be located on the server.

Summary

• Clients are a simple, low administration and cheap way of
providing queuing throughout your network.

• Consider which client to use based on
• Programming Language required (C,Java,C#, C++)
• Programming model required (MQI vs JMS)
• Performance

• Client applications can do the same as local applications
• However, no network - no queuing

N

O

T

E

S

Further Information
• WebSphere MQ Information Center

• Main index
• http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp

• MQ Client information
• http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs10120_.htm

• WebSphere MQ home page
• http://www.ibm.com/software/integration/wmq/

• WebSphere MQ SupportPacs:
• General Index

• https://www-304.ibm.com/support/docview.wss?uid=swg27007197
• MQC7 – MQ V7 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24019253
• MQC6 – MQ V6 Clients

• https://www-304.ibm.com/support/docview.wss?uid=swg24009961
• MQC5 – MQ Client for VSE

• https://www-304.ibm.com/support/docview.wss?uid=swg24010051
• MQC4 – MQ Client for OpenVMS

• https://www-304.ibm.com/support/docview.wss?uid=swg24009031

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.csqzaf.doc/cs10120_.htm
http://www.ibm.com/software/integration/wmq/
http://www.ibm.com/software/integration/wmq/
http://www.ibm.com/software/integration/wmq/
https://www-304.ibm.com/support/docview.wss?uid=swg27007197
https://www-304.ibm.com/support/docview.wss?uid=swg24019253
https://www-304.ibm.com/support/docview.wss?uid=swg24009961
https://www-304.ibm.com/support/docview.wss?uid=swg24010051
https://www-304.ibm.com/support/docview.wss?uid=swg24009031

Thank-you

Any questions?
Please fill in evaluations

Monday Tuesday Wednesday Thursday Friday

08:00 Free MQ! - MQ Clients
and what you can do
with them.

MQ Performance and
Tuning on distributed

09:30 The MQ API for
dummies - the basics

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

The even darker arts of
SMF

CICS Programs Using
WMQ V7 Verbs

11:00 Putting the web into
WebSphere MQ: A look
at Web 2.0 technologies

Message Broker
administration

The Do’s and Don’ts of
z/OS Queue Manager
Performance

The Doctor is in. Hands-
on Lab and Lots of Help
with the MQ Family

12:15 WebSphere MQ: Highly
scalable publish
subscribe environments

MQ & DB2 – MQ Verbs in
DB2 & Q-Replication

01:30 WebSphere MQ 101:
Introduction to the
world's leading
messaging provider

What's new in
WebSphere Message
Broker V8.0

The Do’s and Don’ts of
Message Broker
Performance

Diagnosing problems for
MQ

03:00 WebSphere Message
Broker 101: The
Swiss army knife for
application
integration

What's new in
WebSphere MQ V7.1

WebSphere MQ
Security - with V7.1
updates

Diagnosing problems for
Message Broker

04:30 Introduction to the
WebSphere MQ
Product Family -
including what's new
in the family products

Under the hood of
Message Broker on z/OS
- WLM, SMF and more

MQ Java zero to hero Shared Q including Shared
Message Data Sets

06:00 For your eyes only -
WebSphere MQ
Advanced Message
Security

MQ Q-Box - Open
Microphone to ask the
experts questions

This was session Free MQ! - The rest of the week ……

	Free MQ! MQ Clients and what you can do with them
	Agenda
	What is a client?
	Slide 4
	Messaging Clients
	Slide 6
	Which client to use
	Slide 8
	What is an MQ Client?
	Slide 10
	How does a client work ?
	Slide 12
	How to install a client
	Slide 14
	What about Licensing ?
	Slide 16
	Building a client application
	Slide 18
	How to connect a client to a server
	Slide 20
	Configuring the client
	Slide 22
	Using the MQSERVER variable
	Slide 24
	Channel definition tables
	Slide 26
	How do I create and deploy a channel table?
	Slide 28
	Using Channel Definition Tables: Example 1
	Slide 30
	Using Channel Definition Tables: Example 2
	Slide 32
	Using Channel Definition Tables: Example 3
	Slide 34
	Using Channel Definition Tables: Example 4
	Slide 36
	Using Channel Definition Tables: Example 5
	Slide 38
	Workload Balancing client connections
	Slide 40
	Limiting client connections
	Slide 42
	Using MQCONNX
	Slide 44
	Slide 45
	Slide 46
	Debugging Connection problems
	Slide 48
	MQ Java Client
	Slide 50
	Connecting Clients in Java
	Slide 52
	Slide 53
	Slide 54
	Connecting Clients in JMS
	Slide 56
	WMQ V7 Enhancements for Client Performance Read Ahead
	Slide 58
	WMQ V7 Enhancements for Client Performance Asynchronous Put
	Slide 60
	WMQ V7 Enhancements Sharing Conversations
	WMQ V7 Enhancements Sharing Conversations
	Programming Considerations
	Slide 64
	Automatic Client Reconnection
	Automatic Client Reconnection: What causes reconnection?
	Automatic Client Reconnection: MQI Considerations
	Automatic Client Reconnection
	Transactions
	Slide 70
	Global Transactions
	Slide 72
	Extended Transactional Client
	Slide 74
	Client Security
	Slide 76
	Client Security - SSL
	Slide 78
	Exits
	Slide 80
	Summary
	Further Information
	Thank-you
	This was session Free MQ! - The rest of the week ……

