
MQ Java Zero to HeroMQ Java Zero to Hero

Chris Matthewson (cmatthChris Matthewson (cmatth@uk.ibm.com@uk.ibm.com))
IBM Hursley ParkIBM Hursley Park

March 14March 14th,th, 2012 2012
Session 10537Session 10537

mailto:sgormley@uk.ibm.com
mailto:sgormley@uk.ibm.com

Agenda

 What is WMQ Java and JMS?
 WMQ JMS in standalone J2SE Environments

 JNDI or programmatic configuration
 Administration tools
 Running your application

 WMQ JMS in WebSphere Application Server Environments
 The extras, or why to use WAS
 MDBs, EJBs, Servlets…
 Deploying your application

 Changing parameters and tuning
 WMQ parameters
 WAS parameters

What is WMQ Java and JMS?

 WebSphere MQ Classes for Java
 Pre-dates JMS API
 Resembles WMQ API
 Offers programmatic access to WMQ features

 WebSphere MQ Classes for JMS
 Java Message Service
 API that provides a common way for Java applications to send and

receive messages
 Provider Agnostic
 Often used in J2EE Application Servers
 Developed by Sun with input from IBM and others

My JMS Application

Administrative
Store

How does a JMS application work?

Queue Manager

Connection
Factory

Destination

How do Connection Factories and Destinations get created?

Agenda

 What is WMQ Java and JMS?
 WMQ JMS in standalone J2SE Environments

 JNDI or programmatic configuration
 Administration tools
 Running your application

 WMQ JMS in WebSphere Application Server Environments
 The extras, or why to use WAS
 MDBs, EJBs, Servlets…
 Deploying your application

 Changing parameters and tuning
 WMQ parameters
 WAS parameters

JNDI or programmatic configuration

 Recommended way to define JMS resources is to use a
JNDI (Java Naming and Directory Interface) store
 Requires a JNDI store to be created
 Easy to change properties, or even JMS provider!
 Easy to share definitions across enterprise
 Encourages code re-use.

 Can also programmatically define resources
 Requires the application to set all properties
 Needs recompilation to alter/add properties
 Each application needs to set properties

Sample code for each style

 JNDI:
Hashtable environment = new Hashtable();
environment.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.fscontext.RefFSContextFactory");
environment.put(Context.PROVIDER_URL, "file:/IBM/JNDI/");
Context ctx = new InitialDirContext(environment);
cf = (ConnectionFactory) ctx.lookup(“MyCF”);

 Programmatic:
MQConnectionFactory cf = new MQConnectionFactory();
cf.setQueueManager("MyQM");
cf.setTransportType(JMSC.MQJMS_TP_CLIENT_MQ_TCPIP);
cf.setHostName("myhost");
cf.setPort(14140);
…
…

WMQ JMS Administration Tools:
JNDI Repositories
 The WMQ JMS Administration Tools need access to a JNDI

Repository to store connection factory and destination definitions.
 Two main types of JNDI Repository are supported.

 LDAP Directories
− Heavyweight.
− Offers high levels of security.
− Easy to share connection factory and destination objects between multiple

JMS clients running on different machines.
− Can be difficult to set up.

 File system
− Very lightweight.
− Easy to set up and get running.
− Not very secure.
− Hard to share repository between multiple JMS clients.

 WebSphere MQ SupportPac ME01 allows the queue manager to be
used as a JNDI store, as well as auto-define existing queues.

WMQ JMS Administration Tools:
JMSAdmin

• Command line tool.
• Supported on all platforms.
• Installed into <WMQ_HOME>\java\bin.
• To run it:

•Edit JMSAdmin.config file to point to the JNDI repository that
will be used, and optionally pass in authentication credentials.

•Then enter JMSAdmin
• Can be used to run scripts

• For example “jmsadmin < myscript.txt”

WMQ JMS Administration Tools:
JMSAdmin

• JMSAdmin.config contains three properties
• INITIAL_CONTEXT_FACTORY

• The class used by the JNDI repository to store and retrieve objects.
• Possible values are:

 com.sun.jndi.ldap.LdapCtxFactory
Used for LDAP Repositories on distributed platforms.

 com.ibm.jndi.LDAPCtxFactory
Used to connect to an LDAP repository from JMS applications running on z/OS.

 com.sun.jndi.fscontext.RefFSContextFactory
Used for file system Repositories

WMQ JMS Administration Tools:
JMSAdmin

•PROVIDER_URL
•An address used by the JMSAdmin tool to access the JNDI Repository.
•Possible values are:

 ldap://<hostname>/<contextname>
The hostname and port that the LDAP server is listening on, followed by
the top level directory context where the objects will be stored.

 file:<drive>/<pathname>
The path to the directory where the administered object definitions will
be saved. The directory must exist before JMSAdmin can be run.

WMQ JMS Administration Tools:
JMSAdmin

•SECURITY_AUTHENTICATION
•Used when connecting to a secure LDAP JNDI Repository.
•Possible values are:
none

The JMSAdmin tool does not pass any security information to LDAP.
simple

The JMSAdmin tool sends an LDAP distinguished name and password
 to the Server for authentication during startup.

CRAM-MD5
The JMSAdmin tool flows an LDAP distinguished name and password

(encrypted as an MD5 hash) when connecting to the LDAP server.
 The distinguished name and password can be specified, using the
PROVIDER_USERDN and PROVIDER_PASSWORD properties, or
JMSAdmin will prompt

WMQ JMS Administration Tools:
JMSAdmin

 JMSAdmin expects commands to be in the format
 Verb noun(value) noun(value)…..

 Useful verbs are:
 DEFINE
 ALTER
 DISPLAY

 Nouns include:
 CF - JMS Connection Factory
 QCF- JMS Queue Connection Factory
 TCF - JMS Topic Connection Factory
 Q - JMS Queue
 T - JMS Topic
 QMGR - Queue Manager Name
 QU - Queue Name
 TO - Topic Name

WMQ JMS Administration Tools:
JMSAdmin

 To create a Queue Connection Factory for the queue
manager QM1, enter the command:
 DEFINE QCF(testQCF) QMGR (QM1)

− The Queue Connection Factory will be stored in the JNDI
Repository with the name testQCF.

 To create a JMS Queue Destination that points to the
queue “test”, enter:
 DEFINE Q(testQ) QU(test)

− The object will be stored in JNDI with the name testQ.

WMQ JMS Administration Tools:
MQ Explorer

• Graphical version of the JMSAdmin tool.
• To create JMS Administered Objects in MQ Explorer:

•Set up a context
•Directory-like structure where the objects will be stored.

•Select the type of JNDI repository that will be used
•File system
•LDAP
•Another JNDI repository

•Specify the address of the JNDI repository
•For file system contexts, select the directory where the Administered
Objects will be stored

•For LDAP repositories, enter the URL of the LDAP server
•Optionally enter the username and password used to connect to the
JNDI repository

•And that’s it!

WMQ JMS Administration Tools:
MQ Explorer

• MQ Explorer wizards provide step-by-step instructions for
creating JMS Administered Objects.

• MQ Explorer also allows Queue or Topic Destination
Administered Objects at the same time as creating the
actual Queue or Topic.

• MQ Queues and Topics can also be created from
Destination Administered Objects.

Running your WMQ JMS Application

 JVM Classpath needs to include:
 com.ibm.mqjms.jar
 jms.jar
 JNDI libraries, such as fscontext.jar, if using JNDI

 If using bindings mode, JVM java.library.path needs to
include the WMQ Java lib directory.

 If on a different machine to the queue manager, use
SupportPac MQC7 to obtain the WMQ JMS client libraries

 That's it, run your Java Application!

If it goes wrong...

 Runtime errors are reported as JMSExceptions, which
include the MQException (if any) that caused it
 Contains the MQ reason code of the problem
 For example RC=2059 MQRC_Q_MGR_NOT_AVAILABLE
Caused by: com.ibm.mq.MQException: JMSCMQ0001: WebSphere
MQ call failed with compcode '2' ('MQCC_FAILED') reason
'2059' ('MQRC_Q_MGR_NOT_AVAILABLE').

 Not all MQRC's reported as JMSExceptions, such as RC=2033
MQRC_NO_MSG_AVAILABLE

 mqjms.log and FFDC files generated with serious errors

Agenda

 WMQ JMS in standalone J2SE Environments
 JNDI or programmatic configuration
 Administration tools
 Running your application

 WMQ JMS in WebSphere Application Server Environments
 The extras - why to use WAS
 MDBs, EJBs, Servlets…
 Deploying your application

 Changing parameters and tuning
 WMQ parameters
 WAS parameters

The extras – why use WMQ JMS with
WAS?

 WebSphere Application Server provides an environment to run JMS
applications in.

 Built-in JNDI repository
 Web based administration, and scripted administration tools integrated closely

with WMQ
 WMQ JMS client installed and configured for use with WAS

 Less coding to achieve enterprise class applications
 MDBs – potential to code a single method that results in multi-instance message

processor
 EJBs – easy access/re-use of code
 Servlets/JSPs – web access to MQ

 Transaction management and coordination
 Resource management, such as connection pooling
 Easy integration with other JEE applications

Message-driven beans

• Message-driven beans (MDBs) are JMS applications that
get called when a message arrives on a given destination.
• Similar to WMQ triggered applications.

• Recommended way of getting WMQ messages into WAS.

• Application developer only has to worry about the business
logic required to process the message.
• Application server handles the actual detection and delivery

of the message.

Message-driven beans

• MDBs must implement a method called onMessage().
• This is called when a message is detected on the specified

destination.
• Message is passed into the method.
• onMessage() simply needs to contain the code to process it.
• Application Server handles all transaction management.

• Application server handles concurrent processing to
facilitate scaling

• IBM Rational tooling provides wizards for creating MDBs.

Message-driven beans

public void onMessage(Message message) {
 try {

 if (message instanceof TextMessage) {
 TextMessage textMsg = (TextMessage)message;
 System.out.println("Message text is " + textMsg.getText());
 }
 } catch (JMSException ex) {
 System.out.println("JMSException occurred : " + ex);
 }
 }

Deploying message-driven beans:
Activation Specifications

• WAS 7 and newer access WMQ using the WebSphere MQ
Resource Adapter (RA)
• Based on the J2EE Connector Architecture (JCA) 1.5

standard.
• Standard mechanism for listening for messages on JMS

destinations.
• Contain information to create a connection to a specified

queue or topic on a queue manager.
• Provides a common way for all JEE 1.4 compliant

application servers to connect to JMS providers.

Activation Specifications

• To create an Activation Specification in WAS:
• Specify the JMS Destination to listen on.
• Enter details of the queue manager where the Destination

resides.
• Optionally, specify a JMS Message Selector.

• SQL expression.
• Only messages that match the Selector will be delivered to

applications using this Activation Specification.
• A handy wizard takes you through all of the necessary steps,

and checks it works too!.
• When deploying the MDB application, specify the

Activation Specification to use.

Enterprise Java Beans/Servlets

• Java applications that run inside of WAS.

• EJBs and Servlets need to create their own connections to
WMQ and get (or send) messages themselves.
• EJBs and Servlets use the standard JMS API, in a similar

way to standalone JMS applications.
• Can be easier than MDBs when handling responses in

request-reply messaging
• Application server still handles transaction management,

based on values specified in the application’s deployment
descriptor.

Application Development
Enterprise Java Beans

@Resource()
private ConnectionFactory cf;
@Resource()
private Queue d;

public void receiveMessage() {
 try {
 Connection conn = cf.createConnection();
 conn.start();
 Session sess = conn.createSession(true,Session.AUTO_ACKNOWLEDGE);
 MessageConsumer consumer = sess.createConsumer(d);
 Message msg = consumer.receive(30000);
 if (msg instanceof TextMessage) {
 System.out.println(“Message received:“ + ((TextMessage) msg).getText());
 }

 conn.close();
 } catch (Exception ex) {

System.out.println("Exception : " + ex);
 }
 }

Enterprise Java Beans/Servlets
Deploying

 Define required Connection Factories and Destinations
 Web based administration console allows most properties to be

configured
 Other properties can be set as custom properties, using JMSAdmin

names and values.
 Applications should use resource-references to decouple application

connection factory/destination names from server names.
 Allows reconfiguration without recompilation.

 During deploy, references link to real resources

 EJB 3 introduces annotations
 Remove reliance on XML configuration files
 Resource references defined in the application code, for ease of use.

WAS
JNDI

Resource

ApplicationReference

Agenda

 WMQ JMS in standalone J2SE Environments
 JNDI or programmatic configuration
 Administration tools
 Running your application

 WMQ JMS in WebSphere Application Server Environments
 The extras, or why to use WAS
 MDBs, EJBs, Servlets…
 Deploying your application

 Changing parameters and tuning
 WMQ parameters
 WAS parameters

 Demo

WMQ Connection Factory Properties:
Connection Name List

 This property specifies a list of hostnames and ports to
attempt to connect to.
 Comma-separated list of “hostname(port)” entries
 Similar to a CCDT with multiple entries.
 Can be used with client reconnection options and client

reconnection timeout to allow automatic reconnection to a
standby queue manager.

 JMSAdmin Property Name: CONNECTIONNAMELIST /
CNLIST

WMQ Connection Factory Properties:
Automatic Client Reconnection

 Determines whether the JMS client should reconnect on
failure

 Used in conjunction with connection name list
 Allows failover to multi-instance queue manager
 Not for use with WAS
 Reconnects happen until reconnection timeout value is

reached.

 JMSAdmin property : CLIENTRECONNECTOPTIONS /
CLIENTRECONNECTTIMEOUT

 This property specifies whether JMS applications that use this Factory can
share their connection to a Version 7 queue manager.

 Useful to reduce the number of network connections to a queue manager.
 Can have slight performance impact.

 Multiple JMS applications will be sending data to a queue manager and
waiting for a response over the same channel.

 Set server connection channel SHARECNV to 1 for maximum
performance

 JMSAdmin Property Name: SHARECONVALLOWED / SCALD

WMQ Connection Factory Properties:
Shared Conversation Allowed

QM

JVM

Conn.

TCP Socket
Conn.

Conn.

WMQ Connection Factory Properties:
MQMD Read/Write enabled

 Determines if MQMD properties can be set via JMS
get/set message property methods.
 Allows full access to the MQMD header values
 Useful for sending or receiving messages from MQ

applications that use specific header properties.
 JMS message property names begin with

“JMS_IBM_MQMD…”
 MSGCTX

 JMSAdmin Property Name: MDREAD / MDR &
MDWRITE / MDW

WMQ Destination Properties:
Target Client
 Indicates whether messages sent to this destination are

for other JMS applications, or for non-JMS WMQ
applications.
 WMQ JMS messages, by default, have an RFH2 header

containing JMS specific information.
 If a message is for a non-JMS application, this header may

cause problems, so can be turned off.

JMSAdmin Property Name: TARGCLIENT / TC

MQMD

RFH2

Data

JMS Messages

MQMD

Data

Non-JMS Messages

• In general, messages are sent to JMS applications one at a time.
• The Read Ahead Allowed property tells the queue manager whether

non-persistent messages can be streamed to the client application in
preparation for them being consumed.
• Messages are stored in a buffer on the client.
• If the client application terminates unexpectedly, all unconsumed

non-persistent messages are discarded.

• JMSAdmin Property Name: READAHEADALLOWED /
 RAALD

Queue Manager

WMQ Destination Properties:
Read Ahead Allowed

JMS Application JMS Client

WMQ Destination Properties:
Asynchronous Puts

 Sending equivalent of Read Ahead Allowed
 Allows messages to be sent, but the JMS client does not

wait for queue manager acknowledgement.
 Improves performance of sending applications
 JMS client checkpoints during commit or according to

SENDCHECKCOUNT for non-transacted sessions.

 JMSAdmin property names: PUTASYNCALLOWED /
SENDCHECKCOUNT

Agenda

 WMQ JMS in standalone J2SE Environments
 JNDI or programmatic configuration
 Administration tools
 Running your application

 WMQ JMS in WebSphere Application Server Environments
 The extras, or why to use WAS
 MDBs, EJBs, Servlets…
 Deploying your application

 Changing parameters and tuning
 WMQ parameters
 WAS parameters

WAS Configuration:
Activation Specifications

• How are messages destined for MDBs
processed?

QM

Activation Specification

Work Manager

Thread
Pool

Q

ServerSessions

Msg

WAS Configuration
Activation Specifications - Threads

 To process a message, a ServerSession and thread are
required

 Activation Specification parameter Maximum Sessions
configures ServerSession pool, default 10
 ServerSession pool per MDB

 Application Server Thread pool
WMQJCAResourceAdapter used, default max 25
 Thread pool used by all MDBs.

 So, by default, 3 MDBs could exhaust the threads
 Will cause slower processing
 Recommendation is that thread pool maximum accounts for

all MDB maximums

WAS Configuration
Activation Specifications - Recovery

 What happens if the connection to a queue manager
used by Activation Specifications is broken?

 The Activation Specification has recovery features to
allow it to attempt several reconnection attempts before
stopping.

 Default is to try 5 times in 5 minute intervals.
 Configured using reconnectionRetryCount /

reconnectionRetryInterval (ms) on the Resource Adapter,
for all Activation Specifications.

 Accessed through Resources -> Resource Adapters, but
need to “Show built-in Resources”

 If the Activation Specification stops, this is only reported
in Application Server logs.

WAS Configuration
JMS User authentication

 WAS has built-in user credential repositories that can be defined with
username and password details

 JAAS – J2C Authentication Data
 Activation Specifications allow this to be configured in the Security

parameters
 Connection Factories also allow this to be configured, although

application configuration determines if it will be used.
 The application needs to use JEE resource-references to access the

connection factory
 The res-auth parameter needs to be set to “container” for container

managed authentication.
 res-auth of application, or not using resource-references means the

application is responsible for any authentication information
 As for other WMQ clients, security exits are required to validate

passwords, WMQ only checks user id.

createConnection(user,password)

Agenda

 WMQ JMS in standalone J2SE Environments
 JNDI or programmatic configuration
 Administration tools
 Running your application

 WMQ JMS in WebSphere Application Server Environments
 The extras, or why to use WAS
 MDBs, EJBs, Servlets…
 Deploying your application

 Changing parameters and tuning
 WMQ parameters
 WAS parameters

Any questions?

 If you have any questions, or ideas for future topics, feel
free to email me at cmatth@uk.ibm.com

Monday Tuesday Wednesday Thursday Friday

08:00 Free MQ! - MQ Clients
and what you can do
with them.

MQ Performance and
Tuning on distributed

09:30 The MQ API for
dummies - the basics

The Dark Side of
Monitoring MQ - SMF
115 and 116 record
reading and
interpretation

The even darker arts of
SMF

CICS Programs Using
WMQ V7 Verbs

11:00 Putting the web into
WebSphere MQ: A look
at Web 2.0 technologies

Message Broker
administration

The Do’s and Don’ts of
z/OS Queue Manager
Performance

The Doctor is in. Hands-
on Lab and Lots of Help
with the MQ Family

12:15 WebSphere MQ: Highly
scalable publish
subscribe environments

MQ & DB2 – MQ Verbs in
DB2 & Q-Replication

01:30 WebSphere MQ
101: Introduction to
the world's leading
messaging provider

What's new in
WebSphere Message
Broker V8.0

The Do’s and Don’ts of
Message Broker
Performance

Diagnosing problems for
MQ

03:00 WebSphere Message
Broker 101: The Swiss
army knife for
application integration

What's new in
WebSphere MQ V7.1

WebSphere MQ
Security - with V7.1
updates

Diagnosing problems for
Message Broker

04:30 Introduction to the
WebSphere MQ
Product Family -
including what's new
in the family
products

Under the hood of
Message Broker on
z/OS - WLM, SMF and
more

MQ Java zero to hero Shared Q including Shared
Message Data Sets

06:00 For your eyes only -
WebSphere MQ
Advanced Message
Security

MQ Q-Box - Open
Microphone to ask the
experts questions

This was session 10537 - The rest of the week ……

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

