

Datacenter Networking Convergence – Trends and Directions

Bob Nusbaum Cisco Mainframe Solutions

March 15, 2012 Session Number 8196

Agenda

- What's the Problem?
- Technology and Standards for Convergence
- Solution Components
- Key Take-aways

Data Center Application Architecture The Data Center Evolution

Challenges in Today's Data Centers

Customer Requirements:

- Reduce:
 - Power and Cooling Requirement
 - Cables
 - Architecture Complexity
 - Administrators
- Increase:
 - Speed
 - Utilization
 - Agility

Application Roll-out Speed & Efficiency

Scale of Current Problems Demands a New Approach

Infrastructure Scalability

- By 2009, 50% of large businesses will spend more on power and cooling then on new servers (Gartner, 2006)
- Quad-cores and octal-cores will drive significantly more traffic
- Storage is expected to continue to grow at a 40-70% CAGR (Gartner, 2006)

Transport Flexibility

- Continued deconstruction of the server increases demands on the network
- Market transitions between transport technologies and application architectures

Operational Continuity

- Expectation of 24x7 application availability
- 54% of network downtime is caused by human error (Uptime Institute, 2007)

FICON: A Precursor to Convergence

- Simpler network
- Reduction in cost per port
- Asset utilization 1.4 x performance (4:1 consolidation)
 - Cost of FICON features very small when performance enhancement is considered
- Application effectiveness
 - Up to 100% improvement
- Additional throughput
 - Roughly 6x bandwidth of ESCON
 - Shortens file maintenance windows by roughly 25%
- Competitively positions company for future
 - ESCON will have no new development
 - ESCON will not be supported on future System z models

10 Gigabit Ethernet to the Server Impacting DC access layer cabling architecture

- Multicore CPU architectures
- <u>Virtual Machines</u> driving Increased I/O bandwidth per server
 Increased business agility
- Increased network bandwidth demands
- Consolidation of networks

 Segmentation & Unified Fabrics / UIO

 Future Proofing Network, Cable Plant

The Case for Converged Fabric

RE in Atlanta

Reduce overall Data Center power consumption by up to 8%. Extend the lifecycle of current data center.

Wire hosts once to connect to any network - SAN, LAN, HPC. Faster rollout of new apps and services.

Every host is SAN-enabled. Drive storage consolidation and improve utilization.

Rack, Row, and X-Data Center VM portability become possible.

Increased Efficiency, Simpler Operations

••••••

Converged Fabric Overview Fibre Channel over Ethernet (FCoE)

FCoE

- Mapping of FC Frames over Ethernet
- Enables FC to Run on a Lossless
 Ethernet Network

Benefits

- Fewer Cables
 - Both block I/O & Ethernet traffic co-exist on same cable
- Fewer adapters needed
- Overall less power
- Interoperates with existing SAN's
 - Management SAN's remains constant
- No Gateway

Converged Fabric Why?

- Fewer CNAs (Converged Network adapters) instead of NICs, HBAs and HCAs
- Limited number of interfaces for Blade Servers / Rack Mounted Servers

What is Fibre Channel over Ethernet?

From a Fibre Channel standpoint it's

FC connectivity over a new type of cable called... an Ethernet cloud

From an Ethernet standpoints it's

Yet another ULP (Upper Layer Protocol) to be transported, but... a challenging one!

And technically...

FCoE allows the extension of Fibre Channel onto a Lossless Ethernet fabric

FCoE Enablers

- 10Gbps Ethernet
- Lossless Ethernet
 - •Matches the lossless behavior guaranteed in FC by B2B credits
- Ethernet jumbo frames

•Max FC frame payload = 2112 bytes

Normal Ethernet frame, ethertype = FCoE

Same as a physical FC frame

FCoE Advantages

FCoE is managed like FC at initiator (CH), target (CU), and switch level

FCoE versus 8Gig Fibre Channel Comparisons -Test results

FCoE technology is capable of providing up to 250,000 IOPs

The FC-BB-5, FCoE, draft standard was unanimously approved as the final standard- June 4th 2009

- 1) FC-BB_IP: The FC-BB_IP model defines the means by which Fibre Channel networks interface with and connect across an IP network.
- 1) FC-BB_GFPT: The FC-BB_GFPT model defines the means by which FC physical links may be extended over any WAN. Transport infrastructure for which GFP mapping is defined.
- 2) FC-BB_PW: The FC-BB_PW model defines the means by which FC physical links may be extended over a wide area MPLS network
- 3) FC-BB_E: The FC-BB_E model defines the means by which Fibre Channel frames are transported over a Lossless Ethernet network

Nexus 5000 Enhanced Ethernet Fabric Features

Priority Flow Control IEEE 802.1Qbb	Provides class of service flow control by enabling PAUSE functionality on IEEE 802.1p lanes		
Data Center Bridging Exchange IEEE 802.1AB	Auto-negotiation of Enhanced Ethernet capabilities DCBX (switch to NIC)		
Bandwidth Management IEEE 802.1Qaz	Enhanced Transmission Selection - manage bandwidth and assign priorities to groups of IEEE 802.1p lanes based on class of traffic		
Congestion Management	This standard specifies protocols, procedures and managed objects that support congestion management of long-lived data flows within network domains of limited bandwidth delay product (BCN/QCN)		
L2 Multipathing "IETF TRILL" Transparent Interconnect of Lots of Links	Layer-2 multipathing eliminates standby uplinks increasing the available uplink bandwidth. In the NX5K this is enabled by Ethernet Host Virtualizer Mode.		

.....

2012

Data Center Ethernet: PFC & Bandwidth Management

Priority Flow Control			
Transmit Queues	Ethernet Link PAUSE	Receive Buffers	Eight Virtual
Five Seven		Five Sik	Lanes

- Enables lossless behavior for each class of service
- PAUSE sent per virtual lane when buffers limit exceeded

- Enables Intelligent sharing of bandwidth between traffic classes control of bandwidth
- 802.1Qaz Enhanced Transmission

....

2012

Priority Flow Control

Fibre Channel over Ethernet Flow Control

- Enables lossless Ethernet using PAUSE based on a COS as defined in 802.1p
- When link is congested, CoS assigned to FCoE will be PAUSEd so traffic will not be dropped
- Other traffic assigned to other CoS will continue to transmit and rely on upper layer protocols for retransmission

Enhanced Transmission Standard

Bandwidth Management -- IEEE 802.1Qaz

- Required when consolidating I/O It's a QoS problem
- Prevents a single traffic class of "hogging" all the bandwidth and starving other classes
- When a given load doesn't fully utilize its allocated bandwidth, it is available to other classes
- Helps accommodate for classes of a "burtsy" nature

Will FCoE Work for FICON?

Key capabilities are there:

Class 2

Loop Back

Credit Pooling

Performance and Error Statistics

Number of Words Transmitted Number of Words Received Number of Frames Transmitted Number of Frames Received Number of Frames Discarded Time that port is unable to receive frames from xN_Port due to zero credit Time that port is unable to send frames to xN_Port due to zero credit General error statistics appropriate to the port protocol: Number of Code Violation Errors Number of CRC/checksum errors Number of times Loss of Sync was detected Number of Link Failures

Standards work is in process in T11 for FICON over DCB

What are the necessary pieces?

IBM System X Converged I/O Adapters and Blade Center H and HT

Hardware Converged Network Adapter Solution

- 10 Gbps maximum throughput for high-bandwidth storage (SAN) and networking (LAN) traffic
 - Dual 10GE/FCoE ports
- Support for native drivers and utilities
 - Customer certified stacks
- Replaces multiple adapters per server/blade
- Consolidates 10GE and FC on a single interface
- Blade Center Support for Blade Open Fabric Manager for BIOS, UEFI, and Fcode

CNA Technology Rapidly Evolving

View from Operating System

- CNAs are multi-function devices
- Standard drivers
- Same management
- Operating System sees:
 - •Dual port 10 Gigabit Ethernet adapter

•Dual Port Fibre Channel HBAs

Cost Effective 10G Server Connectivity Today

SFP+ USR – 'Ultra Short Reach'

- 100M on OM3 fiber, 30M on OM2 fiber
- Support on all Cisco Catalyst and Nexus switches

SFP+ Direct Attach

- 1, 3, 5 and 7M and 10M on Twinax active cables
- Support across all Nexus Switches

Evolution of Ethernet Physical Media *Role of Transport in Enabling 10GE Technology*

Critical Infrastructure for Data Center Networking

Selecting the Unified Fabric Mix

Add MDS 9000 for

- New or existing servers with HBAs
- New or existing FC or FCoE-only storage ports
- Replacing DCX, SilkWorm or McDATA switches
- SAN Extension over MAN or WAN links
- Advanced storage services (migration, encryption, etc.)

Add Nexus 7000 for

- SAN core for multiprotocol Ethernet storage devices:
 - FCoE and
 - iSCSI / NAS
- Highly available access layer for mission critical servers with CNAs
- Aggregation layer for fully converged fabrics

Add Nexus 5000 for

- Cost-effective server access using CNAs
- Small Unified Fabrics containing FC and FCoE (SAN & LAN in one box)
- Server access where the mix of HBAs and CNAs will change over time

Director Class Checklist

St CAN BE ARRENT OF ARREN

Supervisors, Power Supplies, Fans

Port Channels, Load Balancing

Full ISSU

VSANs, VDCs

528 ports 768 ports

256-Gbps/Slot 550-Gbps/Slot

8-port

32-port **→** 48

Segmentation/Isolation

Maximum Scale

Attribute

Physical Redundancy

Logical Redundancy

Non Disruptive Upgrades

Performance

FCoE modules

SHARE in Atlanta

8-Port 10G FCoE Module for MDS 9500

8-Port 10G FCoE Module

Enables integration of existing FC infrastructure into Unified Fabric

- 8 FCoE ports at 10GE full rate
- 80-Gbps front panel bandwidth
- SFP+ SR, LR, CX-1 optics support
- FCoE connectivity from MDS 9500 Directors to:
 - Nexus 5000 and Nexus 7000
 - FCoE Storage Arrays

•••••••

Cisco Nexus 5000 Now available through IBM!

SHARE

Unified Ports Dynamic and Efficient Port Allocation

Benefits

- Simplify switch purchase remove ports ratio guess work
- Increase design flexibility
- Remove specific protocol bandwidth bottlenecks

Use-cases

- Flexible LAN & storage convergence based on business needs
- Service can be adjusted based on the demand for specific traffic

Summary & Take-Aways

- Fully standardized
- Major cost savings
- Products are there
- Deploy now for distributed systems
- FICON "watch this space"

The bottom line....

Thank you.

#