Disclaimer

© Copyright IBM Corporation 2010. All rights reserved.
U.S. Government Users Restricted Rights - Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

THE INFORMATION CONTAINED IN THIS PRESENTATION IS PROVIDED FOR INFORMATIONAL PURPOSES ONLY. WHILE EFFORTS WERE MADE TO VERIFY THE COMPLETENESS AND ACCURACY OF THE INFORMATION CONTAINED IN THIS PRESENTATION, IT IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. IN ADDITION, THIS INFORMATION IS BASED ON IBM’S CURRENT PRODUCT PLANS AND STRATEGY, WHICH ARE SUBJECT TO CHANGE BY IBM WITHOUT NOTICE. IBM SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING OUT OF THE USE OF, OR OTHERWISE RELATED TO, THIS PRESENTATION OR ANY OTHER DOCUMENTATION. NOTHING CONTAINED IN THIS PRESENTATION IS INTENDED TO, NOR SHALL HAVE THE EFFECT OF, CREATING ANY WARRANTIES OR REPRESENTATIONS FROM IBM (OR ITS SUPPLIERS OR LICENSORS), OR ALTERING THE TERMS AND CONDITIONS OF ANY AGREEMENT OR LICENSE GOVERNING THE USE OF IBM PRODUCTS AND/OR SOFTWARE.

IBM, the IBM logo, ibm.com, z/OS, IMS, DB2, WebSphere, WMQ, Rational, RAD, RADz, and zLINUX are trademarks or registered trademarks of International Business Machines Corporation in the United States, other countries, or both. If these and other IBM trademarked terms are marked on their first occurrence in this information with a trademark symbol (® or ™), these symbols indicate U.S. registered or common law trademarks owned by IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in other countries. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml

Other company, product, or service names may be trademarks or service marks of others.
Disruptions affect more than the bottom line…

- Downtime costs can equal up to 16 percent of revenue \(^1\)
- 4 hours of downtime severely damaging for 32 percent of organizations, \(^2\)
- Data is growing at explosive rates – growing from 161EB in 2007 to 988EB in 2010\(^3\)
- Some industries fine for downtime and inability to meet regulatory compliance
- Downtime ranges from 300–1,200 hours per year, depending on industry\(^1\)

How the disaster recover tiers are defined

• Six categories of D/R solutions defined by SHARE 92 are not just a categorization as such, but are also a recognition of a trend from rather loose to very tight D/R requirements.

• Not so long ago that most installations thought they were well covered with a PTAM (Pickup Truck Access Method) based solution.

• Now that data storage requirements are no longer measured in Megabytes but in Terabytes, it becomes obvious that the logistics and reliability of a PTAM solution become unmanageable.

• Associated data loss is unacceptable and that a recovery process measured in days has an overwhelming financial impact due to lost business, loss of company credibility and loss of shareholder value.

• In 1992, the SHARE user group in the United States, in combination with IBM, defined a set of Disaster Recovery tier levels.

• This was done to address the need to properly describe and quantify various different methodologies for successful mission-critical computer systems' Disaster Recovery implementations.
Many solutions exist in the marketplace to address IT Business Continuity

- How can we select the optimum combination of solutions?
- How do we organize valid business continuity technologies?
- How do we manage these valid business continuity technologies?
- In the following slides we will look at Solution Selection Methodology that can help with this issue
Business Continuity solutions are viewed as individual product technologies and components

- Each vendor and product area tends to build separate pieces of the solution
- Insufficient interlocking of the different areas
- Business Continuance and Disaster Recovery need to be seen as an integrated product solution
- Many valid technologies, but how to choose among them?
A Solution Selection Methodology can be applied to sort, summarize, and organize various business requirements

- The methodology can then be applied to those business requirements to identify efficiently a proper subset of Business Continuity technologies.
- A valid subset of Business Continuity technologies can then be applied based on the methodology to address the requirements.
- With the desired Recovery Time Objective (RTO) and using the concepts of the Tiers of Business Continuity and Solution Segmentation to identify methodically the appropriate candidate Business Continuity solutions can be selected from among today’s Business Continuity technologies.
Categorize all valid Business Continuity IT technologies into five component domains

- Servers
- Storage
- Software and automation
- Networking and physical infrastructure
- Skills and services that are required to implement and operate these components
IT infrastructure that is necessary to support the Business Continuity solution is inserted into one of these five components:

1. Servers
2. Storage
3. Software and Automation
4. Networking infrastructure
5. Skills and Services
Disaster recovery tiers defined

Tier 0 - No off-site data
- Businesses with a Tier 0 Disaster Recovery solution have no Disaster Recovery Plan. There is no saved information, no documentation, no backup hardware, and no contingency plan. Typical recovery time: The length of recovery time in this instance is unpredictable. In fact, it may not be possible to recover at all

Tier 1 - Data backup with no Hot Site
- Businesses that use Tier 1 Disaster Recovery solutions back up their data at an off-site facility. Depending on how often backups are made, they are prepared to accept several days to weeks of data loss, but their backups are secure off-site. However, this Tier lacks the systems on which to restore data. Pickup Truck Access Method (PTAM)

Tier 2 - Data backup with a Hot Site
- Businesses using Tier 2 Disaster Recovery solutions make regular backups on tape. This is combined with an off-site facility and infrastructure (known as a hot site) in which to restore systems from those tapes in the event of a disaster. This tier solution will still result in the need to recreate several hours to days worth of data, but it is less unpredictable in recovery time. Examples include: PTAM with Hot Site available, IBM Tivoli Storage Manager
Tier 3 - Electronic vaulting

- Tier 3 solutions utilize components of Tier 2. Additionally, some mission-critical data is electronically vaulted. This electronically vaulted data is typically more current than that which is shipped via PTAM. As a result, there is less data recreation or loss after a disaster occurs.

Tier 4 - Point-in-time copies

- Tier 4 solutions are used by businesses that require both greater data currency and faster recovery than users of lower tiers. Rather than relying largely on shipping tape, as is common in the lower tiers, Tier 4 solutions begin to incorporate more disk-based solutions. Several hours of data loss is still possible, but it is easier to make such point-in-time (PIT) copies with greater frequency than data that can be replicated through tape-based solutions.

Tier 5 - Transaction integrity

- Tier 5 solutions are used by businesses with a requirement for consistency of data between production and recovery data centers. There is little to no data loss in such solutions; however, the presence of this functionality is entirely dependent on the application in use.
Disaster recovery tiers defined (cont)

Tier 6 - Zero or little data loss

• Tier 6 Disaster Recovery solutions maintain the highest levels of data currency. They are used by businesses with little or no tolerance for data loss and who need to restore data to applications rapidly. These solutions have no dependence on the applications to provide data consistency.

Tier 7 - Highly automated, business-integrated solution

• Tier 7 solutions include all the major components being used for a Tier 6 solution with the additional integration of automation. This allows a Tier 7 solution to ensure consistency of data above that of which is granted by Tier 6 solutions. Additionally, recovery of the applications is automated, allowing for restoration of systems and applications much faster and more reliably than would be possible through manual Disaster Recovery procedures.
The reason there are multiple Business Continuity tiers is that as the RTO time decreases, the optimum Business Continuity technologies for RTO must change. For any given RTO, there are always a particular set of optimum price or performance Business Continuity technologies.
Map the organization’s business processes and IT applications onto the Business Continuity tiers.

Best practices for doing this is break applications and business processes into segments, according to the speed of recovery that is required.
Three segments appear to be optimum with neither underkill or overkill

- **Continuous Availability**
 - 24x7 application and data availability (server, storage, and network availability)
 - Automated failover of total systems or site failover
 - Very fast and transparent recovery of servers, storage, network
 - Ultimate Disaster Recovery: Protection against site disasters, system failures
 - General RTO guideline: minutes to less than 2 hours

- **Rapid Data Recovery**
 - High availability of data and storage systems (storage resiliency)
 - Automated or manual failover of storage systems
 - Fast recovery of data or storage from disasters or storage system failures
 - Disaster Recovery from replicated disk storage systems
 - General RTO guideline: 2 to 8 hours

- **Backup/Restore**
 - Backup and restore from tape or disk
 - Disaster Recovery from tape
 - RTO = 8 hours to days
Each segment builds upon foundation of the preceding segment

- Business Continuity functionality of each segment is built upon the technology foundation of the segment that is below it.
 - In other words, Backup/Restore technologies are the necessary foundations for more advanced technologies
- It is a matter of building upwards upon the foundations of the technologies of the previous segment.
- Best practices for Business Continuity implementation is to create a multiple phase project in which the overall Business Continuity solution is built step-by-step upon the foundation of the previous segment’s technology layer
A blended and optimized enterprise Business Continuity architecture can be created by using segmenting concepts

• Categorize the business' entire set of business processes into three segments:
 • Low Tolerance to Outage
 • Somewhat Tolerant to Outage
 • Very Tolerant to Outage

• Keep in mind some business processes that are not by themselves critical, they do feed the critical business processes
 • Those applications need to be included in the higher tier
Segments are constructed based on business needs

- Within each segment, there are multiple Business Continuity tiers of technology
- Individual tiers represent the major Business Continuity technology *choices* for the band
- It is not necessary to use all the Business Continuity tiers
- It is not necessary to use all the technologies
- After segmenting business processes and applications into the three bands, select *one* best strategic Business Continuity methodology for the band
- The contents of the tiers are the *candidate technologies* from which the strategic methodology is chosen for that application segment
To be successful, management must understand and back the plan

- Business Continuity tiers chart and business process segmentation for your organization is also very useful as a communication tool.
- Tiers and segmentation concept is simple enough that non-technical personnel can see the bottom line RTO end result of technical evaluations.
- Senior management does not need to understand the technology that is inside the tier or segment.
- They can clearly see the RTO and the associated cost versus RTO trade-off.
Sample of IBM software and where they fit into the tiers

- **Server**
 - System z:
 - Geographically Dispersed Parallel Sysplex (GDPS) (Tier 7)
 - System p:
 - AIX/HACMP (High Availability Clustered Multi-Processors) with Metro Mirror (Tier 7)
 - System i:
 - High Availability Business Partner software: Vision, Lakeview, DataMirror (Tier 7)

- **System Storage**
 - Metro Mirror (Tier 6)
 - Global Mirror (Tier 6)
 - Virtual Tape Server Peer to Peer (Tier 6)
 - TS7700 Grid (Tier 6)
 - DS4000, DS400, DS300 Metro Mirror (Tier 6)
 - DS Family FlashCopy (Tier 4)
 - 3590, 3592, LTO tape (Tier 1,2,3,4)
 - Storage software (Tier 1,2,3,4)

- **Software and Automation**
 - DB2, IMS, CICS, WebSphere (Tier 5)
 - WebSphere, MQSeries (Tier 5)
 - IBM Tivoli Storage Manager (Tier 2,3,4)

- **Networking and Infrastructure**
 - IBM Global Services, IBM Business Partners, IBM Networking Partners

- **IBM Global Services, Business Partner Services**
Establish a generalized vision of the requirements by invoking the methodology early in the selection cycle of technology.
Gather information with the right questions

Start with:
1. What is/are the business processes and applications that need to be recovered?
2. On what IT platform or platforms does it run?
3. What is the desired RTO?
4. What is the distance between the recovery sites (if there is one)?
5. What is the form of connectivity or infrastructure transport that will be used to transport the data to the recovery site?
 - How much bandwidth is that?
6. What are the specific IT hardware and software configurations that need to be recovered?
7. What is the desired level of recovery? (Planned / Unplanned / Transaction Integrity)
8. What is the RPO?
9. What is the amount of data that needs to be recovered?
10. Who will design the solution?
11. Who will implement the solution?
Use the hourglass concept to segment the questions

A. Ask Specific Questions in Specific Order
 - Ask proper high-level questions
 - Application, platform, RTO, Distance, Connectivity, RPO, Vendor
 - Order of questions:
 - Designed to eliminate many non-qualifying solutions up front
 - Document answers

B. Use RTO to pick appropriate solution subset
 - Organize solutions by Tiers (creates RTO subset)

C. From among subset, use question answers to eliminate non-solutions
 - Apply answers gathered previously

D. Turn over remaining valid solutions to detailed evaluation team
 - As appropriate, can then expand each solution to multiple flavors, tailoring for the customer's exact needs
Ask questions in a specific order to determine a solution set

1. What applications or databases to recover?
2. What platform? (z, p, i, x and Windows, Linux, heterogeneous open, heterogeneous z+Open)
3. What is desired Recovery Time Objective (RTO)?
4. What is distance between the sites? (if there are 2 sites)
5. What is the connectivity, infrastructure, and bandwidth between sites?
6. What are the specific h/w equipment(s) that needs to be recovered?
7. What is the Level of Recovery?
 - Planned Outage
 - Unplanned Outage
 - Transaction Integrity
8. What is the Recovery Point Objective?
9. What is the amount of data to be recovered (in GB or TB)?
10. Who will design the solution? (IGS, BP, customer)
11. Who will implement the solution? (IGS, BP, customer)
12. Remaining solutions are valid choices to give to detailed evaluation team

Note: this assumes a Risk Assessment, Business Impact Analysis, and current environment assessment has been completed. The answers to these questions come from that work.
Use RTO and Level of Recovery to identify candidate solutions

The Recovery Time Objective (RTO) maps to a Business Continuity Tier

- Business Continuity Tier 7 RTO: continuous to 2 hours
- Business Continuity Tier 6 RTO: 1 to 6 hours
- Business Continuity Tier 5 RTO: 4 to 8 hours
- Business Continuity Tier 4 RTO: 6-12 hours
- Business Continuity Tier 3 RTO: 12-24 hours
- Business Continuity Tier 2, more than 24 hours
- Business Continuity Tier 1 RTO: 24 hours to 48 hours +
Use RTO and Level of Recovery to identify candidate solutions (continued)

- **Planned outage**: The solution is required to only facilitate planned outages or data migrations
 - Unplanned outage recovery is not necessary
- **Unplanned outage**: The solution is required, at the hardware and data integrity level, to facilitate unplanned outage recovery.
 - Implies that planned outage support is also available in this solution
 - Does not perform transaction integrity recovery at the application or database level
- **Transaction integrity**: The solution is required to provide unplanned outage recovery at the application and database transaction integrity level
 - This level relies upon an underlying assumption that hardware level planned outage and unplanned outage support is also available
Solutions identified by RTO and level of recovery - example

<table>
<thead>
<tr>
<th></th>
<th>Tier 7</th>
<th>Tier 6</th>
<th>Tier 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planned Outages</td>
<td>GDPS/PPRC, GDPS/XRC, GDPS/GM</td>
<td>Metro Mirror, Global Mirror, Global Copy</td>
<td>Global Copy</td>
</tr>
<tr>
<td>Unplanned Outages</td>
<td>GDPS/PPRC, GDPS/XRC, GDPS/GM</td>
<td>z/OS Global Mirror, GDPS HyperSwap Mgr, TPC for Replication</td>
<td>Point in Time FlashCopy, VTS Peer to Peer TS7700 Grid</td>
</tr>
<tr>
<td>Transaction Integrity</td>
<td>IMS RSR, Oracle, DB2-specific... MQ</td>
<td>IMS RSR, Oracle, DB2-specific... MQ</td>
<td>IMS RSR, Oracle, DB2-specific... MQ</td>
</tr>
</tbody>
</table>

Use RTO, recovery level to identify solution subset in matrix...

RTO and Level of Recovery tells me my 'RTO BC Solution Subset'
Eliminate those solutions which do not suit the RTO
Turn over the solutions to be evaluated in detail

• After indentifying a preliminary set of valid candidate Business Continuity solutions
• The candidate solutions would be turned over to a skilled evaluation team
• Valid identified candidate solutions also dictates what mix of skills will be necessary on the evaluation team
• The evaluation team will need to further configure the candidate solutions into more detailed configurations to complete the evaluation
• The team will still make the final decision as to which of the identified options (or the blend of them) is the one that should be selected.
• Do not expect this methodology to be a perfect decision tree.
• It’s intent is to provide an initial identification, in a repeatable, teachable manner, that can be performed by staff of varying skill levels, including relatively inexperienced staff
The goal of this process is to quickly identify proper candidate technology and solutions

- As simple as this methodology sounds, Business Continuity solutions for a given set of requirements *is* of significant value.
- Much less time and skill is necessary to reach this preliminary solution identification in the evaluation cycle than would otherwise be experienced.
- This methodology can manage the preliminary evaluation phase more consistently and repeatedly.
- Can be taught to others easily.
- This methodology also supports current best Business Continuity practices of segmenting.
Update methodology as the technology changes

• This methodology flexible.
• The table-driven format allows for technology changes,
• Only the contents of the tiers chart change
• The methodology itself need not change
• Business Continuity technology is created or enhanced and results in an improvement of its tier of Business Continuity capability
• Add new technology to the appropriate RTO/Tier cell
QUESTIONS?
Please remember your session evaluation
Your Feedback is Important to Us
Sources

• **IBM System Storage Business Continuity Solutions Overview**, SG24-6684
• **IBM System Storage Business Continuity Solution Selection Methodology**