
My Favorite HLASM Features
A JES2 Perspective

(These are a few of my favorite things)
Tom Wasik

IBM

Monday March 12th, 2012

Session 10350

A bit of history

• Older IBM assemblers (F, XF, H)

• Did the job, not “feature rich”

• Early feature was Extended Mnemonics
• B, BE etc instead of BCR x

• SLAC assembler mods

• Enriched the “language” of assembler
• Dependent and Named usings

• Improved readability
• Using at the top of the page

• SLAC - Stanford Linear Accelerator Center

• HLASM – The high level assembler

• SLAC plus so much more

• Assembler as a language and not just machine code

2

3

Assembler Programmer Stereotypes

• Assembler is THE programming language

• You control what the machine does

• Operating system services are only available in assembler

• High level languages are too slow

• Real programmers don’t need listings

• Review using compare listing

• Assembler listing are hard to read on a 24x80 green screen

• What can the listing tell me that I cannot see in the source

Reality Check

• Assembler code is hard

• Must keep track of many details
• Oh what the heck is in that register
• Which register is available

• Low information density
• Lots of code to do a simple function
• Cannot always get the big picture

• Must leverage EVERY feature to make your life easier

• Comments are a great help but require human to update

• Assembler features can help document the code

• Listings can help understand the code

• 24x80 screen? Get a bigger screen! Try 62x160.

4

Named USINGs

• Same DSECT pointed to by 2 or more registers

• Adding to a linked list

• Previous and current list element pointer

• Copy data from one instance to another

• Old list element copied to new list element

• Multiple USINGs on same DSECT with unique labels

NEW USING ELEMENT,R2 New list element

OLD USING ELEMENT,R3 Original element

MVC NEW.FIELD,OLD.FIELD

• Did not need to name both but it adds to understanding

• Short USING names aids readability

• In example use N instead of NEW and O instead of OLD

5

Dependent USINGs

• Multiple DSECTs adjacent to or imbedded in one another

• Reduces number of base registers needed

6

WORKAREA DSECT

WORKPARM DS XL40

PARMLIST DSECT

USING WORKAREA,R8

USING PARMLIST,WORKPARM

WORKAREA DSECT

WORKLEN EQU *-WORKAREA

PARMLIST DSECT

USING WORKAREA,R8

USING PARMLIST,WORKPARM+WORKLEN

Dependent USINGs Example

• Examine the case of a request header and multiple
request mappings

7

• Traditional mapping uses ORG

statements
• Needs only one base register to

address structure

• But what happens if code to

process request 1 type references

REQ3COD?
• Wrong data will be accessed

• Imagine if I did not use numbers in

label names

• How would you spot error?

REQUEST DSECT ,

REQID DS CL4

REQTYPE DS X

:

REQORG DS 0F

REQ1DAT DS A

REQ1PRM DS A

ORG REQORG

REQ2CLR DS CL8

REQ2TIM DS D

ORG REQORG

REQ3INF DS CL32

REQ3COD DS F

Dependent USINGs Example

• Recode example using multiple DSECTs

8

REQUEST DSECT ,

REQID DS CL4

REQTYPE DS X

:

REQORG DS 0F

REQ1 DSECT ,

REQ1DAT DS A

REQ1PRM DS A

REQ1 DSECT ,

REQ2CLR DS CL8

REQ2TIM DS D

REQ3 DSECT ,

REQ3INF DS CL32

REQ3COD DS F

• Code to process header
USING REQUEST,R4

• Code to process request 1
USING REQ1,REQORG

• At end of request 1 code
DROP R4

USING REQUEST,R4

Clears REQ1 using

• Code to process request 2
USING REQ2,REQORG

• Code in request 1 referencing
REQ3COD gets error!

Dependent USINGs Example

• What if you cannot recode the DSECT (IBM DSECT)

9

• Code that processes header can

be prevented from accessing

request data
USING (REQUEST,REQORG),R4

• Limits what fields can be

addressed
• Based on OFFSET not

location in DSECT
• No help with code that

processes requests
• That is why Label naming

conventions are important

REQUEST DSECT ,

REQID DS CL4

REQTYPE DS X

:

REQORG DS 0F

REQ1DAT DS A

REQ1PRM DS A

ORG REQORG

REQ2CLR DS CL8

REQ2TIM DS D

ORG REQORG

REQ3INF DS CL32

REQ3COD DS F

USING Warning Level

• What happens when (unnamed) USINGs overlap?

• 2 Registers can address the same data

• USINGs tell the assembler register to use to access data

• One of the using is ignored, but which one?

• The one with the lower register is ignored

• Avoid all confusion by not having overlapping USINGs

• Tell assembler to flag all ambiguities as errors

• USING(WARN(15)) flags potential problems as errors

• Specify on *PROCESS statement, first line in assembly

• First time may flag things that work as errors

• Fix the errors, it is worth it

10

USING Warning Level

• Here is a common case WARN(15) flags
USING CODE,R8

CODE ……

LA R10,WORKAREA

MVC 0(L’TEMPLATE,R10),TEMPLATE

USING TEMPLATE,R10

MVC MGSJOB,JOBNAME

:

TEMPLATE DC C’THE JOB NAME IS xxxxxxxx’

MSGJOB EQU *-8,8

• The code “works” but both R8 and R10 can address
TEMPLATE

11

USING Warning Level

• Here is an easy fix

USING CODE,R8

CODE ……

LA R10,WORKAREA

MVC 0(L’TEMPLATE,R10),TEMPLATE

W USING TEMPLATE,R10

MVC W.MGSJOB,JOBNAME

:

TEMPLATE DC C’THE JOB NAME IS xxxxxxxx’

MSGJOB EQU *-8,8

• There are other ways around this

12

*PROCESS and SUPWARN

• *PROCESS conflicts with PARM can cause warnings

• Results in non-zero assembler return codes (RC=2)

• Can mess up JCL and other process that expect RC=0

• Suppress unneeded warning messages with SUPRWARN

• Code SUPRWARN(436,437) on *PROCESS

• In general, specify parameters on *PROCESS instead of
PARM

• As code writer you control the assembly and do not depend
on JCL or other techniques

13

FLAG(PAGE0)

• Spot the error in this code
CLI COMEWORK,C'R'

JE COF3098A

MVC TKNWRK-TKN(R10),COMTKN

CLI COMEWORK,C'L'

JNE COF3098U

CLC R1,=A($MAXLNES)

JH COF3098U

LLGH R0,$NUMLNES

LTR R0,R0

JZ COF3098U

14

FLAG(PAGE0)

• Did you see BOTH errors?
CLI COMEWORK,C'R'

JE COF3098A

MVC TKNWRK-TKN(R10),COMTKN

CLI COMEWORK,C'L'

JNE COF3098U

CLC R1,=A($MAXLNES)

JH COF3098U

LLGH R0,$NUMLNES

LTR R0,R0

JZ COF3098U

15

FLAG(PAGE0)

• Both are (were) common things I coded wrong

• FLAG(PAGE0) flags implicit references to location 0 as
an error

• Specify on second line (or anywhere else) as
• ACONTROL FLAG(PAGE0)

• This could flag legit references as errors

• In this case code the 0 reference explicitly
MVC PSATOLD-PSA(,0),TCBADDR

• What about pesky system macros?
PUSH ACONTROL,NOPRINT

ACONTROL FLAG(NOPAGE0)

…Pesky macro call…

POP ACONTROL,NOPRINT

16

Listing Features
Using at the Top of the Page

• Helps answer the question what’s in a register

• Keep USINGs accurate to minimize errors

• Don’t set using for entire routine if base not

immediately set

17

Listing Features
Using at the Top of the Page

• Consider dummy USING for non-DSECT register usage

• Counts, RCs Etc

• Define a DSECT with nothing in it
$RUSE DSECT , Dummy DSECT

• Use with a named using to document register usage
CALLER_ID USING $RUSE,R6 Establish USING

• When done just drop the named using
DROP CALLER_ID

18

Macro and Copy Source in Listing

• Tells you where all Macros came from

• Helps debug assembler setup problems

19

Unreferenced Labels

• Unreferenced labels slow understanding of code

• Who branches into the middle of this logic?

• I generally try to delete them in code when possible

• Table at bottom of listing

• Specify on PARM using XREF(SHORT,UNREFS)

20

Unreferenced Labels

• Table often has fluff in it (labels in MACROs, equates)

• Copy table to a file and sort by first column

• Statement where label was defined

• Then focus in on statements where your code is located

21

LOCTR

• Not many programmers know what LOCTR is

• Stands for location counter

• Lets you group code next to each other in the source but far

apart in final object deck

• Great when trying to get rid of base register for a routine

• When routines get too large for one base register

• Or however many base registers there are

• Instead of loading R12 with code base, make it a data
base

• Use LOCTR to put data elsewhere

22

LOCTR Example

MAIN CSECT

USING SORT,R12

SORT SAVE ,

LR R12,R15

:

MVC MSGWRK,ERR1

:

EX R4,SORTCLC

:

SORTCLC CLC 0(*-*,R3),0(R4)

:

RETURN ,

:

ERR1 DC C’BOOM!’

LTORG ,

MAIN CSECT

USING SORTDATA,R12

SORT SAVE ,

LARL R12,SORTDATA

:

MVC MSGWRK,ERR1

:

EX R4,SORTCLC

:

SORTDATA LOCTR

SORTCLC CLC 0(*-*,R3),0(R4)

MAIN LOCTR

:

RETURN ,

:

SORTDATA LOCTR

ERR1 DC C’BOOM!’

LTORG ,

MAIN LOCTR ,

:

23

LOCTR

• This assumes you have moved to JUMP

• Branch tables are also an issue with this

• Do a LARL to set a base
LARL R14,TABLE

B 0(R15,R14)

TABLE B XXXXXXXX +0

• What about those pesky system macros

• Set up temp (limited) base register for macro
BASR R9,0 Est temp local

USING (*,AFTERLAB),R9 addressability

Pesky macro call

AFTERLAB DS 0H Limit of addr’blty

24

Miscellaneous Stuff

• CEJECT allows for prettier listing

• CEJECT 10 does an EJECT if less than 10 line left on page

• I use when writing repeated segments of code to get page breaks
where I needed them

• MVS IPCS example:

25

Miscellaneous Stuff

• Amaze your fellow programmers with &SYSSEQF

• Use in a MACRO to get the callers sequence number

• Columns 73 to 80

• Pass this and &SYSECT (section name) to your macro

• If you have an error, put both in the error message

Error in XYZ service called from MAIN at sequence 12340000

• If they wonder how you did it, tell then you read the listing in

your service and watch their puzzled look.

26

Miscellaneous Stuff

• You can control what OPCODEs HLASM allows

• PARM OP(xxx) specified the opcode table

• Can be updated by ACONTROL

• Allow only what your hardware supports
• Current z/OS support use ZOP

• Complete list
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/asmr1020/5.3

• Newer values
• ZS3 - z9-109 instructions
• ZS4 - z10 instructions
• ZS5 - z196 instructions (with PK97799)

• Want an OPCODE list? PARM(OP(xxx,LIST))

27

Jump to Wrong Code

• Ever copy some code and forget to change something?

• Say the target of a jump instruction?

• And copied it from the same module?

• Wild jumps are easier to create than wild branches

• Results can be very hard to detect

• Copied code that jump to a return macro

• Original code just returned

• New code was supposed to set a return code

28

Jump to Wrong Code

• Try added the following to your SAVE (or routine entry)
macro

DS XL65535

• Add before the label that gets generated

• Could get lots of strange errors but look for
ASMA320W Immediate field operand may have

incorrect sign or magnitude

• Potential jumps to other routines will show up

• DO NOT FORGET TO DELETE THE CHANGE AND RE-
COMPILE

• When co-workers ask how you found the bad jump just
say you couldn’t sleep and were reading the code.

29

Questions?
Session 10350

30

