& #SHAREorg ﬁ___,

Tactnts gy - Dbt - Rl

My Favorite HLASM Features
A JES2 Perspective

(These are a few of my favorite things)

Tom Wasik
IBM

Monday March 12, 2012 eenerereea, o
Session 10350 '

A bit of history =

* Older IBM assemblers (F, XF, H)
« Did the job, not “feature rich”

 Early feature was Extended Mnemonics
B, BE etc instead of BCR x

« SLAC assembler mods

» Enriched the “language” of assembler
Dependent and Named usings

* Improved readability
Using at the top of the page

« SLAC - Stanford Linear Accelerator Center

« HLASM — The high level assembler
« SLAC plus so much more
« Assembler as a language and not just machine code

Assembler Programmer Stereotypes =

« Assembler is THE programming language
 You control what the machine does
« Operating system services are only available in assembler
» High level languages are too slow

* Real programmers don’t need listings
* Review using compare listing
« Assembler listing are hard to read on a 24x80 green screen
« What can the listing tell me that | cannot see in the source

Reality Check =

 Assembler code is hard

* Must keep track of many details
Oh what the heck is in that register
Which register is available

* Low information density
Lots of code to do a simple function
Cannot always get the big picture

 Must leverage EVERY feature to make your life easier
« Comments are a great help but require human to update
« Assembler features can help document the code
 Listings can help understand the code
» 24x80 screen? Get a bigger screen! Try 62x160.

HEENINNEEEEEEES———
Named USINGs s)

Same DSECT pointed to by 2 or more registers

» Adding to a linked list
Previous and current list element pointer

« Copy data from one instance to another
Old list element copied to new list element

Multiple USINGs on same DSECT with unique labels

NEW USING ELEMENT, R2 New list element

OLD USING ELEMENT, R3 Original element
MVC NEW.FIELD,OLD.FIELD

Did not need to name both but it adds to understanding

Short USING names aids readability
 In example use N instead of NEW and O instead of OLD

5 I {E> SHARE

HEHHHHHHEEEE————. &=
Dependent USINGs =1

gy ke e - b

« Multiple DSECTSs adjacent to or imbedded in one another

WORKAREA DSECT WORKAREA DSECT
WORKPARM DS XL40

PARMLIST DSECT
WORKLEN EQU *—~WORKAREA

PARMLIST DSECT

USING WORKAREA, RS USING WORKAREA, RS
USING PARMLIST, WORKPARM USING PARMLIST, WORKPARM+WORKLEN

* Reduces number of base registers needed

6 - - SHARE in Atlanta

Dependent USINGs Example s)

« Examine the case of a request header and multiple
request mappings

« Traditional mapping uses ORG REQUEST DSECT ,
statements REQID DS CL4

. TYPE D X
* Needs only one base register to RE? >

address structure REOORG DS OF

- But what happens if code to REQIDAT DS A
process request 1 type references groiprM DS N
REQ3COD? ORG REQORG

« Wrong data will be accessed REQ2CLR DS CLS8

 Imagine if | did not use numbers in REQ2TIM DS D
label names ORG REQORG

 How would you spot error? REQ3INE DS CL32

REQ3COD DS F
A eve,
SHARE

Dependent USINGs Example

* Recode example using multiple DSECTs

» Code to process header
USING REQUEST, R4

« Code to process request 1
USING REQ1, REQORG

« At end of request 1 code

DROP R4

USING REQUEST, R4

Clears REQ1 using

« Code to process request 2
USING REQ2, REQORG

« Code in request 1 referencing
REQ3COD gets error!

REQUEST
REQID
REQTYPE

REQORG
REQI1
REQ1DAT
REQ1PRM
REQ1
REQ2CLR
REQ2TIM
REQ3
REQ3INF
REQS%OD

rs
ol soboci
DSECT ,
DS CL4
DS X
DS OF
DSECT ,
DS A
DS A
DSECT ,
DS CL8
DS D
DSECT ,
DS CL32
DS F
SHARE

HEHHHHHHHEEEEE————..
Dependent USINGs Example s)

* What if you cannot recode the DSECT (IBM DSECT)

» Code that processes header can REQUEST DSECT ,
be prevented from accessing REQID DS CL4
request data REQTYPE DS X

USING (REQUEST,REQORG), R4 .
REQORG DS OF

 Limits what fields can be
ddressed REQIDAT DS A
d REQ1IPRM DS A
« Based on OFFSET not ORG REQORG
location in DSECT REQ2CLR DS CLS8
* No help with code that REQ2TIM DS D
processes requests ORG REQORG
* That is why Label namin REQSTNE DS b3
y g REQ3COD DS F

conventions are important
9

SHHEHHHHEEEEEEEE———
USING Warning Level =

What happens when (unnamed) USINGs overlap?
» 2 Registers can address the same data
« USINGs tell the assembler register to use to access data

« One of the using is ignored, but which one?
The one with the lower register is ignored

Avoid all confusion by not having overlapping USINGs
Tell assembler to flag all ambiguities as errors

« USING(WARN(15)) flags potential problems as errors

« Specify on *PROCESS statement, first line in assembly
First time may flag things that work as errors

 Fix the errors, it is worth it

10

USING Warning Level s)

* Here is a common case WARN(15) flags
USING CODE, RS

CODE ...
LA R10, WORKAREA
MVC O(L'TEMPLATE,R10), TEMPLATE
USING TEMPLATE,R10
MVC MGSJOB, JOBNAME
TEMPLATE DC C’"THE JOB NAME IS xxxxxxxx'

MSGJOB EQU *-8, 8

 The code “works” but both R8 and R10 can address
TEMPLATE

USING Warning Level =

e Here is an easy fix
USING CODE, RS

CODE ...

LA R10, WORKAREA

MVC O(L’'TEMPLATE,R10), TEMPLATE
W USING TEMPLATE,R10

MVC W.MGSJOB, JOBNAME
TEMPLATE DC C’"THE JOB NAME IS xxxxxxxx'

MSGJOB EQU *-8,8
* There are other ways around this

12 SHARE in Atlanta

HHHHHHEHHE————..
S
*PROCESS and SUPWARN Trans

 *PROCESS conflicts with PARM can cause warnings
* Results in non-zero assembler return codes (RC=2)
« Can mess up JCL and other process that expect RC=0

« Suppress unneeded warning messages with SUPRWARN
- Code SUPRWARN(436,437) on *PROCESS

 In general, specify parameters on *PROCESS instead of
PARM

* As code writer you control the assembly and do not depend
on JCL or other techniques

13

FLAG(PAGEDO) i = §

e Spot the error in this code
CLI COMEWORK, C'R"
JE COF3098A
MVC TKNWRK-TKN (R10) , COMTKN
CLI COMEWORK, C'L"
JNE COF3098U
CLC R1,=A (SMAXLNES)
JH COF3098U
LLGH RO, SNUMLNES
LTR RO, RO
JZ COF3098U

14 - - SHARE in Atlanta

FLAG(PAGEO) =

e Did you see BOTH errors?
CLI COMEWORK, C'R"
JE COF3098A
MVC TKNWRK-TKN (R10) , COMTKN
CLI COMEWORK,C'L"
JNE COF3098U
CLC R1l,=A(SMAXLNES)
JH COF3098U
LLGH RO, SNUMLNES
LTR RO, RO
JZ COF3098U

FLAG(PAGEO)

« Both are (were) common things | coded wrong

« FLAG(PAGEDO) flags implicit references to location O as
an error

« Specify on second line (or anywhere else) as
ACONTROL FLAG(PAGEO)

« This could flag legit references as errors

* In this case code the 0 reference explicitly
MVC PSATOLD-PSA(, 0), TCBADDR

 What about pesky system macros?
PUSH ACONTROL, NOPRINT
ACONTROL FLAG (NOPAGEO)
..Pesky macro call..

POP ACONTROL, NOPRINT
16

Listing Features
Using at the Top of the Page

* Helps answer the question what's in a register
« Keep USINGs accurate to minimize errors

* Don’t set using for entire routine if base not
iImmediately set

COMM HAZPF COMMAND SERYICES -- ACE SERYICE ROUTINES
Actiwe Usings: ACT,RZ2 ACE,R3 HMOMWCE,R4 ASEQCK'FEQ'), Rd+H'Z@°
Laoc Object Code Addrl Addr: =tmt Source Stateme

ATT4 BEES SEEEL+ JME

_ CEEES HSIMG
15851 LK

EFES C11F SEHLHE ICH

SHEN SEMd 110100 =T

13 5 LeEOEHS MY

Listing Features =}
Using at the Top of the Page

Consider dummy USING for non-DSECT register usage
* Counts, RCs Etc

Define a DSECT with nothing in it
SRUSE DSECT , Dummy DSECT

Use with a named using to document register usage
CALLER_ID USING SRUSE,R6 Establish USING

When done just drop the named using
DROP CALLER_ID

18

JEEEE SHARE

Macro and Copy Source in Listing

2 MEZ13PTF HMACLIG

3 MZ13PID MACLIE

MACLIE

MACLIE

SEUFFER

Tells you where all Macroscame from

ﬁrHDDP SDA%
ﬁHDDuLE

hETHDDP r'
«HFHHE

i 1STGAPFC

OIL = =
SETRP] IHEPH
TCETOREMW ¥ JATH HLOC

H
EEEUF

READ
STORAGE

RPL

Unreferenced Labels

* Unreferenced labels slow understanding of code

« Who branches into the middle of this logic?

* | generally try to delete them in code when possible
« Table at bottom of listing

« Specify on PARM using XREF(SHORT,UNREFS)

OMH

Defn
THEZT
THTIZ
Q1454
B153d
LEATY

29571

29576

2aTHE

CE Qo

Unreferenced Symbols Defined in CSECT=
Symbol

CJIS8E12E
CMDEND
CHMYWCEMT
COFCLRTY
COF.JOEBE
COFJOES
COFJSQUE
COFLIM
COFRTCHNE
COFRTCSR
COFRTRSC

JEEEE SHARE

Unreferenced Labels i = §

« Table often has fluff in it (labels in MACROs, equates)

* Copy table to a file and sort by first column
« Statement where label was defined
* Then focus in on statements where your code is located

LOCTR i = §

Not many programmers know what LOCTR is
« Stands for location counter

* Lets you group code next to each other in the source but far
apart in final object deck

Great when trying to get rid of base register for a routine

* When routines get too large for one base register
Or however many base registers there are

Instead of loading R12 with code base, make it a data
base

Use LOCTR to put data elsewhere

22

HEHHHHHEEEE————. &=
LOCTR Example =

illll._lll
MAIN CSECT MATIN CSECT
USING SORT, R12 USING SORTDATA,R12
SORT SAVE , SORT SAVE ,
LR R12,R15 LARL R12, SORTDATA
MVC MSGWRK, ERR1 MVC MSGWRK, ERR1
EX R4, SORTCLC EX R4, SORTCLC
SORTCLC CLC O0(*-*,R3),0(R4) SORTDATA LOCTR
. SORTCLC CLC 0(*-*,R3),0(R4)
RETURN |, MAIN LOCTR
ERR1 DC C’BOOM! ’ RETURN ,
LTORG , :
SORTDATA LOCTR
ERR1 DC C’BOOM! '
LTORG ,

MATIN LOCTR ,

23 - SHARE in Atlanta

LOCTR s)

e This assumes you have moved to JUMP

 Branch tables are also an issue with this

« Do a LARL to set a base
LARL R14,TABLE

B 0(R15,R14)
TABLE B XXKXXXXXX +0

« What about those pesky system macros

« Set up temp (limited) base register for macro
BASR R9,0 Est temp local

USING (*,AFTERLAB),R9 addressability

Pesky macro call
AFTERLAB DS OH Limit of addr’blty

Miscellaneous Stuff

« CEJECT allows for prettier listing
« CEJECT 10 does an EJECT if less than 10 line left on page

| use when writing repeated segments of code to get page breaks
where | needed them

 MVS IPCS example:

BLSOMFLD NAME=FPCEID, VIEW=X'"0200"

CEJECT 10

BL5OMFLD MNAME=PCEUSERO, VIEW=X"0200"

SPACE 1

CEJECT 10

BLSOMFLD NAME=PCEUSER1, VIEW=X"0200"

sPACE 1

CEJECT 10

BLSOQMFLD NAME=FPCEFRPOSTD, VIEW=X"0200" , NEWLINE

JEEEE SHARE

) N
! (6]
[0))

Miscellaneous Stuff i =

« Amaze your fellow programmers with &SYSSEQF

« Use in a MACRO to get the callers sequence number
Columns 73 to 80

« Pass this and &SYSECT (section name) to your macro

* If you have an error, put both in the error message
Error in XYZ service called from MAIN at sequence 12340000

* If they wonder how you did it, tell then you read the listing in
your service and watch their puzzled look.

Miscellaneous Stuff i =

* You can control what OPCODEs HLASM allows
« PARM OP(xxx) specified the opcode table
» Can be updated by ACONTROL

 Allow only what your hardware supports
Current z/OS support use ZOP

e Complete list

 Newer values
ZS3 - z9-109 instructions
ZS4 - z10 instructions
ZS5 - 2196 instructions (with PK97799)

 Want an OPCODE list? PARM(OP(xxx,LIST))

Jump to Wrong Code =

* Ever copy some code and forget to change something?
« Say the target of a jump instruction?
* And copied it from the same module?

« Wild jumps are easier to create than wild branches

* Results can be very hard to detect

« Copied code that jump to a return macro
Original code just returned
New code was supposed to set a return code

HEHHHEHHEEEEEE—————
Jump to Wrong Code =

* Try added the following to your SAVE (or routine entry)
macro

DS XL65535
« Add before the label that gets generated

« Could get lots of strange errors but look for
ASMA320W Immediate field operand may have
incorrect sign or magnitude

» Potential jumps to other routines will show up

« DO NOT FORGET TO DELETE THE CHANGE AND RE-
COMPILE

* When co-workers ask how you found the bad jump just
say you couldn’t sleep and were reading the code.

v =

Questions?

Session 10350

30 - - SHARE in Atlanta

