
Assembler BootCamp Plus:
Instructions Everyone Can Use

 SHARE 118, Atlanta, GA
Friday March 16, 2012

Session 10345

(Created by)

John Dravnieks, IBM Australia
(dravo@au1.ibm.com)

(Presented by Dan Greiner and John Ehrman)

Agenda

Bit shifting
Single byte operands
Halfword operands
Multiple byte operands
Variable length operands
Character translation

Definitions

Characters used in instruction mnemonics
G - Grande - 64-bit operand
F - Fullword - 32-bit operand
H - Halfword - 16-bit operand
Single byte operands

B - Byte (signed 8 bit value)
C - Character

L - Logical - unsigned, or Load and clear
Y - 20-bit displacement

Definitions

Parts of a 64-bit register

H=High, L= Low, F=Fullword

HH HL LH LL

HF LF

0 15 16 31 32 47 48 63

Bit shifting

RS-type format instructions

R1 - Source and target

2nd operand address
NO storage reference
Last 6 bits used as shift amount

Opcode R1 B2 D2

0 8 16 20 31

Bit shifting (continued)

Two directions, two types, and two sizes
Left or Right
Logical or Arithmetic
Single or Double register

8 mnemonics - Shift ...
SLA SLDA
SLL SLDL
SRA SRDA
SRL SRDL

Bit shifting (continued)

64-bit register instructions
NO 64-bit-register-pair (128-bit) shifts
Single-length: SLAG, SRAG, SLLG, SRLG

Separate source (R3) and target (R1) registers

Example:
SLAG R1,R3,D2(B2)

Shifted contents of R3 goes into R1

Bit shifting (continued)

Arithmetic shifts:
Sign bit not modified
Right shifts copy sign bit
Left shifts may overflow
Condition code set

Logical shifts:
No sign bit
Always inserts 0's
Condition code not changed

Bit shifting: example 1
 SRA 5,16

Object code X'8A50 0010'
c(r5) before X'8001 0000' (sign is propagated)

c(r5) after X'FFFF 8001'
Condition code 1 set (result < 0)
SRA 5,7

Object code X'8A50 0007'
c(r5) after X'FF00 0200'

SRA 5,20
c(r5) after X'FFFF F800'

Bit shifting: example 2

 SRL 5,16
Object code X'8850 0010'
c(r5) before X'8001 FFFF'
c(r5) after X'0000 8001' (sign not propagated)

 SRL 5,7
Object code X'8850 0007'
c(r5) after X'0100 03FF' (3 = 0011)

 SRL 5,20
c(r5) after X'0000 0800'

Bit shifting: example 3

 SLA 5,16
Object code X'8B50 0010'
c(r5) before X'0000 8001'
c(r5) after X'0001 0000'
Condition code 3 set (Overflow)

 SLA 5,7
Object code X'8B50 0007'
c(r5) after X'0040 0080' (CC2, no overflow)

 SLA 5,30
c(r5) after X'4000 0000' (overflow)

Bit shifting: example 4

 SLL 5,16
Object code X'8950 0010'
c(r5) before X'0000 8001'
c(r5) after X'8001 0000'

 SLL 5,7
Object code X'8950 0007'
c(r5) after X'0040 0080'
SLL 5,30

c(r5) after X'4000 0000'

Bit shifting (continued)

Rotate Left Single Logical

 RLL(G) R1,R3,D2(B2)
Separate target (R1) and source (R3) registers

Example: RLL 7,8,12(0)

Before: c(R7)=X'????????', c(R8)=X'FEDC0000'
After: c(R7)=X'C0000FED', c(R8)=X'FEDC0000'

Bit shifting: uses
Arithmetic Operations

Fast multiplication or division by a power of 2
Hashing algorithms

Masking
In conjunction with Boolean operations

Exclusive OR (XOR), OR, AND
Extracting data

Merged or compressed data

Encryption

Single byte operands
Insert Character
 IC R1,D2(X2,B2)
Copies a single byte from storage into low
order byte of R1

Note: rest of R1 register unchanged

STore Character
 STC R1,D2(X2,B2)
Copies the low order byte of R1 into storage

Single byte operands: example 1
 IC 7,0(0,11)

Object text X'4370 B000'
R11 points to storage byte containing X'A5'

c(R7) before X'1234 5678'
c(R7) after X'1234 56A5'

Remainder of register R7 is unchanged

Condition code is unchanged

Single byte operands
Load Logical Character
 LL(G)CR R1,R2

 LL(G)C R1,D2(X2,B2)
Clears the register and copies a byte from
register or storage into low order byte of R1

Load Byte
 L(G)BR R1,R2

 L(G)B R1,D2(X2,B2)
Single byte from register or storage is sign
extended and updates the entire register

Single byte operands: example 2

 LLC 7,0(0,11) Load Logical Character
Object text X'E370 B000 0094'

R11 points to storage byte containing X'A5'

c(R7) before X'1234 5678'
c(R7) after X'0000 00A5'

Remainder of register R7 is zeroed

Condition code is unchanged

Single byte operands: example 3

 LB 7,0(0,11) Load Byte
Object text X'E370 B000 0076'

R11 points to storage byte containing X'A5'

c(R7) before X'1234 5678'
c(R7) after X'FFFF FFA5'

Leftmost bit of X'A5' extended to left

Condition code is unchanged

Single byte operands: uses
Translation example (we'll use it again):

 ...
 UNPK STRING(L'STRING),HEXDATA(L'HEXDATA+1)
* Get data into zoned format.
 LA 3,STRING Point to STRING.
 LHI 4,1 Load JXLE increment.
 LA 5,L'STRING-1(,3) Point at last byte.
LOOP IC 2,0(,3) Get next character.
 NILL 2,X'000F' Remove zone.
 IC 2,TABLE(2) Use c(R2) as index.
 STC 2,0(,3) Store "translated" digit.
 JXLE 3,4,LOOP Loop until finished.
 ...
TABLE DC C'0123456789ABCDEF'

The low-order hex digit of each byte referenced
by R3 is replaced by its character representation

Halfword (two byte) operands
RX instructions

Mnemonic R1,D2(X2,B2)

Operand 1 is entire R1 register
STH ignores high order 16 bits of R1, stores
only rightmost 16 bits

Operand 2
Halfword in storage
Signed value - LH expands to fullword with
sign extension

Halfword (two byte) operands
(continued)

Add Halfword AH
Compare Halfword CH
Load Halfword LH
Multiply Halfword MH
STore Halfword STH
Subtract Halfword SH

Halfword (two byte) operands
(continued)

Halfword immediate format
Mnemonic R1,I2

where I2 is a signed 16-bit field in the
instruction

Add Halfword Immediate AHI
Compare Halfword Immediate CHI
Load Halfword Immediate LHI
Multiply Halfword Immediate MHI

Halfword (two byte) operands
(continued)

Halfword-immediate operands for 64-bit
registers:

AGHI, CGHI, LGHI, MGHI
LGH(R)

Long displacement facility (instructions with
signed 20-bit displacement)

AHY, CHY, LHY, STHY, SHY

Halfword (two byte) operands
(continued)

Register-to-register form: L(G)HR
Source is in bits 48-63 of 2nd-operand register

Load Logical form: LL(G)HR, LL(G)H
Remainder of 1st-operand register zeroed

Load Logical Immediate form: LLIxx
Source is in bits 16-31 or 16-47 of the instruction

Insert Immediate form: IIxx
Remainder of 1st-operand register unchanged

Where xx - HH, LH, HL, LL (See slide 4)

Halfword operands: example 1
 LH 0,0(0,12)

Object text X'4800 C000'
R12 points to storage containing X'B1A4'
c(R0) before X'FEDC BA98'
c(R0) after X'FFFF B1A4'

High-order bit of X'B1A4' extended to left

Condition code is unchanged

Halfword operands: example 2

 CH 10,0(0,11)
Object text X'49A0 B000'

R11 points to storage containing X'B1A4'
Expanded internally to X'FFFF B1A4'

If c(R10) = X'FFFF B1A4'
Condition code set to 0 (equal)
R10 unchanged

If c(R10) = X'0000 B1A4'
Condition code set to 2 (greater)

Halfword operands: example 3

 CH 10,0(0,11)
Object text X'49A0 B000'

R11 points to storage containing X'B1A4'
If c(R10) = X'FFFF A5A5'

Resulting Condition Code ?
Is R10 unchanged?

Halfword operands: example 4
 LLILH 0,X'A5A5'

Load Logical Immediate Low High
Object text X'A50E A5A5'

c(R0) before X'FEDC BA98'
c(R0) after X'A5A5 0000'

Remainder of target register is zeroed

Condition code is unchanged

Halfword operands: example 5
 IILH 0,X'A5D6'

Insert Immediate Low High
Object text X'A502 A5D6'

c(R0) before X'FEDC BA98'
c(R0) after X'A5D6 BA98'

Remainder of target register is unchanged

Condition code is unchanged

Halfword operands: uses

Record lengths (DCBLRECL)
V format records: RDWs, BDWs

Database records

Small integers

Multiple byte operands

Insert Characters under Mask

 ICM R1,Mask,D2(B2)

Copies 0 to 4 bytes from storage into
mask-selected bytes of R1

Condition code set

Note: Unselected bytes unchanged

Multiple byte operands (continued)

Mask operand is a 4 bit field
Bits correspond one to one with bytes of
register

B'1001' refers to the first and last byte

Storage bytes are contiguous
 ICM 2,B'1010',=X'12345678'
c(R2) = X'12??34??'

Multiple byte operands (continued)

Compare Logical Characters under Mask
 CLM R1,Mask,D2(B2)
Compares 0 to 4 contiguous bytes from
storage with mask-selected bytes of R1

Condition code is set

STore Characters under Mask
 STCM R1,Mask,D2(B2)
Stores 0 to 4 bytes from selected bytes of R1

register into contiguous storage bytes

Multiple byte operands (continued)

z/Architecture instructions:
CLMY, CLMH
ICMY, ICMH
STCMY, STCMH

H = High-order 32 bits of 64-bit register

Long-displacement format (RSY)

Multiple byte operands: uses
 STCM R1,B'0111',D2(R2)

Stores low-order 24 bits of R1 into contiguous
storage bytes

Historically important use:
 STCM R5,B'0111',Label+1
Label DC X'bits',AL3(address)

DCB address fields
CCW address field

ICM with mask B'0001'
Same as IC, but condition code is set

ICM with mask B'1111'
Same as Load, but condition code is set

 ICM 5,B'1111',24(8) is equivalent to:

 L 5,24(,8) this

 LTR 5,5 plus this

NO index register with ICM

Multiple byte operands: uses
(continued)

Fullword operands
z/Architecture with extended immediate
facility

Load and Test - LT (like L + LTR)
32-bit Fullword Immediate operands:

Arithmetic: AFI, ALFI, SLFI
Logical AND, XOR, OR: NIHF, NILF,
XIHF, XILF, OIHF, OILF
Compare: CFI, CLFI
Load immediate: LGFI, LLIHF, LLILF
Insert immediate: IIHF, IILF

Variable number of operand
bytes

Q: How would we store HLASM symbols,
from 1 to 63 bytes long?
A1: Update MVC instruction in storage?

Reentrancy violation
Difficult to debug
Data / Instruction cache conflicts?

A2: Use IC and STC in a loop?
Slow

A3: Use EXecute instruction!

EXecute instruction
 EX R1,D2(X2,B2)

Operand 2 - Address of target instruction

If R1 is not general register 0, then low order
byte is ORed internally with the second byte
of the target instruction

The target instruction is then performed
The target instruction in memory is unchanged!

EXecute instruction (continued)

Three important points

Operands 1 and 2 are not modified

The operation is a logical OR

When EXecuting variable-length instructions,
lengths in object text are one less than actual
length

An example follows

EXecute instruction example
 EX R4,MOVEIT

MOVEIT MVC TARGET(0),SOURCE
Object text X'D200 bddd bddd'

c(R4) = X'1234 5602'

Effective object text X'D202 bddd bddd'

So three (3) bytes are moved

EXecute instruction: lengths
R4 in that example holds machine length

If R4 holds actual length, then how do we
make R4 the machine length (one less)?

Any one of these:
 S R4,=F'1' (or SH R4,=H'1') (?)
 BCTR R4,0
 LA R4,255(,R4)
 AHI R4,-1 (Recommended!)

EXecute instruction: uses
Often, the target instruction is SS format, like
MVC, CLC, TR or TRT

Only target instructions not allowed are EX & EXRL

NOP (i.e., BC 0) can be EXecuted
Use mask of X'F0' for unconditional branch
Use other mask for program-specified condition
Target of BC 15,... will always branch, regardless of EX R1

field
However, bits 12-15 of the target can be modified (e.g., BCR R2 field)

Example:
EX 0,Target_SVC

Allows shared code (Test and Production) to use different SVCs

Variable number of operand
bytes - Take 2

Q: How would we store character strings from
1 to 567 bytes long?
A1: Update instruction in storage (Bad!)

Won't work anyway: max length is 256
A2: Use IC and STC in a loop?

Even slower
A3: Use EXecute instruction? (Not bad...)

Loop moving 256 byte chunks and then an
EXecuted move at the end (used in old days)

A4: Use Move Long!

Move Long instruction
 MVCL R1,R2

 MVCL 4,6 - object text X'0E46'

Operands designate even-odd register pairs:
Even register: operand address
Odd register (even+1): operand length

Source length register has pad character in
high order byte
Maximum length is 16MB (24 remaining bits
of the odd registers)

Move Long instruction (continued)

All 4 registers may be modified

Sets condition code

R0 (implying the pair R0 and R1) is valid
Yes, R0 can contain an address!

Clear a block of storage:
 LM 0,3,=A(Block,L'Block,0,0)
 MVCL 0,2 X'00' Pad char in R3

Compare Logical Long
instruction

 CLCL R1,R2

 CLCL 4,6 - object text X'0F46'

Same register setup as MVCL

All 4 registers may be modified - data in
storage is NOT modified
Shorter operand padded with pad character
Condition code is set

CLCL example

Example of CLCL usage

LM 2,3,=A(String1,L'String1)
Target addr, length

LM 0,1,=A(String2,L'String2)
Source addr, length

ICM 1,B'1000',=C' ' Pad byte
CLCL 2,0
BE Equal_strings

Extended Move and Compare
Long

Move Long Extended (MVCLE)
Move Long Unicode (MVCLU)
Compare Logical Long Extended (CLCLE)
Compare Logical Long Unicode (CLCLU)

Lengths can be greater than 16MB
Pad character formed from 2nd operand
Unicode: 2 bytes per step
CC set to 3 if operation is incomplete

Extended Move and Compare
Long - examples

Compare CLCLE 2,0,X'40' blank pad
BO Compare CC3 test
BE Equal_strings

CompUni CLCLU 2,0,X'020'
BO CompUni CC3 test
BE Equal_strings

Move with Optional
Specifications

 MVCOS D1(B1),D2(B2),R3

Set GPR0 to zero
Set R3 operand to TRUE length

Moves 0 - 4096 bytes
If true length greater than 4096, then 4096
bytes moved and condition code 3 is set
Otherwise, true length bytes moved and
condition code 0 is set

Translation

Q: How to ensure that character data is in
upper case?

A1: Use the IC/STC code earlier (slide 20)
with a new table

A2: Use TRanslate instruction!

TRanslate instruction

TR D1(L1,B1),D2(B2) SS format
Operand 1 is source and target
Operand 2 is address of translate table

Usually 256 bytes - depends on data

TR STR,Table
STR DC C'Hello, World!'
Table DC C'......' (See next page)

TRanslate instruction (continued)
TABLE addresses a 256 byte table where each data byte is the desired output byte for that
offset. For example, this table would translate lower case EBCDIC to upper case EBCDIC.

CAPTABLE DS 0CL256 0 1 2 3 4 5 6 7 8 9 A B C D E F
 DC XL16'000102030405060708090A0B0C0D0E0F' 00-0F
 DC XL16'101112131415161718191A1B1C1D1E0F' 10-1F
 DC XL16'202122232425262728292A2B2C2D2E2F' 20-2F
 DC XL16'303132333435363738393A3B3C3D3E3F' 30-3F
 DC XL16'404142434445464748494A4B4C4D4E4F' 40-4F
 DC XL16'505152535455565758595A5B5C5D5E5F' 50-5F
 DC XL16'606162636465666768696A6B6C6D6E6F' 60-6F
 DC XL16'707172737475767778797A7B7C7D7E7F' 70-7F

 DC XL16'80C1C2C3C4C5C6C7C8C98A8B8C8D8E8F' 80-8F
 DC XL16'90D1D2D3D4D5D6D7D8D99A9B9C9D9E9F' 90-9F
 DC XL16'A0A1E2E3E4E5E6E7E8E9AAABACADAEAF' A0-AF
 DC XL16'B0B1B2B3B4B5B6B7B8B9BABBBCBDBEBF' B0-BF
 DC XL16'C0C1C2C3C4C5C6C7C8C9CACBCCCDCECF' C0-CF
 DC XL16'D0D1D2D3D4D5D6D7D8D9DADBDCDDDEDF' D0-DF
 DC XL16'E0E1E2E3E4E5E6E7E8E9EAEBECEDEEEF' E0-EF
 DC XL16'F0F1F2F3F4F5F6F7F8F9FAFBFCFDFEFF' F0-FF

TRanslate instruction (continued)

Each byte in operand 1 is used to index into
operand 2; that function byte from table
replaces the source byte

 TR STR,TABLE
Single instruction replaces previous five
instruction loop (see slide 20)

TRanslate instruction - example
Translate hex data to printable characters

 UNPK STRING(L'STRING+1),HEXDATA(L'HEXDATA+1)
* Get data into zoned format
 LA R5,L'STRING-1 Load machine length
 EX R5,TR_INST Perform translation
 ...
TR_INST TR STRING(0),TABLE Executed TRANSLATE
 ...
 ORG *-240 Position label
TABLE DS 0X Start of table
 ORG *+240 Skip to actual data
 DC C'0123456789ABCDEF'

Related instructions
Translate and Test
 TRT D1(L1,B1),D2(B2) Left to right
 TRTR D1(L1,B1),D2(B2) Right to left

Operands not modified
Table - operand 1 byte used as index

If table byte is zero, scan continues
If non zero, scan stops

GR1: Address of operand 1 byte
GR2: Test-table byte

Related instructions
Translate Extended
 TRE R1,R2

First operand address in register R1

First operand length in register R1+1
Translate table address in register R2

Test byte in GR0
Translation stops if it matches source byte
Registers updated

TRT instruction - example
Scan for ASCII (X'20') or EBCDIC (X'40') blanks

 SR R2,R2 Clear R2
 LA R1,STRING+L'STRING-1 Set R1 to last byte
 LA R5,L'STRING-1 Load machine length
 EX R5,TRT_INST Perform scan
 JZ No_Blanks Nothing found (CC 0)
 CHI R2,X'20' ASCII blank?

 ...
TRT_INST TRT STRING(0),TABLE Executed TRT
TABLE DC 256X'00' Define 256 byte table
 ORG TABLE+X'20' Move to offset X'20'
 DC X'20' Set non zero
 ORG TABLE+X'40' Move to offset X'40'
 DC X'40' Set non zero

ORG, Skip to end of TABLE

Summary

Many useful instructions!

Bit shifting
Single byte operands
Halfword operands
Multiple byte operands
Variable length operands
Character translation

