Capacity Planning for 1000 virtual servers (What happens when the honey moon is over?) (SHARE SESSION 10334)

Barton Robinson Velocity Software Barton@VelocitySoftware.com

povright 2011 Velocity Software. Inc. All Rights Reserved. Other products and company names mentioned herein may be trademarks of their respective

Capacity Planning for 1000 virtual servers

Objectives

- Capacity Overview
- Profiling possibilities?
- Show Real examples
 - · What successful installations are doing
 - How installations "save boatloads of money"
- Capacity Planning for:
 - Consolidation
 - Workload growth
- LPAR Configurations
- Storage ROTs (WAS, Oracle, SAP)

Capacity Planning Processor Overview

Processor requirements

- CECs
- IFLs
- LPARs

LPAR Processor Overhead

- LPAR vcpu ratio to real IFL
- (1/2 % Physical overhead for each)

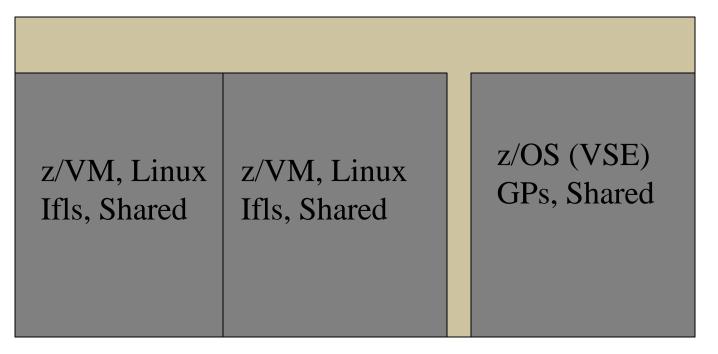
Considerations

- Software paid per IFL
- 95% IFL utilization lowest cost
- One installation replaced 30 "oracle servers" with one IFL
- One installation gets hardware & system software for free

Capacity Planning Processor Considerations

Term: Processor Overcommit

- Number of virtual cpus per IFL
- Software licensed per "cpu"


Critical concept

- z/VM on z196, z9, z10 has VERY LOW MP effect
- Two IFLs has MORE capacity than two CECs with one IFL
- One IFL runs 40-50%, 2 IFLs run 50-80%, 20 IFLs run 95%
- 95% IFL utilization lowest cost (TCO)
- Two IFLs at 30% cost \$100,000 more than ONE IFL at 60%.

Configuration Topics - Processors

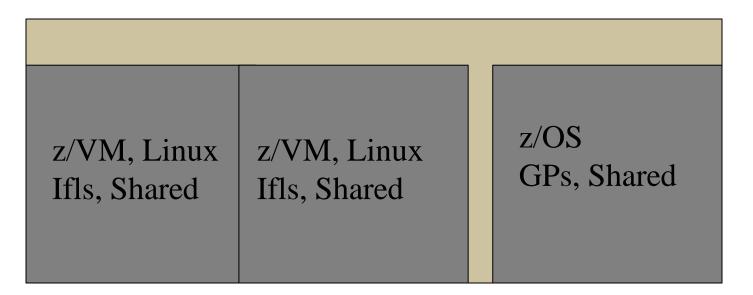
- Processor CEC (z196, z10, z9)
- Configured multiple LPARs,
 - IFLs (1-96), shared or dedicated
 - General Purpose Processors (1-96), shared or dedicated

Capacity Planning Storage Overview

Storage requirements

- Target Overcommit level
- Storage maximums (250GB per LPAR as of z/VM 6.2)
- Expanded Storage (20%)

Storage consideration (to keep ifls at 95% busy)


- How much storage is required?
- What storage tuning should be performed?

Configuration Topics – Real Storage

Configured multiple LPARs,

- Storage dedicated (256GB per LPAR)
- Terabytes central storage on the machine
- Expanded Storage for paging buffer (20% of real)
- Overcommit Ratio within LPAR? (1:1, 2:1, 4:1?)

Server Consolidation Planning

Replacements?

• 1 to 1, 2 to 1, 1 to 2? 1 to 10?

Processor sizing

- Gigahertz is gigahertz
- "Barton's number": 1 mip is 4-5 megahertz
- Z196: 5.0-5.2 Ghz

Server Storage sizing

- Smaller is better, tuning easier, managing easier
- Cost of extra servers if cloned small

Linux Internal overhead

- Linux vcpu ratio to real IFL (20:1 ?)
- 5-10% reduction going from 2 to 1 vcpus

Common in large successful installations:

If I can't manage it, it is not going to happen

Management Infrastructure in place (ZVPS – Velocity Software Performance Suite)

Infrastructure Requirements

- Performance Management
- Capacity Planning Requirements
 - Analysis by server, by application, by user
- Operations, Alerts
- Chargeback, Accounting

Management resource consumption serious planning issue and obstacle to scalability

Costs for 1,000 Servers:

- A 2% agent requires 20 IFLs just for management
- A .03% agent requires 30% of one IFL

Copyright 2011 Velocity Software, Inc. All Rights Reserved

• (Cost of 20 IFLs: \$2M?)

Ask the right questions!

- Data correct?
- Capture ratio?
- Cost of infrastructure?
- References....

Performance Management Planning

Monitor	ESALNXP initial:	ized: 2	21/01/:	11 at	07:03	3:00 0	on		eport
	<-Prod								>
Name	ID	PPID		Valu		-		-	
d	2706		2705					0	
	24382		2705			0.02			0
snmpd	24362		24301			0.02		0	0
snmpd snmpd			28383			0.02		0	0
snmpd	28794	_	28793			0.09		0	0
snmpd	31552	_	31551			0.03	-	•	0
snmpd	11606		11605			0.02		0	0
-	2996		2995			0.03		0	0
snmpd	31589		31588			0.03		0	0
snmpd	15356	_	15355		0.16		0.16	0	0
snmpd	15413		15412			0.08		0	0
snmpd	30795		30794	-10	0.05	0	0.05	0	0
snmpd	1339	1	1338	-10	0.05	0.04	0.02	0	0
snmpd	30724	1	30723	-10	0.02	0.02	0	0	0
snmpd	28885	1	28884	-10	0.06	0.02	0.04	0	0
snmpd	2726	1	2725	-10	0.13	0.08	0.05	0	0
snmpd	14632	1	14631	-10	0.02	0.02	0	0	0

SNMP is on every server Consumes < .1

Note, NO spawned processes

Agent Overhead of z10EC

Monitor	ESALNXP initializ	ed: 0	4/15/1	ll at					-
node/ Name	<-Proce ID P	ss Id PID	ent-> GRP	Nice Valu	Tot	sys	user	syst	usrt
agent agent agent agent agent agent agent agent agent agent agent agent		1 1 1 1 1 1 1 1 1 1 1 1		0 0 0 0 0 0	2.24 1.98 5.68 2.14 1.42 1.92 5.22 1.44 1.41	$\begin{array}{c} 0.01 \\ 0.01 \\ 0.03 \\ 0.01 \\ 0.01 \\ 0.04 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$	0.02 5.59 0.01 0.01 5.14 0.02 0.02 0.02 0.02	1.15 0.03 1.34 0.84 1.14 0.03 0.88 0.83 0.83 0.83 0.89 0.90	0.83 0.80 0.02 0.78 0.56 0.75 0.02 0.53 0.55 0.55 0.52 0.59
snmpd snmpd	1042 977	1 1	1041 976	-10 15	0.03	0.02	0.02	0	0.54 0

Note "agent" uses little CPU, same as "snmpd" Spawned processes excessive – Need full picture

PROVEN PERFORMANCE

12

Copyright 2011 Velocity Software, Inc. All Rights Reserved.

Capacity Planning for 1000 virtual servers

Company A: Consolidation project, 10,000 distributed servers

- 4 CECs, 120 IFLs
- Currently (2Q2011) 1,200 virtual servers (adding 200 per month)
- Currently (1Q2012) 1,800 virtual servers (adding 200 per month)

Company B: Consolidation and new workload

- 12 CECs, 60 LPARs, 183 IFLs
- 800 servers

Company C: Websphere

- 4 CECs (+2) , 16(+4) LPARs, 60 IFLs
- 675 servers, (+75)

Company M (Oracle)

- 1 CEC, 7 LPARS, 17 IFLs
- 120 (LARGE) servers

Installation A – Server Consolidation

Consolidation source servers

- IBM HS21 (8GB),(2x4 core, 2.5Ghz)
- IBM X3550 (4GB) (2x4 core, 2.5Ghz)
- IBM X3655 (32GB) VM (2x4 core, 2.5Ghz)
- Sun M4000 (64GB) (4x4core, 2.4Ghz)
- Sun T5140 (32GB) (2x8 core, 1.2Ghz)
- Many others

Capacity planning process for consolidation:

Copyright 2011 Velocity Software, Inc. All Rights Reserved

- Inventory server counts (10,000+)
- Tally Gigahertz used (using native SAR)
 - By server, by application
- Spec processors based on GHz used
- Spec storage on conservative basis

Installation A Highlights

Processors

- 1 z196 (R&D)
- 4 z196 (was z10)

IFLs

• 58 IFLs production

Architecture

• Two data centers, High availability

Server counts (1Q11)

• 1800 servers (+600)

Installation A – LPAR Sizing

Processors (1Q,2011):

- Z196 Lab, 18 IFLs, 2 LPARs, 4:1 Storage overcommit
- Z196(4) Production
 - 2 z/VM LPARs each, Production, Staging
 - 20-30 IFLs per CEC
 - (Some number of GP as well)
 - Disaster recover available by shutting staging down

LPAR Sizes for Production

- 14-24 IFLs each (Shared)
- 256 GB Central each LPAR
- 24-72 GB Expanded (-> 128GB)

Installation A – Initial Project

Linux project started April, 2009

- 38 servers
- 3 IFLs

Small "traditional vm" system prior,

- skills available
- Hired one more
- Current staff including manager: 5

1800 servers now operational (March, 2012)

Workloads: Websphere

Users get 50 guests at a time,

• 25 on each datacenter

Growth

- Adding 200 servers per month for existing workload
 - 3000 servers by 11/2012?
- Last year "Next" application: New oracle workload,
 - replacing 400 cores (SUN)
 - 4 TB database (12 TB / cluster)
 - Sized at 32 IFLs (12:1) (Gigahertz sizing)

Copyright 2011 Velocity Software, Inc. All Rights Reserved

- 1 TB real storage
- This year "next" 5 Petabytes

Project: Ground up resizing

• Jvms per server, heap sizes

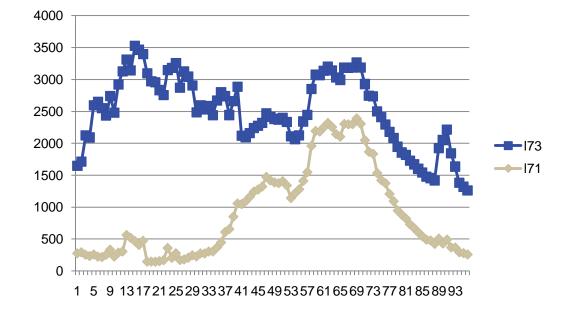
Highlights of Z/VM LPARs

- 12 z10 / z196 (ramping up, 24 cecs currently)
- 183 IFLs (288 Logical processors (1.5: 1)
- 3800 GB Cstore, 250 GB Xstore
- Five data centers
- 800 servers (Websphere, Oracle)
 - Many servers in 30-40GB range
- 200 Servers per FTE is working number

Production LPARS

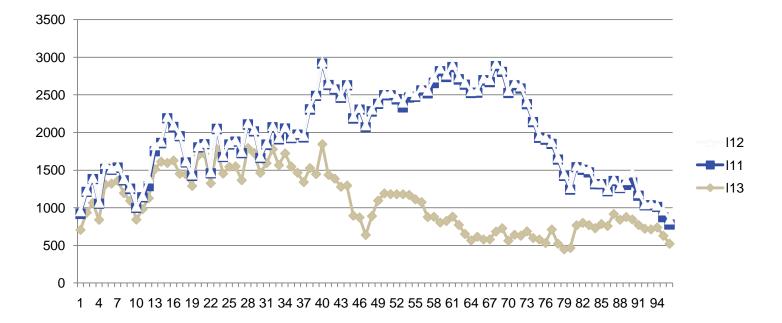
10-32 IFLs Each 150GB – 250GB Central Storage 20-100 servers per LPAR

PERFORMANCE


Installation B – z Overview (Big CPU Picture)

					l Partitio 10 at 16:0			97 seri	al 374E	: 11/0		
Time	P	hys	Dispato	ch	e Nbr	Virt	<%Ass	igned>	<lp< td=""><td></td><td></td><td></td></lp<>			
16:09:0				ic Tota	als: 0 19	50	3146	25.0	3000		<	95 %
									Ded 850			
							99.7 0.8		Ded 150	ICF ICF		
					1 9				717 70			
					4 7	2	9.8	0		CP		
							1557 44.7		777 75		←- '	718
	C	PU	>	<-Shar	red Proce: assigned		-					
					573.3							
IFL ICF	27	0	27 3	2220 297.8	2176.3 296.5 99.5	21.0 0.1	22.9 1.1	←- 80%	of IFLs	l		

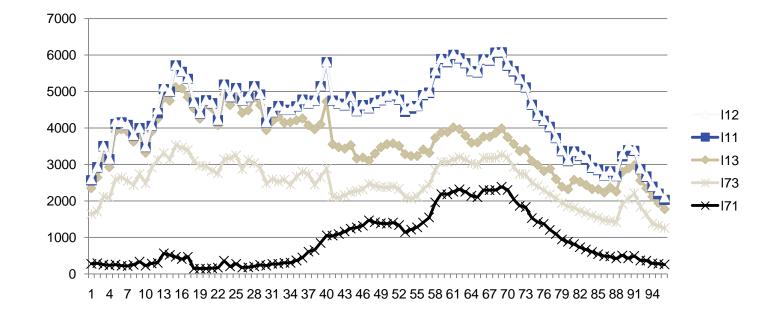
20


Copyright 2011 Velocity Software. Inc. All Rights Reserved.

Copyright 2011 Velocity Software, Inc. All Rights Reserved

CEC "01" for one day, 38 IFLs Storage overcommit: none Processor overcommit: 5:1

CEC "13" for one day, 38 IFLs


• 30 IFLs consumed is 80% busy

Storage overcommit: none Processor overcommit: 5:1

ANCE

BEOB

Both CECs for one day, 76 IFLs Room for growth or consolidation

Balancing workload across CECs?

Highlights (POC 2005ish)

- 4 z196 (+1), 2 production, inhouse DR
- 60 IFLs
- 16 LPARS (+4 in 6 months)
- Two data centers, High availability
- 675 servers (Websphere)
- Serious chargeback requirements

Production LPARS

4 production LPARs, 400GB / 90 GB ExStore Overcommitt: 560gb / 490gb = 1.15

TEST/Dev LPARS

PERFORMANCE

Installation C – Overcommit

IFLs: 55 (-5) (Went from z10 to z196) 675 servers (Websphere)

- 12 servers per IFL (was 10)
- 1030 Virtual CPU (25:1)

Storage

- 970 (+100) GB Central
- 184 GB Expanded
- Virtual storage: 1600GB (+300)
- Overcommit (overall): 1.3 to 1

3 Year project to date (2011)

- POC summer 2008
- Two VM/Linux Systems programmers

Processors:

- 1 z10 EC, 17 IFLs
- 7 lpars, 17 virtual cpus each
- 560GB Real storage / 92 GB Expanded
- DR site available

Storage – FCP 30TB, systems on ECKD

Linux Servers

- 120 servers (Big, ORACLE)
 - 7 servers per IFL
- 395 vcpus
 - (23:1 overcommit)
- 4gb-40gb
 - (1 / 2 size from original SUN servers)
- 974 GB Server storage
 - (1.5 : 1 overall overcommit)
 - 8GB per server???

Zones separated by LPAR

- Development
- Validation (Quality Assurance)
- Production (gets the resources when needed)

Workload zones (3 tier, by LPAR)

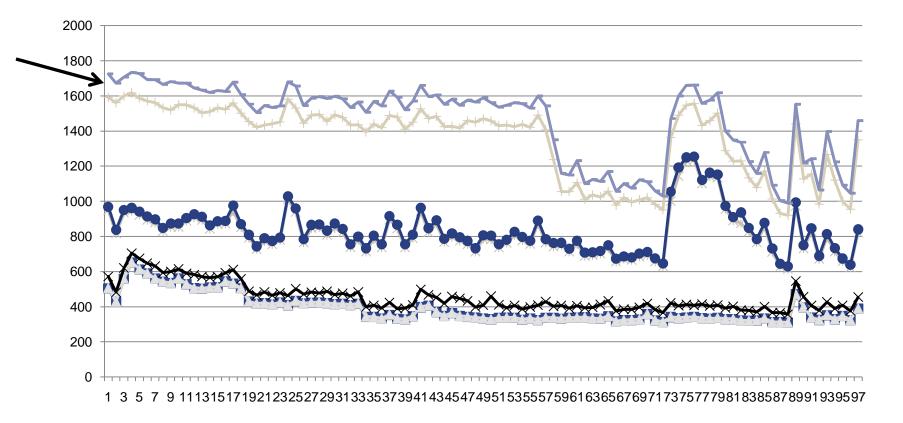
- Presentation
- Data (Oracle)
- Application (WAS)
- All heavy hitting (data, application) moved/moving to "z"

Installation M – Z Production LPAR Overview

LPAR "A" Development

- oracle,
- 110gb Central / 22gb Expanded,
- 30 servers, 100 vcpus
- 30 page packs 3390-6

LPAR "1" Application


- WAS,
- 180gb Central / 40gb Expanded
- 20 servers, 80 vcpus
- 60 page packs 3390-9,

LPAR "4" Data

- Oracle
- 130gb Central / 24gb Expanded

Installation M – LPAR Sizing

- 17 IFLs, 7 Ipars, 17 vcpus each, 7:1 overcommit
- Overhead significant from real processor overcommit

Installation M – Z Growth

Processors: Over 3 years

- Z9, 11 IFLs moved to z10 17 IFLs
- Moving to Z196, 25 IFLs (doubling capacity)

Developers see "pretty good performance"

- Can we move too?
- Always issues on "other side"

Workload Growth

- Adding 110 Oracle databases
- Replacing 32 Solaris Servers (120 cores)
 - "Server from Hell" had 30 databases on it

2011 status

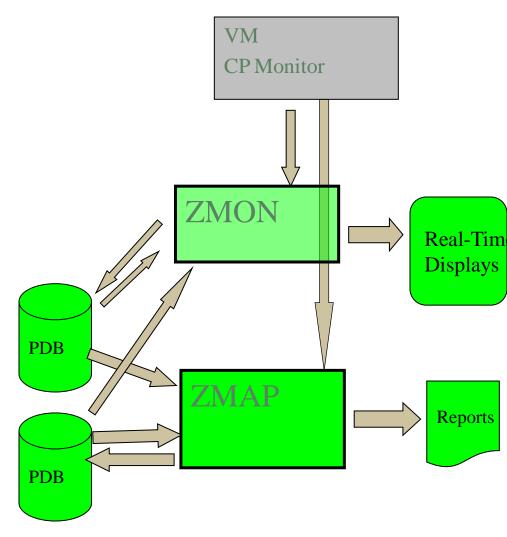
- We have added a total of 154 z/Linux guests.
- We have turned a lot of these into Enterprise guests meaning in some cases we have multiple JVMs on a guest as well as multiple Oracle Data bases on a single guest.
- The majority of the guests are Oracle Data base guests ranging from 500MB to 15TB in size for a single Data base.
- We have also brought over multiple WAS servers. Other than using a lot of Memory and DASD storage things seem to be running well.

Velocity Software Performance Management

• Instrumentation Requirements

- Performance Analysis
- Operational Alerts
- Capacity Planning
- Accounting/Charge back
- Correct data
- Capture ratios
- Instrumentation can NOT be the performance problem

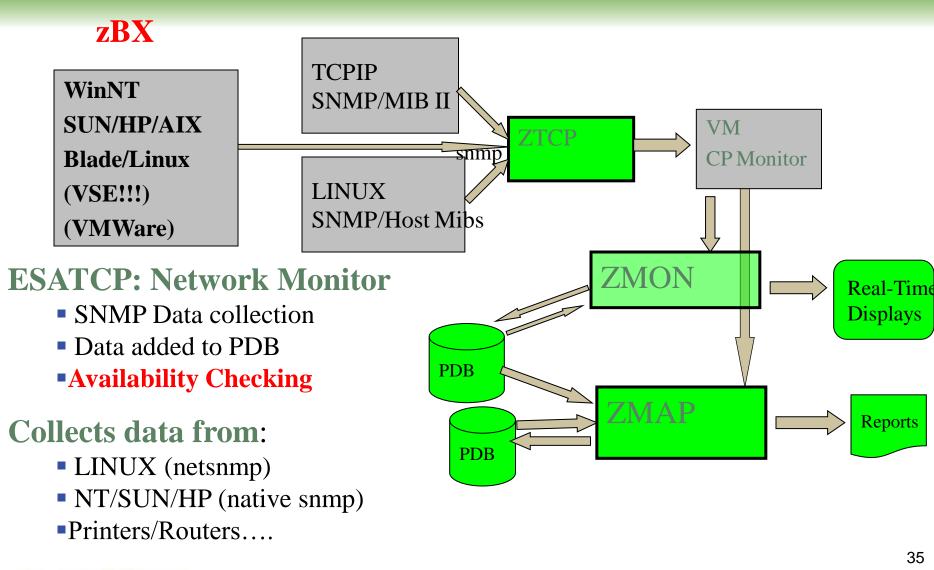
A scalable z/VM Performance Monitor

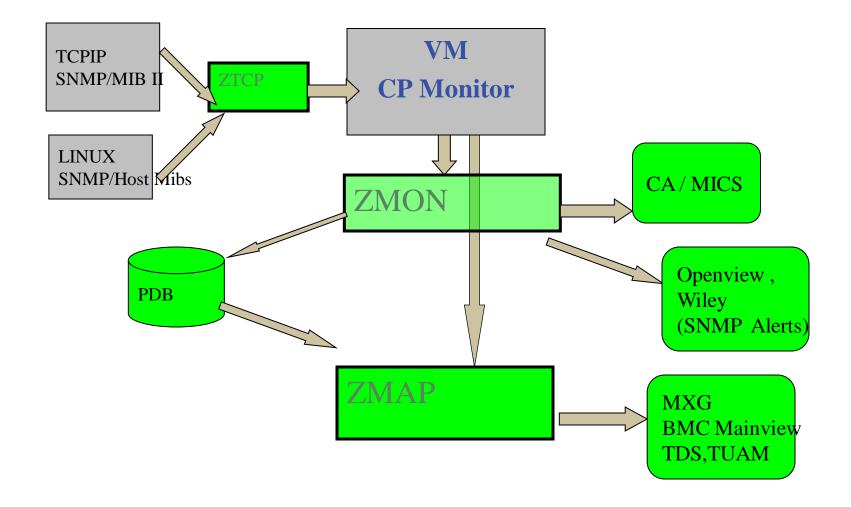

Traditional model (1989)

ZMON: Real time analysisUses Standard CP Monitor Real Time Analysis

ZMAP: Performance Reporting Post Processing Creates Long Term PDB PDB or monwrite data input

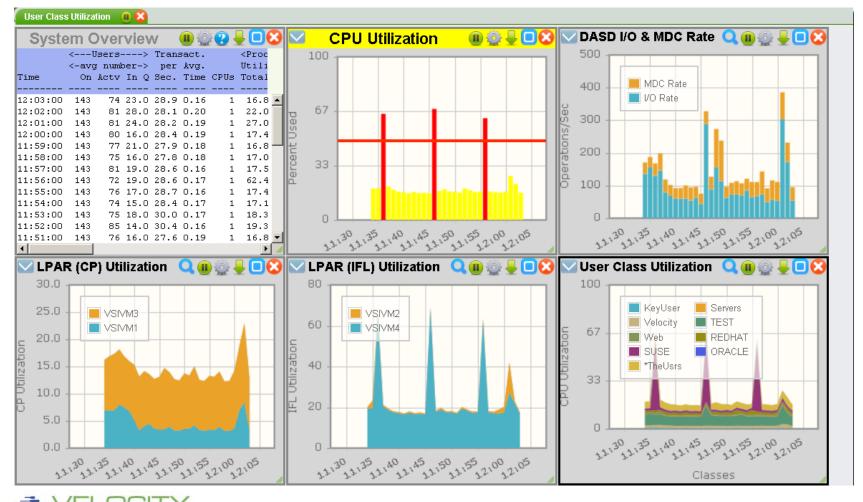
PDB (Performance DataBase)


Complete data By Minute, hour, day Monthly/Yearly Archive


PERFORMANCE

Linux and Network Data Acquisition

Add Enterprise Support for capacity planning tools



Copyright 2011 Velocity Software, Inc. All Rights Reserved.

What we're doing for Capacity Planning

CPU by lpar by Processor type CPU BY userclass

W

37

Copyright 2010 Velocity Software, Inc. All Rights Reserved.

See what we're doing for Capacity Planning

- VelocitySoftware.com
- See the demo

Demo System V4

<u>Demo</u>	12/03/13	05:31	044B42-0	22.30%			
		Lir	ux Nodes (z	/VM-Gues	ts)		
	suselnx1	83.08%					
	roblx1	0.59%					
	broblx1	0.59%					
	redhat5x	0.58%					
	redható	0.54%					
	slesllx	0.47%					-

Demo System V3.5

DemoV3	12/03/13	05:31	044B42-0	22.30%
		Li	nux Nodes (2	z/VM-Guests)
	suselnxl	83.08%		
	broblx1	0.59%		
	roblx1	0.59%		
	redhat5x	0.58%		
	redható	0.54%		
	slesllx	0.47%		

Capacity Planning Metrics

Processor Ratios:

- LPAR logical processors per real processor (LPAR Overhead)
- Linux virtual processors per real (Linux overhead)

Storage ratios

- Storage per processor
- Expanded storage per Real storage
- Overcommit ratios

Servers per processor

• How many distributed servers replaced per IFL?

Capacity Planning Summary

1000 servers has been done

- Management required.
- Issues are "driving too fast to stop for gas"
 - Saving too much to figure out where we're at
 - Do a capacity plan, but don't have time to review accuracy (2 years later)

Processors:

- Gigahertz are gigahertz
- Processors highly utilized and shared saves money

Copyright 2010 Velocity Software, Inc. All Rights Reserved

Storage: No good guidelines

- Oracle and SAP are usually larger than WAS
- Expanded storage should follow the "Velocity best practices"

