
CICS Dynamic Scripting:
the Presentation Layer

Dennis Weiand

IBM Advanced Technical Skills

March 16, 2012

Session Number #10291
© 2012 IBM Corporation

© 2012 IBM Corporation
2

Abstract

• CICS Dynamic Scripting provides an agile environment for
quick development of situational applications. Your
application's presentation layer (web browser interaction)
is an important part of a situational application and you
need to know the basics concepts and capabilities to get
started.

This topic discusses the available options when
developing the presentation layer of your CICS Dynamic
Scripting application, along with the accompanying
concepts. Areas of discussion will include serving HTML,
Cascading StyleSheets, and JavaScript, along with AJAX,
Dojo, RESTful interactions, and security.

© 2012 IBM Corporation
3

Trademarks
• The following terms are trademarks of the International Business

Machines Corporation or/and Lotus Development Corporation in the
United States, other countries, or both:
• Redbooks(logo)™, AIX®, alphaWorks®, CICS®, DB2®, IBM®,

IMS™, Informix®, MQSeries®, VisualAge®, WebSphere®

• The following terms are trademarks of other companies:
• Microsoft, Windows, Windows NT, and the Windows logo are

trademarks of Microsoft Corporation.
• Java and all Java-based trademarks and logos are trademarks

or registered trademarks of Oracle, Inc.
• CORBA, CORBAServices, and IIOP are trademarks of the

Object Management Group, Inc.
• UNIX is a registered trademark of The Open Group in the United

States and other countries.
• Other company, product, and service names may be trademarks

or service marks of others.

© 2012 IBM Corporation
4

Notices

• This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this
presentation in other countries.

• INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PRESENTATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OR CONDITIONS OF NON-INFRINGEMENT,
MERCHANTABILTY OR FITNESS FOR A PARTICULAR PURPOSE.

• This information could include technical inaccuracies or typographical errors.
IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this presentation at any time without notice.

• Any references in this presentation to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

© 2012 IBM Corporation
5

Agenda

• Web-related Terminology

• HTTP, HTML, CSS, DOM, JavaScript

• AJAX, Widgets, DOJO

• Mobile

• What is CICS Dynamic Scripting (CICS DS)

• Web application design

• The typical design I use

• Maintaining state

• Getting CICS DS Request information

• CICS DS Response Rendering

• Static web pages, CSS, JavaScript

• Dynamic Web pages
• PHP Rendering
• Groovy Rendering
• REST/AJAX

• Error Responses

• Implementing REST interfaces

• Security

• NOTE: For an overview of CICS DS or for a look into storing and
accessing data, see my previous SHARE presentations

Agenda

© 2012 IBM Corporation
6

Credits

• Get information from one source and that is called plagiarism. Get
information from more that one source and that is called research.

• Lots of great information on Project Zero, WebSphere sMash, and CICS
Dynamic Scripting…. I start with….
• “Getting Started with IBM WebSphere sMash” – by Ron Lynn, Karl

Bishop, Brett King
• WebSphere sMash and CICS TS V4.2 InfoCenter
• SG24-7924 - Introduction to CICS Dynamic Scripting
• www.w3schools.com (tutorials on most anything “web”)
• Wikipedia (how did we live without Wikipedia?)
• Roy Fielding year 2000 Doctoral thesis where he describes REST (yes

I read the whole thing)
• The “Internet” (like all the great people that ask and answer questions

on forums)

• WARNING: This presentation contains no original thought. It is a summary
of information from the many sources of information on this topic (although I
must state that I included a couple of my opinions).

© 2012 IBM Corporation
7

Web-related Terminology

• HTTP – HyperText Transfer Protocol

• URL – Uniform Resource Locator

• HTML – Hypertext Markup Language

• CSS – Cascading Style Sheets

• DOM – Document Object Model

• JavaScript – Scripting Language that runs in the web browser

• Dojo – Open source JavaScript routines

• AJAX – Asynchronous JavaScript And XML

• REST – light-weight data transfer that leverages the HTTP

protocol

• Mashup – data from multiple sources on one web page

• Widget – Web gadget – small application

• MIME Types – Multi-purpose Internet Mail Extension

(will elaborate on some of these on next few slides)

© 2012 IBM Corporation
8

Notes:

• This presentation is intended to address the presentation layer aspects of CICS Dynamic Scripting.
We are primarily discussing concepts.. i.e. enough information so you can effectively use the real
sources of information on CICS Dynamic Scripting and various aspects of providing a presentation
layer for a web-based, HTTP-based application.

• The CICS Dynamic Scripting Feature Pack V1.0 is a no-charge feature of CICS TS V4.1 and the
CICS Dynamic Scripting Feature Pack V1.1 is a no-charge feature of CICS TS V4.2.

• Before we start into CICS Dynamic Scripting, we need to get some terminology under our belt. This
slide covers some of the main acronyms I will refer to in this presentation

• I will provide a high level definition of these terms on this slide, but since understanding these terms
is crucial to understanding the rest of the presentation, I will also have an upcoming slide dedicated
to some of these terms.

© 2012 IBM Corporation
9

URL – Directing requests using HTTP

• Scheme – http or https

• Host name or address

• Port (optional)

• Path

• queryString (may or may not see these on URL)

• Name=value pairs separated by an ‘&’

����������	�
�����	��������	����������	����������������������������������	�
�����	��������	����������	����������������������������������	�
�����	��������	����������	����������������������������������	�
�����	��������	����������	������������������������

����������	����	�������� ���!"���������������	����	�������� ���!"���������������	����	�������� ���!"���������������	����	�������� ���!"�����

© 2012 IBM Corporation
10

Notes:

• HTTP requests are routed using a URL. A URL (Uniform Resource Locator) specifies the location of
the server, and optionally, some information that should be passed to the server.

• The URL consists of a scheme, which can be http or https. An ‘http’ specification indicates that the
flows are not to be encrypted, but an ‘https’ specification indicates the flows should be encrypted.

• Next comes the host which is a DNS (Domain Naming Service) name, or a dotted-decimal address.
A DNS name is just a ‘friendly’ name for a dotted-decimal address. When a DNS name is specified,
a DNS server will be contacted to resolve the specified name to dotted-decimal address.

• The (optional) port is separated from the host name by a colon. If no port is specified and the
scheme is http, the port used will be 80. If no port is specified and the scheme is https, the port used
will be 443.

• Following the optional port is the path. The path can be from 1 to 255 characters, and its function is
to tell the server what to do with the request.

• Following the path is an optional query string. If a query string is present, it is separated from the
path by a ‘?’ character. The query string is a set of name/value pairs (separated by an ‘&’) that are to
be sent to the server.

© 2012 IBM Corporation
11

HTTP – the Internet protocol

• A Request…

• Request Line: method absolute_path http_version
post /account/lookup HTTP/1.1

• Headers: name:value;name:value;etc:etc
Accept: */*;Accept: image/jpeg;Content-length: 44

• Blank Line: Carriage return Line feed twice

• Body: URL encoded forms data: name=value pairs
field1=stringa&field2=stringb&field3=stringc

• A Response…

• Status Line: HTTP_version status_code response_phrase
HTTP/1.1 200 ok

• Headers: name:value;Name:value;etc:etc
Content-type: text/html;Content-length: 54

• Blank Line: Carriage return Line feed twice

• Body: HTML tags and text
<html><title><A Sample</title><h1>Sample 1</h1>…

Request Line Headers Body
CRLF

CRLF

Status Line Headers Body
CRLF

CRLF

© 2012 IBM Corporation
12

Notes:

• Web browser requests and responses flow over HTTP (Hypertext Transfer Protocol). If you were to look at an HTTP flow
‘on the wire’, you would see a request line indicating the type of request followed by a URI, and an indication of the HTTP
level in use.

• The type of request is called the ‘method’, which on the previous page is ‘POST’. For a request from a web browser for
HTML pages, you normally see a ‘POST’ or a ‘GET’. For Web service you almost always see a ‘POST’. For REST
request, you will see ‘GET’, ‘POST’, ‘PUT’, or ‘DELTE’. We will touch on REST requests later in the presentation.

• The path indicates the target of the request, with the method indicating the action on the target.
• Following the request line are headers. Headers are additional data that further qualifies the request. The Header may

indicate the capabilities of the eeb browser (like what files it can accept), plus other characteristics (like the content length
or the language setting of the web browser). Headers can also contain security information in the case of HTTP Basic
Authentication, or information to be stored in the web browser in the case of Cookie data.

• Optionally, following the headers is the HTTP body. When the web browser sends information to the server with a
‘POST’ request, the body is a set of name/value pairs. When the server sends information to the web browser, the body
normally contains HTML.

• Initially, it may seem a bit confusing with HTTP (the underlying protocol) has a ‘body’; HTML has is transferred over
HTTP also has a body; and for a web service, in the SOAP envelope you will find a body. As you get into the various
types of HTTP flows, you will understand their simplicity with most everything having a body that contains the user data
being transferred. HTTP is general transport, so the content of the body will vary depending on the type of client and the
type of request. In the preceding slide the body is said to have name value pairs. This is true for a ‘POST’ method from
a web browser. For a web service, the body will contain the SOAP envelope, and for a REST request, the body will
normally contain XML or JSON (JavaScript Object Notation). More on this later.

• A response to the web browser from CICS (a web server in this case) will normally consist of a status line indicating the
response to the request (200 is a normal response), headers indicating the type of data being sent back from the server
(the MIME type) and other information, and a body that contains data related to the response.

• MIME stands for Multipurpose Internet Mail Extension and is used to signify the type of file, such as XML, JSON, GIF,
etc.

• There are different types of header values that can be returned such as the length, Cookie data, and other control
information. See the HTTP specification for a list of all headers.

• The body of the HTTP transmission sent to web browser to display a Web page is normally some HTML that provides a
response to the request.

• The HTML will reference any other files needed to properly display the HTML (like a Cascading Style Sheet, or graphics).

© 2012 IBM Corporation
13

HTML – Hypertext Markup Language

<html>

<head>
<title>Sample HTML Page</title>
<script language="JavaScript" src="theme/menu.js"></script>
<link rel="stylesheet" type="text/css" href="css/screen.css" />
</head>

<body>
<form method="post" action="/account/lookup">
<p>Dear Dennis,
<p>Please enter your address below and press the enter button:
<p><textarea name="address" rows="8" cols="40"></textarea>
<p><input name="submit" type="submit" value="Enter">
</form>
</body>

</html>

© 2012 IBM Corporation
14

Notes:

• HTML (HyperText Markup Language) in a markup language interpreted by web browsers. The
general format is: <tag atribute1=“value1” attribute2=“value2”>content</tag>

• A physicist named Tim Berners-Lee, a contractor at CERN (European Organization for Nuclear
Research) prototyped a system for researchers to use and share documents. Berners-Lee, in 1989,
proposed a Internet-based hypertext system, and in 1990 wrote a prototype of the system that used
HTML. The first publicly available HTML description was available in 1991.

• HTML elements define areas of a web browser page, header levels, tables, form elements for data
entry, and much more

• HTML elements can be specified with style characteristics such as color, but instead of hard coding
the characteristics in-line, most often, the characteristics are often specified in a Cascading Style
Sheet (CSS). Cascading Style Sheet information can be inserted in-line in an HTML page, or the
HMTL page can reference a file containing the CSS information, which causes the web browser to
request/load the CSS file:

<link rel="stylesheet" href="http://example.com/css/style.css" type="text/css" />

• This HTML page also references a JavaScript file that the web browser is to load. JavaScript is a
scripting language that can run in the browser. The running JavaScript functions is triggered by
events that take place at the web browser such as a button press, mouseover, key down or key up,
and many more.

© 2012 IBM Corporation
15

Cascading StyleSheets

• Used to indicate web page formatting

• One place to specify style information vs. ‘hard coding’

the information in HTML

• CSS can be in-line or in a separate file

• To reference a separate file you can add:
<link rel="stylesheet" href="http://example.com/css/style.css"
type="text/css" />

• Example:
h1 { color: white; /* tag selector */

background-color: orange !important;
}
#para1 { text-align:center; color:red; } /* id selector */
.center {text-align:center; } /* class selector */
p.center {text-align:center; } /* tag-specific class selector */

© 2012 IBM Corporation
16

Notes:

• CSS (Cascading Style Sheet) are used to specify the look and formatting of web pages by supplying
a set rules pertaining to the characteristics of HTML tags. They are typically used to specify
elements such as layout, color, and font, and can specify many different tag characteristics.

• CSS started to become supported by web browsers in the late 1990s.

• A style sheet consists of a list of rules, consisting of one or more selectors and a declaration block.

• General syntax is (see slide for examples):
selector [, selector2, ...] [:pseudo-class] {
property: value;
[property2: value2;
...]
}
/* comment */

• Cascading Style Sheet information can be specified in-line in an HTML page with a <style> tag, or
you can refer to a file containing Cascading Style Sheet information, which causes the web browser
to request/load the CSS file:
<link rel="stylesheet" href="http://example.com/css/style.css" type="text/css" />

• You often use more than one CSS. This was anticipated and hence the use of the word ‘cascading’
in the name. If the same selector is used in multiple referenced CSS files, the last one in wins.

© 2012 IBM Corporation
17

JavaScript

• A scripting language that runs in a web browser

• Syntax was influenced by Java (but is not the same)

• Commonly used to validate user input, dynamically

add, delete, change, show, hide (etc) elements on a

web page

• Can be in-line or in a separate file

• Considered a ‘common’ technology in Web 2.0

• Its use is increasing

• Used for AJAX (Asynchronous JavaScript And XML)

• Make synch/asynch request to server for information

• Response information is added to the web page

© 2012 IBM Corporation
18

Notes:

• JavaScript is a programming language that runs in a web browser that can be used to
programmatically affect the web page content. It is typically used for validating user input and can
dynamically change cursor placement, add remove web browser elements, plus much more.

• JavaScript ‘functions’ can be invoked from ‘events’ at the web browser such as moving your mouse
cursor over a web page element, clicking a button (and much more).

• JavaScript, originally called Mocha, was developed by Brendan Eich of Netscape. Its name changed
from Mocha, to LiveScript, to JavaScript (because of its strong influence by the Java programming
language). JavaScript was released as part of the Netscape Navigator web browser in 1995.

• Using JavaScript, you can cause the web browser to make an asynchronous request to a server for
information. JavaScript can then display the returned information, or take appropriate actions. This
technique of making asynchronous requests is very common in Web 2.0, and is referred to as AJAX
(Asynchronous JavaScript And XML)

• In today’s environment, it is rare to receive a web page that doesn’t use JavaScript, with some web
pages making very extensive use of JavaScript.

© 2012 IBM Corporation
19

JavaScript Example

HTML form validation using JavaScript

The above JavaScript could be triggered by clicking the

‘submit’ button associated with the form

function noEntry() {
if (document.theForm.firstName.value.length<1) {

alert("The client's first name may not be empty.");
document.theForm.firstName.focus();
return false;

} else if (document.theForm.state.value == "--") {
alert("Please use the state pull-down menu to ”+

“specify the Client's state of residence.");
document.theForm.state.focus();
return false;

} else return true;
}

<form name="theForm" method="post"
action="/inv/scripts/INVSite.php" onsubmit=" return noEntry(); ">

© 2012 IBM Corporation
20

Notes:

• This slide shows an example of a JavaScript function that would be used for form validation.

• The JavaScript function would be invoked when the ‘submit’ button associated with this form is
clicked.

• The form will be submitted if the JavaScript routine returns true

• “document” refers to the web page, “theForm” is the name associated with the form, “firstName” is a
field on the form, and “length” is an attribute of the field that is the size of the data entered into that
form field. So document.theForm.firstName.length is the size of the data typed into the firstName
field of theForm on this web page.

• “alert” causes a pop-up box with the indicated text

© 2012 IBM Corporation
21

AJAX Example

Sample of JavaScript that causes an AJAX request:

function emptyQuoteFile() {
xmlhttp=new XMLHttpRequest();
xmlhttp.onreadystatechange=function() {

if (xmlhttp.readyState==4) {
if (xmlhttp.status==200) {

document.getElementById("vehicleQuoteResponse").
innerHTML=""+xmlhttp.responseText+"";

} else {
document.getElementById("vehicleQuoteResponse").

innerHTML="ERROR: Status: "+xmlhttp.status+
“Contact support if this continues";

}
}

}
xmlhttp.open("GET","/insurance/quote/rest?DoFileClear=yes",false);
xmlhttp.send();

}

© 2012 IBM Corporation
22

Notes:

• This slide shows an example of a JavaScript function that is an AJAX request

• To make an AJAX request, you instanciate an XMLHttpRequest object

• Towards the bottom of the code you will notice a JavaScript method invocation for a method named
‘open()’. You specify a URL (with optional query string), and the HTTP method (GET in this case).
At the end of the open() you see a boolean value of ‘false’. This indicates that the request is to be
synchronous and not asynchronous.

• The send() method specifies that the request should be sent

• Back towards the top you see an xmlhttp.onreadystatechange=function() { …….. This associates
an ‘anonymous function’ with the onreadystatechange() method of this XMLHttpRequest object.

• The XMLHttpRequest object goes through various state changes as it makes the HTTP request,
waits for a response, receives the response, or times out. The onreadystatechange() method (in this
case this anonymous function) is invoke everytime this XMLHttpRequest object goes through a state
change.

• The anonymous function tests to see of the readystate is a 4 which indicate the this XMLHttpRequest
object has received a response. If the readystate is a 4, this XMLHttpRequest object test if the
returned HTTP status code is 200, and if true, places the response text into a text field on the web
page named vehicleQuoteResponse.

© 2012 IBM Corporation
23

Widgets

• Short for “Web Gadget”

• Small application that runs in an area in the web

browser

• Can often take input, provide output to page or other

widgets

• Example: mortgage calculator, calendar, etc

<script type="text/javascript">
function createAtomFeedTable() {

var atomFeed=new ATOMFeedObject();
atomFeed.atomFeedLocationDiv=document.

getElementById("atomFeedDiv");
atomFeed.setFeedURL("http://host:port/atom/custdata/feed");

}
</script>
<body onLoad="createAtomFeedTable();">
<center><h1>Generic CICS ATOM Information Display</h1></center>
<div id="atomFeedDiv" align="center"></div>

© 2012 IBM Corporation
24

Notes:

• “widget” is short for web gadget, and is usually just a JavaScript function. This JavaScript function
normally represents a small application that runs in an area of the web browser.

• An example of a widget might be a mortgage calculator.

• A good widget allows for dynamic input, and can provide output to the web page or to other widgets.

• In this code snippet, you see an onLoad= attribute on the body tag. This indicates that the specified
function should be invoked after all parts of the web page is received and just before the web browser
is to render (figure out how to display) the page.

• The createAtomFeedTable() function instaciates the ‘widget’, which is called ATOMFeedObject, and
sets the location of the output of the widget (which is a table of information), and the location (URL) of
the Atom Feed.

• Note in the last line of the code snippet, we have defined an area on the web page with the <div> tag
with a name of atomFeedDiv. We have specified the name of this div to the ATOMFeedObject
widget. The ATOMFeedObject will create a table of the data passed to it, and place that table in the
“atomFeedDiv” div.

• The setFeedURL() method of the ATOMFeedObject widget is written to cause the widget to make an
AJAX request to the specified URL, parse the response data, and put the response data in a table at
the specified location (the “atomFeedDiv” div).

© 2012 IBM Corporation
25

DOJO

• Open source modular JavaScript library

• Intended to provide common functions (e.g. calendars,

sortable tables, dynamic charts, etc)

• Cross-platform (renders similarly on all web browsers)

• Provides mobile look and feel of a ‘native’ app to

HTML-based pages

• My Opinion: Use Dojo

• Started in 2004 (Alex Russel, Dylan Schiemann, David

Schontzler, and others)

• IBM and SUN joined the

Dojo foundation in 2005

© 2012 IBM Corporation
26

Notes:

• Dojo is an open-source JavaScript library that provides a higher-level interface to common elements
or functions used with a web brower.

• Dojo includes calendars, tables, and much, much more.

• An exciting part of Dojo is that it accommodates the differences between web browsers and web
browser levels. This means that if you define an element on a web page with Dojo, it will look the
same on every web browser.

• Dojo’s mobile support allows you to define web pages that when displayed on a smartphone or tablet
(e.g Android phone, iPhone, iPad, etc) have a look and feel that is close to a native app.

© 2012 IBM Corporation
27

Debugging Web Pages

• Use a good editors (HTML, CSS, JS, etc - avoid errors)

• e.g. RDz, RAD, Eclipse

• Watch out for browser cache

• Can turn off browser caching

• Usually holding ‘shift’ and clicking the refresh button is

good enough, but still beware (I can’t tell you how many

hours I have lost on this)

• Debug consoles and debuggers – part of most web

browsers

• Firefox (Mozilla), Safari, etc

• Firebug – http://getfirebug.com

• Dojo Firebug extensions

© 2012 IBM Corporation
28

Notes:

• Unfortunately everything won’t go perfectly for you during development, so you will need to debug
your web pages.

• The easiest approach will be to avoid problems by using editors for your HTML, CSS, JavaScript, and
Dojo. IBM’s Rational Developer for System z (RDz), Rational Application Developer (RAD), and
Eclipse with the Web Development Tools plugin have good editors. There are many editors
available.

• Firebug consistently receives high ratings as a debugger for web pages

© 2012 IBM Corporation
29

CICS Dynamic Scripting

Java EE /
CICS

Traditional WebSphere sMash & CICS Dynamic Scripting

S
tr

a
te

g
ic

 V
a
lu

e
,

C
o

s
t,

 C
o

m
p

le
x
it

y
,

U
s
a
g

e

Number of applications

Time to value is more
important than
enduring value

Strategic, long-
lived applications

Enterprise

Applications

Team/Project

Applications Personal

Applications

�Creating reports, dashboards and widgets

�Quickly front ending existing applications

�Exposing CICS assets in mash-ups

�Creating productivity applications

�Quickly trying out new business ideas

� Introducing new IT staff to CICS via PHP

�Developing without a dedicated budget

�Porting existing unmanaged PHP into CICS

Departmental

Applications

Can be used to develop and deploy lightweight, ‘fit for
purpose’, situational applications that meet departmental,
team, project and personal requirements, e.g.:

© 2012 IBM Corporation
30

Notes:

• In our typical mainframe development, we normally only address mission-critical applications.
Because these applications are normally high-volume and are the life-blood of our business, we have
surrounded them with procedures with tight controls that insure quality, consistency, availability and
all of the other attributes needed for our main applications. These applications are normally written in
CICS or WebSphere Application Server which provide industrial-strength environments for our
applications.

• In addition to the main applications that handle the volume of our user interactions, there are other
applications our business needs for special situations such as a sales promotion or departmental
applications we could use to enhance productivity. Because of the procedures and development
techniques we use, we are often not able to address application requests for these special situations
(which are commonly referred to as ‘situation applications’).

• The demand for situational applications (sometimes referred to as the ‘long tail of demand’) at some
companies outweighs the requests for traditional requests, but due to the procedures and
development techniques we use, we don’t have the time and resources to address them.

• Even if we had the ‘resources’, our development techniques often don’t allow us to respond quickly
enough to accommodate the situational application requests.

• CICS Dynamic Scripting is intended to address some of these shortcomings. CICS Dynamic
Scripting, built on Project Zero technology provides a productive environment that can be used to
address situational applications. CICS Dynamic Scripting is also a great way to introduce new IT
staff to CICS via the Project Zero technology, and the PHP and Groovy dynamic scripting languages.

© 2012 IBM Corporation
31

CICS Dynamic Scripting Feature Pack

• Technology from Project Zero, WebSphere sMash (projectzero.org)

• Robust environment for situational reports, dashboards, and Web feeds

• Provides PHP and Groovy support in CICS – agile, productive environment

• Zero Resource Model (ZRM) with data managed by DB2 for z/OS

• Uses CICS TS JVMServer Technology

• Manageability, Scalability, and Security

• Situational applications - Quickly try business ideas

• Introduce new staff to CICS via PHP and Groovy

• Run unmanaged PHP and WebSphere sMash applications in CICS

• Easily expose CICS assets with RESTful interfaces

• Optional no charge Feature Pack for CICS TS V4.1, June 2010

• Optional no charge Feature Pack for CICS TS V4.2, September 2011

© 2012 IBM Corporation
32

Notes:

• CICS Dynamic Scripting is a Feature Pack for CICS TS 4.1 and CICS TS V4.2.

• This feature pack embeds Zero's agile programming model into CICS on z/OS. This allows you to
quickly construct Web applications, and enables Groovy and PHP scripts to run inside CICS to
handle HTTP requests. You can exploit many of the features provided by Project Zero technology to
quickly and easily build custom services and applications around your CICS programs and data, for
example to expose CICS assets RESTfully, or to serve modern Web 2.0 AJAX front-ends for your
CICS programs. Dynamic Scripting applications simply consist of scripts and configuration files on
the zFS file system, so they can be developed with the tooling of your choice.

• Applications running on the Feature Pack can tightly integrate with existing CICS applications and
data, including COBOL assets. They inherit the strengths of CICS and z/OS, including their Quality of
Service characteristics.

• Project Zero, per the Project Zero Web site “began life as an incubator project to explore a new idea”
of a development and runtime environment that could revolutionize creation of dynamic web
applications – providing a powerful development and execution platform for modern Web applications
while at the same time having the overall experience of being radically simple” . Users of Project
Zero technology include the CICS Dynamic Scripting Feature Pack, the WebSphere Application
Server Dynamic Scripting Feature Pack, and WebSphere sMash.

• WebSphere sMash – is an implementation of the Project Zero technology. A fully licensed retail
version of IBM WebSphere sMash is available for production use. An IBM WebSphere sMash
Developers Edition is available for free when used for development and limited deployment (see
license details).

© 2012 IBM Corporation
33

Project Zero Environment
(in CICS)

CICS Transaction Server

HTTP

Request

HTTP

Response

Zero Application

Java

CICS

Pipeline

C
IC

S

T
C

P
 / IP

S
e
rv

ic
e

JCICS API

CICS Assets

COBOL
Java
DB2
TSQ
etc..

© 2012 IBM Corporation
34

Notes:

• From a Project Zero developer's perspective, the Application is the server. This is in contrast to the normal thinking
where you have a server and run multiple applications under that server. When a Project Zero application is started, it
has its own port and takes care of all HTTP and database interactions. It is like the infrastructure is an extension of
the application (versus the normal thinking of the application being an extension of the infrastructure).

• How this is physically applied is that you 'create' an application, add application code, then 'start' the application.
That's it. The application listens on a specified port, and responds to HTTP requests as appropriate. The capabilities
like listening/responding to HTTP, interacting with a database, using Dojo, etc are added to the application by adding
'dependencies' to the ivy.config file in the application’s /config directory (more on this later).

• At a lower physical level, each application runs in its own JVM.

• When applied to CICS, HTTP requests go through CICS (so CICS can apply security) and are then passed to the
Dynamic Scripting Application. Each Dynamic Scripting application in CICS runs in its own JVMServer. The
JVMServer in CICS is a multi-threaded JVM. Any JVM is multi-threaded, however in CICS, each of the threads used
for application code are associated with a T8 TCB (the new TCB type for CICS TS V4.1). The reason for the T8 TCBs
is that although you can create new threads in a JVM, CICS won't be aware of them unless they are mapped to T8
TCBs. A T8 TCB is needed for application code on the thread to be able to interact with CICS. So, if CICS is creating
threads in the JVM, T8 TCBs will be mapped to the threads and code running on those threads can interact with
CICS. If an application programmer does a Thread.create() (or similar function), then the thread won't be mapped to
a T8 TCB, CICS will be unaware of the thread, and code running on the thread cannot interact with CICS. (Bottom
Line: application programmers are discouraged from creating their own threads).

• A Dynamic Scripting application can have "hundreds" of concurrent requests executing in a single JVMServer. Each
of these threads would be a concurrent path through the application.

• The JVMServer resource has a THREADLIMIT() parameter where you can specify the max number of threads (T8
TCBs) that can be allocated to the JVMServer. The ThreadLimit on a JVMServer can be from 1-256 with the default
being 15. There can be a maximum of 1024 threads for a CICS region. The number of JVMServers will also be
influenced by the size of the JVM implemented by the JVMServer resource. These threads are for concurrent
application usage. This means that a single JVMServer with 256 threads, depending on the request arrival rate, could
be able to handle multiple thousands of users.

© 2012 IBM Corporation
35

Concepts you will need to know

• Command-line interface (CLI) from z/OS USS

• Looks like any other ‘project zero’ environment

• Configuration Files

• zero.config (application) and zerocics.config (CICS)

• Relevant CICS Dynamic Scripting concepts:

• An application is a set of ‘well-known’ directories

• Applications are coded in PHP, Groovy, and/or Java
• Use your favorite editor or development environment

• Applications are modules, specified as dependencies
• Application’s config/ivy.config file

• Dependencies are inherited into your application
• Can view inherited artifacts with Virtualized Directory Viewer

© 2012 IBM Corporation
36

Notes:

• While developing your CICS Dynamic Scripting application, there are certain concepts you will need to
understand.

• You interact with your application for administrative purposes from a USS (UNIX System Services)
command line. You will need to have a basic understanding of the available ‘zero’ commands. These
commands allow you to create an application, start the application, stop the application, resolve
application dependencies, and much more.

• The zero.config and zerocics.config were discussed previously, but you will need a basic understanding
of the items in these configurations files that affect your environment, for example the port your
application will listen on is set in the zero.config file.

• From a programming perspective you will need a basic understanding of the facilities that are available
to your application:
• Events – your code, usually referred to as a handler, handles events in the Dynamic Scripting environment

• Global Context – can be accessed to find out information about your environment or temporarily store items

• PHP support – you can include PHP scripts in a Dynamic Scripting application

• Zero modules – various features available to your application are supplied in Zero modules

• Resolving dependencies – to include a feature, you specify that feature as a dependency

• Virtualized Directories – a way to look at your application’s resources and all the resources it inherits

• Zero Resource Management (ZRM) – a way to work with data in a Zero environment

• REST support – Dynamic Scripting includes support for various aspects of REST

• You will also need a basic understanding of how to interact with your
CICS resources using the JCICS API.

© 2012 IBM Corporation
37

Project Zero Application

• A ‘well-known’
directory structure

• Base directory for
HTML pages is public
(or public/secure)

• HTML, CSS,
JavaScript, Graphics

• /app/resources for
RESTful resources

• /app/views for Groovy
Templates

© 2012 IBM Corporation
38

Notes:

• Each Dynamic Scripting application has a standard (‘well-known’) directory structure. There are
specific directories available for specific types of artifacts. For example, the default location for
HTML page is in your application’s ‘public’ directory. All of the directories (standard or optional) are
documented in the Project Zero documentation.

• Project Zero applications enjoy a type of inheritance model. You could have base application A and
specify that application B has a 'dependency' of application A. Application B would then inherit all of
application A's functionality. Although in this case application A's artifacts wouldn't physically reside
in application B's directory structure, for all practical purposes, application A and B are 'virtually' a
single application. When displaying ‘virtualized’ directories for application B, application A and B's
artifacts would be displayed as if they were physically a single directory structure, when in reality,
their artifacts are not physically in the same directory structure.

• All applications are also “modules”. The above paragraph talks about a dependency on an
application, but you would specify a dependency in Application B for module A.

• Dependencies are also for HTTP, database interactions, Dojo support, etc. The application's
dependencies are specified in the ivy.config file in the application’s config directory. So if you want
database support in your application B, you add that dependency to your application B's ivy.config. If
you want Dojo support in your application B, you add that dependency to your application B's
ivy.config file.

• We will talk more on dependencies, modules, and virtualized directories later in
the presentation.

© 2012 IBM Corporation
39

Zero Modules
• All applications are “modules”

• Modules declare dependencies on other modules in
config/ivy.xml:

• Modules inherit all assets (scripts, static files, java classes) from
their dependencies

• In Dynamic Scripting, all applications depend at least on
zero.cics.core

• Provides the core CICS integration functionality

• Itself depends on zero.core, therefore pulls in the core standard
zero functionality.
���� Modules are not just for user apps: core functionality of zero
and CICS Dynamic Scripting is implemented in zero modules

<dependencies>
<dependency org="zero" name="zero.cics.core" rev="[1.0.0.0, 2.0.0.0["/>
<dependency org="zero" name="zero.data" rev="[1.0.0.0, 2.0.0.0["/>
<dependency org="zero" name="zero.mail" rev="[1.0.0.0, 2.0.0.0["/>

</dependencies>

© 2012 IBM Corporation
40

Notes:

• All apps are re-usable modules by default.

• Dependency management is implemented using Apache Ivy via the ivy.xml configuration file.

• ivy.xml defines the name and version of the current module, as well as any dependencies the module
has. Version ranges can be enforced on dependencies.

• If a module has a dependency, then:

• Any scripts in the dependency are accessible from the current module

• Any Java classes / libraries from the dependency are on the CLASSPATH

• Any static files from dependencies (e.g. images or scripts) are accessible when accessing the app over
HTTP

• This relies on the concept of virtualized directories

• To implement a dependency, you would, after adding the dependency to your application’s
config/ivy.xml file, stop your application, do a zero resolve or a zero update, then a zero start to start
your application.

• The ‘zero resolve’ leaves existing dependencies at their current levels. The ‘zero update’ implements
the dependency at the highest available level.

© 2012 IBM Corporation
41

Resolving Applications…

• An application must be “resolved” before the it can be used.
Resolving an app means:

• Locating its dependencies & determining exactly which versions to
use.

• Possibly retrieving them from a remote repository, if they are not
found in the app’s “workspace” or the CLI’s local repository.

• Two commands can resolve an app:

• zero resolve: attempts to locate the exact same versions of the
dependencies that were used last time the module was resolved.

• zero update: resolves the app against the latest suitable versions
of the modules available in the local repository.

• NB: These commands access a remote repository if no suitable
version is found in the local repository.

© 2012 IBM Corporation
42

Notes:

• NB: “zero resolve” and “zero update” only contact the remote repositories if no suitable
module is found locally.

• Once the app is resolved, the location of the dependencies is written to file:
• $APP_HOME/.zero/private/resolved.properties

• This information is used to load the application’s classes.
• Most dependencies are not part of the CLASSPATH when the JVM is started. They are added

dynamically at runtime during application initialization.

• “resolve” and “update” look for modules in…
• 1. The app’s “workspace”, i.e. the parent directory of the app.

• Modules in the same workspace are referred to as “peers”
• 2. The CLI’s local repository.

• $ZERO_HOME/zero-repository/<module_group_name>

• 3. Remote repositories.
• The CLI’s current active module group defines which URIs will be searched. Ivy and Maven

repositories are supported.
• Users can add repo URIs to module groups and create new module groups
• The default module group is called “stable”.

• More info on zero dependency & repository management:
• http://www.projectzero.org/sMash/1.1.x/docs/zero.devguide.doc/zero.cli.tasks/DependencyManagement.html

© 2012 IBM Corporation
43

Virtualized Directories

• From the application developer’s perspective, artifacts are

“inherited” from dependencies.

• They are available through the concept of Virtualized Directories.

• The Virtualized Directory browser tool illustrates this. It can be
added to any app by adding a dependency on the module
zero.core.webtools.

Virtual Directory view
Files on zFS

© 2012 IBM Corporation
44

Notes:

• Each Dynamic Scripting application has a standard (‘well-known’) directory structure. There are
specific directories available for specific types of artifacts. For example, the default location for
HTML page is in your application’s ‘public’ directory. All of the directories (standard or optional) are
documented in the Project Zero documentation.

• Project Zero applications enjoy a type of inheritance model. You could have base application A and
specify that application B has a 'dependency' of application A. Application B would then inherit all of
application A's functionality. Although in this case application A's artifacts wouldn't physically reside
in application B's directory structure, for all practical purposes, application A and B are 'virtually' a
single application. When displaying ‘virtualized’ directories for application B, application A and B's
artifacts would be displayed as if they were physically a single directory structure, when in reality,
their artifacts are not physically in the same directory structure.

• All applications are also “modules”. The above paragraph talks about a dependency on an
application, but you would specify a dependency in Application B for module A.

• Dependencies are also for HTTP, database interactions, Dojo support, etc. The application's
dependencies are specified in the ivy.config file in the application’s config directory. So if you want
database support in your application B, you add that dependency to your application B's ivy.config. If
you want Dojo support in your application B, you add that dependency to your application B's
ivy.config file.

© 2012 IBM Corporation
45

Typical PHP Application that got out of control

Pages with imbedded logic

Started out organized

Static pages

Segments

© 2012 IBM Corporation
46

Notes:

• Before we start talking about the mechanics behind building web-based applications, we need to talk
about application design.

• The CICS Dynamic Scripting environment provides a very flexible model for delivering web pages. It
is therefore, very tempting to take ‘the easy way out’, and implement your application the very fastest
way possible at that time. For example, you can if you wish, combine business logic and
presentation logic in the same PHP script. This is obviously a poor choice since the business logic is
not reusable, the program is way more complex than needed, and maintenance cost will go up
exponentially. But, you say, it is only a small program and I need to get it done quickly.

• Most applications start small and grow. If a poor application design was taken initially, it is likely that
as you add patches and new functionality to the system it will become more difficult to maintain, and
therefore, more costly.

• CICS Dynamic Scripting offers several features that allow you to take a well organized approach to
your application architecture.

• This slide is intended to illustrate a PHP-based application, that, although it’s first few pages were
somewhat organized is now out of control and costly to maintain. Due to the complexity, perhaps
there is only one person at our shop that understands the application and can maintain it.

© 2012 IBM Corporation
47

Nicely Structured Application….

Stock
amount

name
address

Value
Account

Portfolio

Trade
Customer

Business Entities

Main Entry

Security Utility Client Admin

Stock
amount

name
address

Value
Account

Global Zone

Stock
amount

Pages Pages Pages Pages

© 2012 IBM Corporation
48

Notes:

• This slide is intended to show an application that is well organized. This provides a framework
existing logic can be quickly found and changed. New functions can easily be added to the
framework.

• Additionally, due to the divisions, many application programmers can be working on the same
application at the same time, and don’t have to understand the entire application.

• A request from any web browser enters the main controller which delegates the request to the
appropriate area. The Security controller can handle logon, customer information updates,
registration, and password updates. The client controller, for our Fantasy Investing application,
provides access to the client’s portfolio, stock trades, loans, etc

• The controllers invoke business logic to implement the desired actions.

• The controllers may need to temporarily store information about our interactions with the user, so we
can conduct what appears to be a ‘conversation’ with our user, although the interactions are discreet
information exchanges.

• When the business actions are complete, the controller pass data to display logic that develops a
web page or a REST response.

• CICS Dynamic Scripting has facilities that make this approach easy to implement.

© 2012 IBM Corporation
49

Single web page composed of parts

Header

Nav

Footer

Dynamic Content

** Drawing from “Getting Started with IBM WebSphere sMash” book

© 2012 IBM Corporation
50

Notes:

• Within a web page itself, we can further divide responsibilities.

• It is likely that the banner and footer of our application will be the same or very similar for most all
pages within our application.

• Likewise the menu options can often be written in common, reusable code

• If we reuse common code for the banner, footer, and menus, then the application programmer only
needs to address the dynamic part of the web page.

• Again, CICS Dynamic Scripting has facilities that make this approach easy to implement.

© 2012 IBM Corporation
51

Mobile Applications….

• For mobile applications,
due to device speed and
communications speed, it
is typical to send a set of
‘views’ in a single HTML
page

• The user navigates
through the set of views,
and the view makes a
light-weight REST
request to implement the
business request

• Dojo makes this
approach easy

Greeting

Application

Controller

Signon

Register

Help

Terms of Use

Account

Summary

Buy/Sell

Stock

Confirm

Purchase

Details on a

Stock

Details on a

Stock

Sets of

Pages

REST

Requests

© 2012 IBM Corporation
52

Notes:

• Due to the speed of the mobile devices, and the speed off connectivity for mobile devices, you would
normally have several “views” sent to a mobile device in the same web page.

• The user can quickly (since the views are already on the device) navigate between views.

• When a business function is requested, JavaScript routines make lightweight AJAX requests to the
backend system.

• This provides for the best mobile experience

• Dojo can help in this area. We will see this on upcoming slides

© 2012 IBM Corporation
53

Mobile Applications….

• Two HTML pages

• Multiple views per page

• Dojo formatted

• REST requests for
business actions

© 2012 IBM Corporation
54

Notes:

• This slide is an example of what you can do with Dojo

• Shown here are two HTML pages, each with multiple ‘views’

• When the page is delivered to the mobile web browser, the various views (each defined in a <div>
tag), are hidden (except for one).

• When a business action is needed, JavaScript on the HTML page makes an AJAX request and
displays the results

© 2012 IBM Corporation
55

Mobile Web Page with Dojo (1 of 2)

<html><head>
<meta name="viewport" content="width=device-width,initial-

scale=1,maximum-scale=1,minimum-scale=1,user-scalable=no"/>
<meta name="apple-mobile-web-app-capable" content="yes" />
<title>Welcome</title>

<link
href="http://ajax.googleapis.com/ajax/libs/dojo/1.7.1/dojox/mobile/t
hemes/iphone/iphone.css" rel="stylesheet" />
<script type="text/javascript“
src="http://ajax.googleapis.com/ajax/libs/dojo/1.7.1/dojo/dojo.js“
djConfig="parseOnLoad:true"></script>

<script type="text/javascript">
dojo.require("dojox.mobile.parser");
dojo.require("dojox.mobile");
dojo.require("dojox.mobile.Button");
dojo.requireIf(!dojo.isWebKit,"dojox.mobile.compat");

</script>
</head><body style="visibility:hidden;">

<!-- ***** multiple divs (views) go here – see next page ***** -->

</body></html>

© 2012 IBM Corporation
56

Mobile Web Page with Dojo (2 of 2)

<!-- ***** example sigonView ***** -->
<div id="signonView" data-dojo-type="dojox.mobile.View" selected="true">
<h1 data-dojo-type="dojox.mobile.Heading">$$ Invest !!
<div data-dojo-type="dojox.mobile.ToolBarButton" style="float:left; "
moveTo="initial" transitionDir="-1">Prev</div>
<div data-dojo-type="dojox.mobile.ToolBarButton" icon="/graphics/id-ibm-

logo.gif" style="float:right;" href="http://m.ibm.com"></div>
</h1>
<small><h2>$$ Virtual Investing: Signon</h2></small>
<p>Please enter signon details below.</p>
<form name="theForm1" method="post" action="/inv/scripts/INVSite.php"

onsubmit=" return no1Entry(); ">
<input type="hidden" name="route" value="security" />
<input type="hidden" name="request" value="signMeOn" />
<center><table>
<tr><td>Site id:</td><td><input name="eMail" type="text" size="20"

maxlength="75" value="" /></td></tr>
<tr><td>Password:</td><td><input name="password" type="password"

size="20" maxlength="20" value="" /></td></tr>
</table>

<input type="submit" value="Signon" />
</center>
</form>
</div>

© 2012 IBM Corporation
57

Dynamic Scripting Locations for Artifacts

• public Directory

• Graphics, CSS, JavaScript

• app/scripts

• Presentation Controller

• Business logic (well, maybe just the call to the business logic)

• app/views

• Pages and page fragments

• app/errors

• Custom error messages

• State Data – (for a pseudo-conversational experience)

• Global Zone
• Cookies

• Internationalization Support

© 2012 IBM Corporation
58

Notes:

• There was a slide earlier in the deck that indicated that an “zero application” was a set of directories,
each with their own purpose.

• This slide list some of the application directories that will be of interest when building presentation
logic with CICS Dynamic Scripting.

• The public directory will hold your Cascading Style Sheets, JavaScript, and graphics

• The app/scripts directory will hold your controller logic, and may contain your business logic. If you
have both of these in the app/scripts directory, then I recommend you place them in separate sub
directories within the app/scripts. Your business logic might be implemented in regular CICS
programs (e.g. COBOL), or in Java. In this case the app/scripts would only hold your controller logic.

• The app/views directory will hold web pages and web page fragments (more on this in a few slides)

• For anything but an extremely simple application, you will likely need to maintain state between user
interactions. CICS Dynamic Scripting provides a ‘Global Zone’ for this (more on this in a few slides).

• The CICS Dynamic Scripting environment also provides for I18N.

© 2012 IBM Corporation
59

Global Zone
• Map of data

• Can access from PHP, Groovy, or Java

• Used for passing data between events, for storing application

state

• Zones define the lifetime and visibility of the data

Zone Scope/Visibility

Event All handlers for a single event

Request All handlers along the path of a
single request

Tmp All requests for all users of the
application

Config All requests all users

User All request for a particular user
(HTTP Session equivalent)

App All requests for all users of the
application

Storage All requests for all users of the
application

Persistent

Non-persistent

© 2012 IBM Corporation
60

Notes:

• The global context is areas where your programs:

• can access information about the current environment

• Store/access information that is shared between all requests

• Store/access information that is private to a request

• Store/access information that persists between requests

• Store/access information that exists only during the request

• The Project Zero documentation contains a list of all the zones and how they can be used.

• The zones you will use most often in your programs are

/request

• Contains information about the input request, including form data, input and output headers, the URL,
the path, the HTTP method and the query string.

/user

• Is used for maintaining session data

© 2012 IBM Corporation
61

Receiving Requests

• Form data

$customerName = zget("/request/params/customerName");

• Path

$thePath = zget("/request/path");

• Method

$theMethod = zget("/request/method");

• Query String

zget("/request/queryString");

• Headers

zget("/request/headers/in/User-Agent");
zput("request/headers/out/Content-Type", "text/plain");

© 2012 IBM Corporation
62

Notes:

• This side shows common zget and zput commands that you will use to get and put data from/to the
Global zone

© 2012 IBM Corporation
63

Session data

• /user zone = session data

• Visible to all programs accessed for an HTTP request

• Identified by the value of the zsessionid cookie value

• Preserved across server recycles

• Accessible from PHP, Groovy, or Java - Uses Java
serialization, so only place serializable objects in it

• An HTTP session times out after a period of inactivity

• Timeout is set by /config/userZone/idleTimeout in zero.config

• Session data is invalidated after zsessionid cookie expires, or
manually

• Default idle timeout is 5 minutes

zput("/user/someName", "value"); // store value or object
zget("/user/someName"); // get value or object

zpost("/user#invalidate",true); // force invalidation
zpost("/user#save",true); // force save to physical storage

© 2012 IBM Corporation
64

Notes:

• The /user global zone is used for session data.

• If you want to maintain data between user interactions, you can place the data in the /user global
zone

• CICS Dynamic Scripting keeps the session data for your session separate from others by associating
it with a session id, and writing this session id to a cookie. You don’t have to track session, you just
use the /user zone

© 2012 IBM Corporation
65

Providing Responses

• Static pages

• Write output to STDOUT (which is sent to the browser)

• println (Groovy)

• echo (PHP)

• Renderers

• Place in app/views

• PHP
• It is an ‘embedded’ scripting language, so you can have HTML in

your PHP file

• Groovy
• Groovy script (a .groovy file)

• Groovy template (a .gt file, embedded)

• Similar to Java ServerPages

© 2012 IBM Corporation
66

Notes:

• When writing to the web browser, you can use the println command (Groovy) or echo (PHP)

• Renderers allow you to separate the web page generation from you controller logic

• The next few pages first show you an approach where you may be able to get pages developed
quickly and may be ok for an application that has only a couple pages, however if that application
ever expands to many web pages, this approach will quickly cause complications in the application
since it is not well organized.

© 2012 IBM Corporation
67

Simple PHP Pages

• You will be tempted to mix business logic with your
presentation logic; it is usually not a good idea

<html>
<body>
<h1>A Title<h1>
<?php
// you could put database access (or anything else) here

echo "";
echo "Can add dynamic content by invoking PHP functions ";
echo "and echoing the results!";
echo "You could even have business logic in the middle ";
echo "of your PHP pages (which is often tempting), but do not ";
echo "do this you want a clear division between the presentation ";
echo "and the business layer";
echo "";
?>
</body>
</html>

© 2012 IBM Corporation
68

Notes:

• Since you can mix PHP and HTML tags into a single file, you will often be tempted to create a your
output web page, and then add PHP logic to the middle of the page that performs business functions.

• This is almost always a bad idea. If you take this approach and want to use that business logic
again, you will have to duplicate that business logic in another script.

• Additionally, the person maintaining this script will have to know and understand both the
presentation and business logic requirements of the application.

• It always a good idea to assume that any application you write is a worthwhile application. Since it is
a worthwhile application, your application will grow to include many more functions, and will require
maintenance.

© 2012 IBM Corporation
69

PHP Renderer

• From the controller logic…

• In the showStockPurchase.php script (the view)

...
// invoke business logic
makeStockPurchase($client, $requestedStockSymbol, $requestedAmount);
// indicate data a page to be rendered

zput("/request/requestedStockSymbol", $requestedStockSymbol);
zput("/request/requestedAmount", $requestedAmount);
zput("/request/view", "inv/showStockPurchase.php");
render_view();
...

<?php

$requestedStockSymbol = zget("/request/requestedStockSymbol");
$requestedAmount = zget("/request/requestedAmount");
?>
<html><body><h1>Stock Trade Info</h1><hr/>

You just purchased <?php echo $requestedAmount; ?>
shares of <?php echo $requestedStockSymbol; ?>.

</body></html>

© 2012 IBM Corporation
70

Notes:

• This slide shows the preferred approach

• The controller logic (top) invokes a business function to perform the desired action. The controller
logic places objects returned from the business function into the /request zone, specifies the page to
be displayed and invokes a renderer.

• The target page to be rendered gets the data objects from the /request zone and then generates the
page to be sent to the web browser.

© 2012 IBM Corporation
71

Page to be rendered – better example

<?php
<!–- Get passed data -->

$requestedStockSymbol = zget("/request/requestedStockSymbol");
$requestedAmount = zget("/request/requestedAmount");
?>
<html>
<!-– Header -->

<?php zput("/request/view", "inv/header.php"); render_view(); ?>
<!-– Dynamic Content -->
<h1>Stock Trade Info</h1>
You just purchased <?php echo $requestedAmount; ?>
shares of <?php echo $requestedStockSymbol; ?>.

<!-– Navigation and Footer -->

<?php zput("/request/view", "inv/nav_menu.php"); render_view(); ?>
<?php zput("/request/view", "inv/footer.php"); render_view(); ?>
</html>

• Separate header/menu/trailer and main content

© 2012 IBM Corporation
72

Notes:

• This slide shows the preferred approach

• The controller logic (top) invokes a business function to perform the desired action. The controller
logic places objects returned from the business function into the /request zone, specifies the page to
be displayed and invokes a renderer.

• The target page to be rendered gets the data objects from the /request zone and then generates the
page to be sent to the web browser.

© 2012 IBM Corporation
73

Groovy

• The Groovy scripting language also available

• Can do the same as previously described with PHP

(on the previous slides)

• Can have Groovy scripts (.groovy files)

• Can have Groovy templates (.gt files)

• Am not going to include Groovy code samples here….

See examples in:

• “Getting Started with IBM WebSphere sMash” book

• Project Zero documentation

• WebSphere sMash documentation

• CICS Dynamic Scripting Redbook

© 2012 IBM Corporation
74

Notes:

• The same concepts and facilities for page rendering are also available using the Groovy scripting
language. See the documentation in the reference section for examples.

© 2012 IBM Corporation
75

File Browsing

• Add the following to your zero.config:

/config/fileserver/directoryBrowsing = true

• By default the /app/views/listing.gt from zero.core will

be used to show directories

• Override with
/config/fileserver/directoryView = “customDirectoryListing.gt”

• Not typically done in production

• If you have directories you don’t want people to access,
add an index.html file to the directory

© 2012 IBM Corporation
76

Notes:

• You can enable file browsing in application directories if you would like.

• This is usually not a good idea in a production system

© 2012 IBM Corporation
77

Custom Error Messages

• Can use the default error message mechanism

• Can customize messages

• Can use your own error message mechanism

• Using the default error page is:

<?php
...
zput("/request/view", "error");
zput("/request/status", "500");
zput("/request/error/message", "You made an error");
render_view();
...

?>

© 2012 IBM Corporation
78

Notes:

• CICS Dynamic Scripting comes with default error pages

• You can customize your own error pages

© 2012 IBM Corporation
79

Security

• Active Content Filtering

• Removes potentially malicious active content from

application content that is displayed in a browser

• For example, an SQL injection attack
• <dependency name="zero.acf" org="zero" rev="[1.0.0.0, 2.0.0.0["/>

• SSL

• Specified in the config/zero.xml file

• See the CICS documentation

• HTTP Basic Authentication

• Specified in the config/zero.xml file

• See the CICS documentation

© 2012 IBM Corporation
80

Notes:

• The CICS Dynamic Scripting environment provides ACF (Active Content Filtering) to guard against
certain attacks such as an SQL injection attack

• CICS Dynamic Scripting applications can be protected with SSL or HTTP Basic Authentication.
Since CICS is listening for incoming requests, you will want to read the CICS-related documentation
on CICS Dynamic Scripting security

• http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/index.jsp?topic=%2Fcom.ibm.cics.ts.smash.doc%
2Fsecuring_applications.html

© 2012 IBM Corporation
81

REST - REpresentational State Transfer

• Leverages HTTP protocol

• Nouns (URLs) indicate what is being worked on

• Verbs (GET, PUT, POST, DELETE methods) indicate the action to be
performed (List, Create, Read, Update, Delete)

• Resource centric

• Similar in concept to hyperlinked data

• Content negotiation

• REST does not restrict format of results

• HTTP headers can be used to request format with no changes to URL

• Popular formats of returned data are XML and JSON

• Lightweight data transfer

• From Web browser or any HTTP client or server

� More information:
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

© 2012 IBM Corporation
82

Notes:

• REST (REpresentational State Transfer) is an architectural style that applies the approach we use to
access Web pages to access our business data. Just like we use a URL to access the current state
of a Web page, you use a URL to access the current state of business data. We can specify a
specific Web page on a URL, we can also specify a specific account number on a URL.

• We normally need to perform LCRUD (List, Create, Read, Update, and Delete) functions on our
business data. The HTTP ‘methods’ that flow with the request indicate the action to be performed on
the data. Whereas we normally only use a GET or a POST method when accessing a Web page, for
data, a GET method indicates a list or a read, DELETE for a delete, POST for an add, and a PUT for
an update.

• REST results in very lightweight interactions with a minimal amount of characters transferred.
• The format of the returned data is not dictated, although most people use XML or JSON (JavaScript

Object Notation.
• REST is documented in Roy Fielding’s year 2000 doctoral thesis. In his thesis, Fielding indicates that

REST started in 1994 and was iteratively redefined. Since many people were not aware of REST,
they think it is a follow-on to Web services, however Web services came after REST.

• For situations where you want interfaces documented with WSDL, transactionality, and more security
options, Web services are great. Where you just need lightweight data access, REST is great.

• One of the primary uses of REST is for requests from Web browsers. JavaScript running in a Web
browser can use AJAX (Asynchronous JavaScript and XML) to make RESTful requests to backend
data and business logic systems such as CICS.

• ZRM (Zero Resource Model) discussed later can be used to very quickly expose a resource with a
RESTful interface using single command called delegate.

© 2012 IBM Corporation
83

REST and Project Zero

• RESTful event handlers in Project Zero

• Each script in the <apphome>/app/resources directory is a resource
handler

• URL convention for interacting with resources:
• /resources/<collectionName>[/<memberID>[/<pathInfo>]]

• URI and HTTP method define the resource to access and the action to
perform

• Action can be taken on the entire collection, or a specified member of the
collection

• Example:

URI HTTP
Method

Event

Description

Resource
Handler
Function

http://example.com/resources/people GET List people 	�#���$%

http://example.com/resources/people POST Create person 	�&�����$%

http://example.com/resources/people/john GET Retrieve person 	�'�����
�$%

http://example.com/resources/people/john PUT Update person 	�(�����$%

http://example.com/resources/people/john DELETE Delete person 	���)���$%

© 2012 IBM Corporation
84

Notes:

• Let's take a look at how a RESTful service can be implemented using the Project Zero
programming model.

• Each PHP or Groovy script placed in the /app/resources directory of a Project Zero application is
automatically treated by the platform as a RESTful handler for a category of resources, or a "resource
collection". The name of the script represents the name of the collection. This script contains the logic to
execute when processing inbound HTTP requests for that resource, separated into functions with well-
defined names. The function that is invoked depends on the URI and HTTP method of the inbound HTTP
request.

• The URI pattern shown in the slide is a convention used to identify which collection to access based on
the URI of an inbound HTTP request. If the URI contains just a collection name, the operation is targeted
at the whole collection. If a member ID is specified in the URI after the collection name, the operation is
targeted at an individual member of the resource collection. Optionally, additional information can be
specified after the member ID.

• This table shows an example with a resource collection called "people". The URI column shows two
different kinds of URIs that can be used to interact with instances of the resource: the collection URI,
which ends with the collection name - in this case "people", and the member URI in which an identifier for
an individual person is specified - in this case, the name "john". We can see how a request URI, combined
with an HTTP method, triggers an event such as List, Create, Retrieve, Update or Delete. These events
are sometimes referred to as "L-CRUD" events. By convention, the Project Zero platform searches for
handlers for these events in a script called "people.groovy" or "people.php" in the /app/resources
directory. If this script provides an implementation of the function corresponding the event, that function is
invoked to handle the request.

• Therefore, you can develop a RESTful service simply by creating a single script and implementing the
subset of L-CRUD functions that you need. The platform takes take care of mapping inbound requests to
your logic, by following a set of RESTful conventions.

© 2012 IBM Corporation
85

CICS DS: REST: onList()

• def onList() {
try {
// Get configured DataManager for data access
def data = zero.data.groovy.Manager.create('mydb')
// Retrieve employee records via Data Zero
def result = data.queryArray('SELECT * FROM employees')
request.view = 'JSON'
request.json.output = result
render()

} catch (Exception e) {
if (e.getCause() instanceof java.sql.SQLException) {
request.status = HttpURLConnection.HTTP_INTERNAL_ERROR
request.error.message = "The db may not have "+

"been initialized."
request.view = "error"
render()

}
}

}

© 2012 IBM Corporation
86

Notes:

• This sample shows how you might implement your own REST interface for a GET request against
your collection.

• This code segment would be in a script in your app/resources directory.

• CICS Dynamic Scripting will invoke ‘well known’ functions in your program depending on whether
there was a GET request against the collection, a GET request of a specific member of the collection,
or a POST, PUT, DELETE request.

• Notice the use of a ‘renderer’ to format the data in JSON format.

• You can customize supplied renderers if you want.

© 2012 IBM Corporation
87

Interfacing with CICS Programs

<?php
// Instansiate a COMMAREA representation
// The CustProgCommarea class was created from a COBOL
// data layout using RAD, but could have used JZOS also

$commArea = new Java('com.ibm.ddw.customer.CustProgCommarea');
// Set some data in the commarea by calling method on the class

$commArea->setRequest__type('R');
$commArea->setCustomerId('00000001');
// Use the JCICS class to call a CICS program

$program = new Java('com.ibm.cics.server.Program');
$program->setName('CUSTPROG');
try {

$program->link($commArea->getBytes());
} catch (CICSException $e) {

echo $e->getMessage();
exit;

}
echo "Return value is " . $commArea->getCustomerFirstName();
?>

© 2012 IBM Corporation
88

Notes:

• For the code example on this slide, we used the J2C wizards to create a CICS Java data Binding.

• We also could have used JZOS. We would have compiled the target CICS program (CUSTPROG in
this case) with the ADATA compiler option. We would have used the ADATA information
representing the COMMAREA of the CUSTPROG program as input to the JZOS classes to generate
a Java object that represents the COMMAREA (which we would have called CustProgCommarea (or
whatever name we wished to use)).

• In the code example we use a “new Java()” request to get an instance of the class that represents the
CUSTPROG program’s COMMAREA. We then invoke methods on the class to set values (the
example invokes the setCustomerID() method).

• After data values are set in the object that represents the COMMAREA, we create a new Program
object and use the setName() method to indicate the program we are referring to has a name of
“CUSTPROG” (because CUSTPROG is the name of the target CICS program). We then invoke the
link method of the CICS Program object, passing the byte array that represents the COMMAREA.

• In the code example, you can see that after the program invocation, we are accessing getters in the
data object to obtain the information returned by the CUSTPROG program in the COMMAREA.

• This slide illustrates a LINK to a program using a COMMAREA, but channels and containers may
also be used, plus many other CICS API are supported.

• JCICS JavaDoc:

• http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.jcics.javado
c/com/ibm/cics/server/package-tree.html

© 2012 IBM Corporation
89

Interfacing with CICS VSAM File
<?php
// Used RAD for the CustProgFileLayout class, could have used JZOS

$recordLayout = new
Java('com.ibm.ddw.customer.datalayouts.CustProgFileLayout');

// the record key for the KSDS VSAM CUSTDATA file

$theKey = '00000001';
try {

// Use the JCICS class to read from a KSDS VSAM file

$custFile = new Java('com.ibm.cics.server.KSDS');
$custFile->setName('CUSTDATA');
$recordHolder = new Java('com.ibm.cics.server.RecordHolder');
$readKey = mb_convert_encoding($theKey, "1047", "iso-8859-1");
$custFile->read($readKey, $recordHolder);
$recordLayout->setBytes($recordHolder->value);

} catch (CICSException $e) {
echo $e->getMessage();
exit;

}
echo "Return value is ".$recordLayout->getCustomerFirstName();
?>

© 2012 IBM Corporation
90

Notes:

• Like the LINK example, we have created a CICS Java Data Binding that represents the layout of our
VSAM file.

• In this example we again use the Java bridge to allow us to use the JCICS classes.

• We are reading a KSDS file, so we instanciate a KSDS object and set it to the name of the VSAM file
with which we will interact.

• We create a ‘record holder’ and pass it to CICS on the read method along with the record key.

© 2012 IBM Corporation
91

Tutorials, Samples, and Demos

© 2012 IBM Corporation
92

Summary -- Session # 10291

• Web-related Terminology

• HTTP, HTML, CSS, DOM, JavaScript

• AJAX, Widgets, DOJO

• Mobile

• What is CICS Dynamic Scripting (CICS DS)

• Web application design

• The typical design I use

• Maintaining state

• Getting CICS DS Request information

• CICS DS Response Rendering

• Static web pages, CSS, JavaScript

• Dynamic Web pages
• PHP Rendering
• Groovy Rendering
• REST/AJAX

• Error Responses

• Implementing REST interfaces

• Security

© 2012 IBM Corporation
93

References

• See my presentation from 2011 Winter SHARE for a CICS Dynamic Scripting
Overview (there is a notes page for each slide)

• JCICS JavaDoc:

• http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/index.jsp?topic=/com.ibm.cics.ts.jci
cs.javadoc/com/ibm/cics/server/package-tree.html

• CICS InfoCenter:

• http://publib.boulder.ibm.com/infocenter/cicsts/v4r1/topic/com.ibm.cics.ts.smash.doc/s
mash_overview.html

• CICS on projectzero.org:

• http://projectzero.org/cics

• ProjectZero forum:

• http://projectzero.org/forum

• Tutorials:

• www.w3schools.com

© 2012 IBM Corporation
94

Notes:

• An excellent way to grow your skills on CICS Dynamic Scripting is to look at the Tutorials, Samples,
and Demos available on the Project Zero Web site.

• The CICS InfoCenter lists the Project Zero Tutorials, Samples, and Demos that work in CICS
Dynamic Scripting.

• The CICS InfoCenter has directions on how to install Project Zero Demos in CICS Dynamic Scripting.

• If you don’t yet have CICS Dynamic Scripting installed, try installing WebSphere sMash DE
(Development Edition), which is free for download and development.

