

2011

JPMorgan Chase

ROBERT ZWINK , VP Implementation Services, Chief
Development Office

[RUNNING OPEN SOURCE ETL
ON A MAINFRAME]
Pentaho is an open source framework written in Java which includes a full featured Extract Transform
Load (ETL) tool called Pentaho Data Integration (PDI). Programmers leverage PDI to create custom
transformations which can be a direct 1:1 translation of existing COBOL. A rich palette of out of the box
components allows the transformation to be assembled visually. Once finished, the transformation is a
completely portable Java application, written in a visual programming language, which runs fully within
a java virtual machine (JVM). Java programs created by PDI are 100% zAAP eligible.

Contents
ABSTRACT .. 3

GENERAL TERMS ... 3

INTRODUCTION ... 3

BACKGROUND ... 4

Assumptions and Requirements ... 4

Chargeback Model .. 5

A Push to Open Source .. 5

APPLICATION ARCHITECTURE ... 6

Mainframe Batch Processing .. 6

Data Access ... 6

File I/O ... 6

Versioning, Deployment, Scheduling and Monitoring .. 7

BPXBATCH, BPXBATSL, or JZOS? ... 7

Summary: Comparison of tools for launching batch Java jobs ... 7

IMPLEMENTATION .. 7

EXPERIENCES & LESSONS LEARNED .. 8

Billable CPU Reduction .. 8

Enhancements needed for direct MVS data access .. 9

Emerging Technology without Commercial Support .. 9

CONCLUSIONS ... 9

A Hybrid Approach .. 9

BIOGRAPHY ... 10

REFERENCES .. 10

ABSTRACT
Pentaho is an open source framework written in Java which includes a full featured Extract

Transform Load (ETL) tool called Pentaho Data Integration (PDI). Programmers leverage PDI to

create custom transformations which can be a direct 1:1 translation of existing COBOL. A rich

palette of out of the box components allows the transformation to be assembled visually. Once

finished, the transformation is a completely portable Java application, written in a visual

programming language, which runs fully within a java virtual machine (JVM). Java programs

created by PDI are 100% zAAP eligible.

GENERAL TERMS
COBOL, ETL, Java, Mainframe Modernization, zAAP, zIIP, z/OS

INTRODUCTION
In 2004 IBM introduced the IBM System z Application Assist Process (zAAP). The objective of

the zAAP is to enable integration of new Java based Web applications with core z/OS backend

database environment for high performance, reliability, availability, security, and lower total

cost of ownership (Walsh). While the lower total cost of ownership is multi-faceted, a core

component is an attractive pricing model designed to encourage customers to run Java

workload at a reduced rate. The zAAP processor is dedicated exclusively to the execution of

Java workloads under z/OS.

Java development on the mainframe is not a new technology. For years Java has executed on

the mainframe under MVS, CICS, IMS, DB2 and WebSphere (Goetze). Success in these areas

has prompted managers charged with reducing mainframe operating expenses to consider Java

based alternatives to traditional development practices (Morris).

While reduced operating costs and a dedicated processor for mainframe Java applications is a

compelling reason to re-engineer existing processes, in practice there are considerable ancillary

processes which must change along with the programming language to be effective. In

practice it is these ancillary processes which cause otherwise small cost savings initiatives to

balloon past practical return on investment. Pentaho provides a low cost framework for

developing java applications accessible to both mainframe system programmers and traditional

Java developers.

Pentaho is an open source framework written in Java which includes a full featured Extract

Transform Load (ETL) tool called Pentaho Data Integration (PDI). Programmers leverage PDI to

create custom transformations which can be a direct 1:1 translation of existing COBOL. A rich

palette of out of the box components allows the transformation to be assembled visually. Once

finished, the transformation is a completely portable Java application. PDI transformations are

written in a visual programming language, which runs fully within a java virtual machine (JVM).

Java programs created by PDI are 100% zAAP eligible.

Transformations are developed in a feature rich IDE, ideally on the developers own laptop.

Moving development off of the mainframe onto the developers’ own laptop also reduces

mainframe CPU time during debugging. The resulting transformation is physically stored as an

extensible markup language (XML) configuration file which can be easily transferred to a

mainframe using standard file transfer protocol (FTP). Once on the mainframe the PDI runtime

is invoked from job control language (JCL) with the XML file referenced for execution. Existing

schedulers, version control and monitoring tools can remain in place. This configuration

provides a fast and efficient way of re-engineering existing COBOL batch by leveraging a rich

open source framework, while leaving in place ancillary processes which provide stability and

complexity to the mainframe operating environment.

BACKGROUND

Assumptions and Requirements

A robust mainframe operating environment consists of a development, execution, and

monitoring stack capable of executing high performance batch and online applications. While

Java may be a viable replacement for COBOL, there is often a strong desire to leave other

elements of the development, execution, and monitoring stack in place. Specifically in the field

of mainframe batch processing this research assumed a strong desire to benefit from the Java

programming language while continuing to leverage existing systems for scheduling,

monitoring, code promotion, data access, security, messaging, defect tracking, transaction

processing, and problem resolution. The primary strength of leveraging PDI on the mainframe

is that these processes can be both left alone and therefore leveraged by the solution.

In order to execute PDI on the mainframe the operator must have IBM Java 6 and Unix System

Services installed (USS). This research also assumes that the optional z:OS Toolkit installed in

order to leverage the z:OS methods of executing Java from JCL. Any additional client jars must

also be made available; this includes JDBC jars for connecting to IMS and DB2. This paper will

cover executing PDI transformations using the IBM JZOS program originally developed by

Dovetail Technologies which is part of the CO:Z Toolkit installed on most modern mainframe.

Finally, experience with JCL and JVM configuration parameters will be required to understand

the technical examples illustrated in this paper.

Chargeback Model

An IT Chargeback Model provides monetization of IT resources. While there are many versions

of chargeback, one based on consumption, as opposed to subscription or number of users, is

ideal for this optimization technique. Consumption based chargeback models provides IT

organizations a measurable way to charge more for application that use more, and charge less

for applications that use less (Singh).

When a batch application is executed on the mainframe statistics are recorded about its

runtime characteristics. The total amount of CPU time consumed by the batch application is

typically recorded in SMF Type 110 records and later monetized in the chargeback process

based on an hourly run rate. If a batch job required 1.5 hours of CPU time, and a CPU hour is

charged back at $22 per hour, then the batch job would have cost $22 * 1.5 hours = $33 total.

The approach described in this paper is intended to reduce the billable CPU time by offloading

work from a billable variable cost CPU to a fixed cost reduced rate zAAP specialty CPU that is

either not billed or billed at a reduced rate in a consumption based chargeback model.

A Push to Open Source

The decision to leverage open source technology on the mainframe must come with a

deliberate evaluation of the impact to your organization. Total cost of ownership and the risk

of community driven development is outside of the scope of this paper. While projects such as

Apache Tomcat, Subversion and the Linux operating system have found strong footholds in

enterprise software development, the decision to leverage open source is often part of a larger

enterprise wide position. Open source ETL tools are an emerging alternative to traditional

commercial vendors. If a strategic decision to leverage open source across the enterprise has

been made, adoption of PDI on the mainframe is even more compelling. PDI offers a unique

advantage of any other ETL tool, commercial or open source, because it executes as Java. At

the time of this research there are no other alternatives to this unique capability.

This paper demonstrates the successful execution of PDI on the mainframe. It is believed by

the author to be a novel approach, and at the time of this research, completely unsupported by

the existing PDI open source development community. As Java and open source in general

finds footholds on mainframe computers, this is expected to change. By leveraging this

approach developers are assuming full responsibility for testing and debugging the framework.

In light of the substantial cost savings made available by easily executing java on the

mainframe, this may be justified. Regardless, it is important to note that a commercial version

of PDI supported on the mainframe does not exist in any form. This research describes the

necessary modifications to successfully execute PDI on the mainframe and the next steps

needed in the community development to bolster its capabilities on the mainframe platform.

APPLICATION ARCHITECTURE

Mainframe Batch Processing

Mainframe batch processing leverages the Job Control Language (JCL) to execute programs.

Traditional batch architecture is often layered, having data access controlled by a database

management system or file system. Configuration information supplied to the batch job at

runtime allows job portability across multiple environments.

Typical batch processing is initiated at regular intervals by an automated scheduler. The

scheduler executes JCL which in turn controls the order or steps that a program takes to

complete execution. Common steps found in JCL may extract data from a database, transform

data by either sorting or applying business rules, and finally loading the data into a file, queue,

or database.

When a mainframe batch step requires a robust programming language typically COBOL is

chosen. COBOL is widely supported on the mainframe and accessible to mainframe

programmers. Regardless many organizations have chosen to replace their existing COBOL

development with the Java programming language. In both cases once a program is created

within Java or COBOL, it is executed by a job step, data is accessed by the program, the data is

manipulated, and then data is persisted to a database of file. While this does represent a broad

generalization, the overall pattern is pervasive in mainframe batch processing.

Data Access

Data is typically stored in a file or database. Access to the data is provided in many ways, such

as directly by the file system or via robust network protocols which provide client/server access

to data via queues and services. Database management systems (DBMS) also provide robust

application programming interfaces (API) for local and remote database access. While there

are many ways to access data on a mainframe, it is particularly important that a programming

language provide this support. PDI is written in Java with a robust mechanism for leveraging

existing client libraries.

File I/O

While Apache VFS is integrated as the primary data access API, the ability to extend PDI using

custom Java classes provides for easy access to VSAM and MVS datasets using IBM Java Record

IO (IBM: Java Record I/O overview.).

The Apache VFS API is an abstraction to the filesystem which provides for uniform file naming

to disparate operating systems. Apache VFS does not directly support MVS datasets existing

outside of the HFS Filesystem on mainframes. For PDI to natively handle all mainframe file

access on MVS and extension to VFS would be required.

Versioning, Deployment, Scheduling and Monitoring

Change management systems vary from site to site. Changement, CVS, and Subversion are but

a few of the source management systems used by mainframe computers. PDI generates XML

configuration which contain complete program logic. The only requirement of PDI for change

management systems is that it support XML files.

BPXBATCH, BPXBATSL, or JZOS?

There are three ways to execute java as mainframe batch. IBM provides a succinct overview for

comparison purposes (Goetze). A chart from that article is reproduced below.

 BPXBATCH BPXBATSL
Custom JVM
launcher (JZOS)

Flexible configuration of
environment variables

Yes, variable substitution and
scripting are not allowed

Yes, variable substitution and
scripting are not allowed

Yes

Route output directory to SYSOUT
datasets

No No Yes

Control output encoding separately
from default JVM encoding

Yes, using iconv Yes, using iconv Yes

Condition-code passing between
Java and non-Java steps

No No Yes

Use MVS datasets and DD
statements

No Yes Yes

JVM runs in same address space No Yes Yes

Communication with MVS console No
Yes, using _console function
from a JNI routine

Yes

Summary: Comparison of tools for launching batch Java jobs

 This chart demonstrates the flexibility of the JZOS launcher provided as part of the CO:Z

Toolkit. JZOS simplifies the JCL, runs in the same address space, and cause all the java

processing to run on the zAAP specialty engine. Practically speaking JZOS starts the JVM

without the Unix System Services address space. The other two approaches will cause the USS

to execute albeit briefly with no discernible value.

IMPLEMENTATION
A mainframe programmer using PDI develops applications using a visual programming

language. While this is contrary to procedural COBOL programming, the effect is the same. In

practice the visual programming language is self documenting. An example program is

illustrated below.

This program is a direct port of a cobol application which reads two fixed file inputs and then

pairs the two files similar to folds together two decks or cards. Business logic is evaluated, and

based on the evaluation data can take two different paths to separate output files. One output

file is essentially the combined data verbatim, while the second output file contains slight

modification to the original data.

This transformation was created by reading the original COBOL code, following the

programming language and leveraging existing component of the PDI framework. This research

does not cover all of the nuances of the PDI visual programming language, through the author

recommends the book written by the principal developer of PDI Matt Casters “Pentaho kettle

solutions building open source ETL solutions with Pentaho data integration” (Casters).

Once complete the visual program is stored in an xml file containing all necessary configuration

information. The PDI xml file can then be transferred to a mainframe HFS file system using FTP

in binary mode which maintains the ASCII character set. The author found it practical to test

the PDI xml file from Unix System Services prior to scheduling the Job to execute using JCL.

Once satisfied the PDI program can be directly executed using the JZOS java launcher.

EXPERIENCES & LESSONS LEARNED

Billable CPU Reduction

Direct billable mainframe batch CPU reduced by 75% based on tests executed which compared

COBOL and comparable PDI transformations. This is due solely to the zAAP offload eligibility of

the Java programming language and DRDA DB2 zIIP offload eligibility created by the JDBC

connection to DB2. The author believes this workload represents typical mainframe batch

based on experience in financial data processing. Removing the DB2 requirement of the test

caused complete zAAP offload thus 98% reduction in direct billable mainframe batch CPU.

Since direct billable mainframe batch CPU is the single largest component of mainframe batch

processing a significant cost savings opportunity is made available.

Enhancements needed for direct MVS data access

PDI does not ship with native MVS file IO capability. The PDI XML configuration files needed to

remain on the HFS filesystem, as well as any output files. Managing the transfer of HFS files to

MVS is not ideal, thus the ability to write directly to MVS is a needed enhancement. Since PDI is

fully open sources, as well as the Apache VFS libraries for output, it is possible to add this

functionality. Until this happens, juggling between HFS and MVS is a necessary workaround.

Emerging Technology without Commercial Support

Mainframe batch processing using PDI is new and completely unsupported. The PDI

community forums have no mention of this, and Pentaho commercial sales and support

considers the mainframe completed unsupported. This means that shops willing to implement

PDI as a potential cost save need to consider support in the total cost of ownership equation.

CONCLUSIONS

A Hybrid Approach

The experiences of this research all points to a hybrid approach for future PDI development on

the mainframe. Based on this research critical COBOL processing with high levels of DB2 access

should remain in place primarily due to lack of commercial support. Non-critical non-DB2

COBOL programs however are great candidates. Environment build jobs, backup jobs, and

other maintenance tasks especially in development mainframe environments should be

considered for this unique approach. As development continues with PDI, open source

contributions by large mainframe shops will allow for a shared library of mainframe specific

components, as these develop the case for PDI will also. If a commercial support offering for

PDI on the mainframe emerges, the case may also be stronger.

BIOGRAPHY
Robert Zwink works on a dedicated team focused on ensuring continued technology and

process innovation across large and disparate systems at one of the world’s largest financial

services firms. Prior to this role he spent two years in as manager of mainframe application

performance and capacity planning. Today, he creatively applies his experience designing and

implementing complex enterprise server based solutions to mainframe modernization projects.

REFERENCES
alphaWorks : IBM JZOS Batch Toolkit for z/OS SDKs : Overview. (n.d.). alphaWorks : Emerging

technologies. Retrieved August 5, 2011, from

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

Casters, M. R., Bouman, R., & Dongen, J. v. (2010). Pentaho kettle solutions building open

source ETL solutions with Pentaho data integration. Indianapolis, Ind.: Wiley.

Fowler, M. (2003). Patterns of enterprise application architecture. Addison-Wesley

Professional.

Goetze, Steve, and Kirk Wolf. "Java batch jobs on z/OS and OS/390." IBM - United States. N.p., 5

Mar. 2005. Web. 25 Apr. 2011. <http://www.ibm.com/developerworks/systems/library/es-

java-batchz.html>.

IBM: Java Record I/O (JRIO) overview. (n.d.). IBM - United States. Retrieved August 5, 2011,

from http://www-03.ibm.com/systems/z/os/zos/tools/java/products/jrio/overview.html

Morris, Robert. "Specialty Engines: How to Reduce Costs and Save MIPS zIIP/zAAP Specialty

Engine: Specialty Engines: How to Reduce Costs and Save MIPS ." MainframeZone. N.p., 29 Apr.

2010. Web. 25 Apr. 2011. <http://www.mainframezone.com/applications-and-databases/ziip-

zaap/specialty-engines-how-to-reduce-costs-and-save-mips/P2>.

Singh, Lisa. "Consumption-based chargeback model: For Northrop Grumman CIO Bernie McVey,

a more efficient IT organization starts here." ExecutiveBiz. N.p., 23 Aug. 2010. Web. 26 Apr.

2011. <http://blog.executivebiz.com/2010/08/consumption-based-chargeback-model-for-

northrop-grumman-cio-bernie-mcvey-a-more-efficient-it-organization-starts-here/>.

Walsh, Kathy. "zIIPs and zAAPs: Everything New and Old." SHARE. IBM. Austin Convention

Center, Austin. 1 Mar. 2009. Lecture.

http://www.alphaworks.ibm.com/tech/zosjavabatchtk/download

