
DB2 for z/OS Stored Procedures –
Trends and Technology

Robert Catterall
IBM

March 12, 2012
Session 10223

Agenda

• A vision of a modern DB2 for z/OS data-serving system
• A brief review of advances in DB2 for z/OS stored

procedure functionality since DB2 V4
• Native SQL procedures
• Some go-forward recommendations
• Hints, tips, etc.

A vision of a modern DB2 for z/OS
data-serving system

DB2 data server

Stored procedures

Data

Java application
server (WebSphere
or WebLogic or…)

Windows/.NET
application server

DB2 MQListener

WebSphere MQ queue

The big picture

Points about the “vision” diagram
• The DB2 server platform is not specifically identified – could

be z/OS, or Linux, or UNIX, or Windows
• The DB2 server is a pure database server – there is no

transaction management subsystem on the server
• Standard set-up for some time in distributed systems world

• Mainframes with DB2 often have CICS or IMS, too – usually
because the organization ran a DB2-accessing transactional
workload before stored procedure functionality was available
• Static, server-side SQL (good for scalability) can be packaged in

CICS or IMS transaction programs – or in stored procedures
• You can have a high-volume transactional workload with the

mainframe functioning as a data server (i.e., all SQL requests
come through the DB2 Distributed Data Facility)

Mainframe

DB2 MQListener

Stored procedure

DB2

Message

MQ queue

More on the vision diagram

• MQ and DB2 stored procedures can be a good combination
• Client program puts a message on an MQ queue
• A process called the DB2 MQListener (provided with DB2) can

call a stored procedure in response to a message arriving on a
queue – the message is the input to the stored procedure
• Stored procedure takes input, might drive a DB2 table insert

• Another option: MQ can invoke a CICS transaction to process a
message

A great use of MQ and DB2 stored procedures
• For database updates that need to occur in near-real-time –

but not synchronously – relative to end user input
• Possible examples: customer changes personal information

(e.g., address), or makes an online payment
• User clicks on “Submit,” input information captured in MQ message
• Application can respond to end user with (for example) “Your update

has been received and will be applied to your profile momentarily”
• Back-end DB2 database updates likely to occur within seconds

• Advantages of asynchronous approach:
• Potentially better end-user response time (fast reply after “Submit”)
• Improved system availability (from user’s perspective): if back-end

database server is unavailable, messages simply accumulate on
queue and are processed when database server is back online

A brief review of advances in DB2 for z/OS
stored procedure functionality since DB2 V4

MSTR

z/OS

DBM1 IRLM DDF SPAS
•Stored procedure
programs run here,
using DB2 call attach
facility interface

V4: stored procedures introduced
• New address space: DB2-managed stored procedure

address space (aka SPAS)

• A shortcoming: caller could not fetch results of cursor
declared and opened in a stored procedure
• Had to use output parameters (not ideal for result sets with

indeterminate number of rows, not feasible for large result sets)

MSTR

z/OS

DBM1 IRLM DDF DB2-managed
SPAS
•Use not
recommended
•Gone in DB2 9

WLM-managed
SPAS X, #1

SPAS X, #2

SPAS X, #3

WLM-managed
SPAS Y, #1

V5: two significant enhancements
• Caller of a stored procedure could fetch rows from a

cursor declared and opened in the stored procedure
• WLM-managed stored procedure address spaces

introduced

V6 and V7: DDL, SQLPL, COMMIT
• DB2 V6: CREATE/ALTER/DROP PROCEDURE statements

added to DDL
• Before that, DBA had to insert/update/delete rows in

SYSPROCEDURES catalog table (tedious, error-prone)
• Catalog: SYSPROCEDURES table out, SYSROUTINES in

• DB2 V7: SQL Procedure Language introduced (SQLPL)
• Stored procedures could be written entirely in SQL

• SQL was extended to include logic flow-control statements such as
GOTO, IF, ITERATE, LEAVE, LOOP, REPEAT, and WHILE

• SQL procedure converted “under the covers” to C program with
embedded SQL – executes as external stored procedure program

• DB2 V7 also allowed for COMMIT and ROLLBACK to be
issued from stored procedure

V8: flexible abend limit, WLM synergy
• Stored procedure abend limit can be set at individual stored

procedure level, versus a DB2 subsystem-wide setting
• If a stored procedure abends n times, placed in stopped status

(once fixed, restarted via -START PROCEDURE command)
• Might want a higher abend limit for newer stored procedures

• Better synergy with z/OS Workload Manager
• DB2, z/OS work together to optimize number of tasks in a SPAS

(stored procedure TCB conceptually like CICS-DB2 subtask TCB)

• “Just right” number of tasks in a SPAS is good for CPU efficiency
• Number of tasks in a SPAS may be varied up or down, but

NUMTCB (parameter specified when defining WLM execution
environment) remains upper bound for a SPAS

V9: “native” SQL procedures

• As far as I’m concerned, the most important advance in
DB2 for z/OS stored procedure technology since stored
procedures were introduced with DB2 V4

Gets its own section in this presentation…

(DB2 10 stored procedure enhancements will be covered later in this session)

Native SQL procedures

Native SQL procedures: big change

• Before: SQL procedure turned into a C language program
under the covers
• Runs as an external stored procedure in a WLM-managed

SPAS
• Not-in-DB2 part of a C program generally consumes more CPU

than does equivalent COBOL code (though less than Java)
• For a native SQL procedure (available beginning with DB2 9

in new function mode), the one and only executable is the
procedure’s package
• So, a native SQL procedure runs entirely in the DB2 database

services address space (DBM1)

“Use my
thread.”

Native SQL procedure efficiency (1)
• An external stored procedure runs under its own TCB

• Caller’s task (TCB or SRB) is suspended, and stored proc task
uses caller’s thread for communication with DB2
• In some cases, there can be processing delays and a build-up of

DBM1 virtual storage consumption associated with the switching of
threads from calling-program tasks to stored procedure tasks

• Native SQL procedure runs under the calling program’s task
• No queuing, no delays related to thread-switching

Native SQL procedure efficiency (2)

• For every SQL statement in an external stored procedure
(or any other external-to-DB2, SQL-issuing program), an
“addressability round trip” is required
• Program’s task switches addressability from “home” address

space (could be a WLM-managed stored procedure address
space) to DB2 DBM1 for SQL execution, then switches back

• Each round trip probably consumes a few thousand
instructions, and that’s just the back-and-forth – not SQL
execution in DBM1

• Native SQL procedures eliminate this extra path length
• With the CALL to the native SQL procedure, you’re already in

DBM1, and you stay there until stored procedure completes

Client program

CALL MYPROC
(parm1, parm2)

z/OS server

DDF DBM1

SQL1
SQL2
end

DB2 directory

Stored proc
package

Client program

CALL MYPROC
(parm1, parm2)

z/OS server

DDF DBM1 WLM SPAS

Stored proc
program

Load library

SQL1

SQL2

end

DB2 directoryStored proc package

External vs. native procedureExternal

Native

The zIIP factor
• zIIP: specialty engine that costs less than a general-purpose

processor and does not factor into mainframe software pricing
• A native SQL procedure is zIIP-eligible if it is invoked via a

remote call through the DB2 Distributed Data Facility (DDF)
• Why restricted to remote vs. local CALLs (“local CALLs” being

those that are issued by programs running on the same server as
DB2)?
• Technically, because DDF requests run under enclave SRBs
• My opinion: IBM is encouraging organizations to use DB2 for z/OS as

a data server in multi-tier client-server application environments
• Amount of CPU processing directed to a zIIP engine tends to

be 55-60% for native SQL procedures called through DDF

Type of procedure Base cost (CPU/tran) Cost after zIIP redirect

COBOL 1X (base) .88X
External SQL 1.62X 1.49X
Native SQL 1.14X .65X

Some CPU figures
• From a presentation delivered by IBM’s John Campbell at a

conference
• Results obtained using IRWW OLTP workload (a standard

workload used by IBM for benchmarking purposes)
• Stored procedures invoked via DRDA and DDF

• Note: test was run a while ago using DB2 9 – native SQL
procedure performance picture is even better now
• DB2 10 delivered improved SQL procedure language

performance

Native SQL procedure functionality benefit
• A nested compound statement (a compound SQL statement

within another compound SQL statement) is allowed in a
native SQL procedure, not in an external SQL procedure
• Compound statement: a group of SQL statements, bounded by

BEGIN and END
• Within a compound statement, variables, cursors, and condition

handlers can be declared
• A SQL procedure will very often contain a compound SQL statement

• With nested compound statements, condition handlers can have
their own compound statements (enables more sophisticated
error handling)

• Also: better DB2 Family compatibility (DB2 for LUW already
supported nested compound statements in SQL procedures)
• Important for cross-platform development

“Simple
is good”

Native SQL procedure lifecycle benefit
• Simpler creation, management, maintenance versus

external stored procedures
• No external-to-DB2 resources involved (e.g., no source,

object, or load libraries)
• The native SQL procedure package is the executable, and

it is stored in the DB2 directory
• No external-to-DB2 processes involved (e.g., no need

for compile and link processes)
• No worries about mismatch between program and

package when you execute a native SQL procedure,
because the program is the package
• Native SQL procedure has a consistency token but it’s

just a “synonym” for the procedure’s version ID

Some go-forward recommendations

Getting from here to there…

• “There” being a situation in which you’re leveraging
DB2 stored procedure functionality

• First: use stored procedures (if not already doing so)
• If not yet in DB2 9 NFM (or DB2 10 CM9 or NFM),

consider developing some external SQL stored
procedures…
• …even if COBOL has been your preferred stored

procedure programming language
• I believe that SQL procedures are the way of the future,

and it would be a good idea to get ready for that future
• Can later convert external SQL procedures to native

• Note: DB2 10 allows user-defined functions (UDFs) to
be written in SQLPL, too

If you use CICS…
• Consider making functionality of some CICS-DB2 transactions

available to DRDA requesters via stored procedure calls
• Could be done by converting COBOL CICS program to

COBOL stored procedure (often involves little change)
• Could also invoke CICS transaction via stored procedure

• One option: DSNACICS stored procedure that comes with DB2
• Alternative: code to CICS EXCI interface yourself, using either

EXCI CALL (more control), or EXEC CICS (easier to code)
• Note that combination of stored procedure and CICS

transaction can be very good for VSAM data access
• Once opened, VSAM file stays allocated to CICS (avoids

open/close overhead that can limit throughput if file directly
accessed from stored procedure)

Running DB2 9 NFM or DB2 10 CM9 or NFM?
• Use native SQL stored procedures, but be deliberate

about this if you’re already using external SQL procedures
• The simpler lifecycle processes of native SQL procedures

are less compelling if your external SQL procedure
infrastructure is well established and mature

• Bottom line: advantages of native SQL procedures versus
external SQL procedures make conversion worthwhile, but
you’ll want to do that in a non-disruptive fashion

• Remember that native SQL procedures can be a good
driver of zIIP utilization

Using external SQL procedures?
• Get familiar and comfortable with the different lifecycle

processes of native SQL procedures
• New DEPLOY option of BIND PACKAGE
• New ACTIVATE VERSION option of ALTER PROCEDURE

• Maybe convert external SQL procedures to native SQL
procedures when upgrading existing application
• Sometimes, as simple as dropping and recreating the

procedure without the FENCED and EXTERNAL options, and
without a WLM ENVIRONMENT specification
• May need WLM ENVIRONMENT FOR DEBUG MODE

• Sometimes, not so simple (more on this to come)
• Consider using native SQL procedures for new DB2

application development

Hints, tips, etc.

Native SQL procedures and scalability

• Question: “I thought that having multiple WLM-managed
stored procedure address spaces was good for scalability.
Native SQL procedures run in one address space – won’t
that have a constraining effect on throughput?”

• Answer: NO, it will not
• Think about it: a native SQL procedure’s executable is a

package, and packages always run in DBM1
• If you’re running 1000 CICS-DB2 transactions per second from

multiple CICS regions, each one has a package that runs in DBM1
• Don’t worry about DBM1 “running out of tasks” – a native SQL

procedure runs under the caller’s task, which is external to
DBM1

Native SQL procedures and system stability

• Question: “Multiple stored procedure address spaces boost
availability (e.g., you can isolate new stored procedures in
an address space). With native SQL procedures all running
in DBM1, won’t that negatively impact application stability?

• Answer: NO, it will not
• Think about it: everything that executes in DBM1 is DB2-

generated, DB2-managed code
• Multiple address spaces for external stored procedures help to

protect the system from an error that might exist in user-written
code – that’s not a problem with native SQL procedures

Native SQL procedure source code
management (SCM)

• Existing vendor-supplied SCM tools applicable when there is
an external-to-DB2 executable and associated source code
• What to do when you’re working with a native SQL procedure,

for which the language is SQLPL and the “source” is the
CREATE PROCEDURE statement?

• In response to user requests for help in this area, APAR
PM29226 (DB2 9 and 10 PTFs available in September, 2011)
modified sample job DSNTEJ67
• The job facilitates conversion of an external SQL procedure to a

native SQL procedure, but don’t get hung up on that if you don’t
have any external SQL procedures!
• The new functionality is intended to assist with native SQL

procedure source code management

More on APAR PM29226

• The external-to-native SQL procedure conversion
accomplished via modified DSNTEJ67 illustrates use of
new services (implemented via REXX routines)
• One service extracts SQL procedure source from catalog,

places it in a file (or, if you wish, into a string)
• Another service invokes the SQLPL precompiler, and

produces a listing of a SQL procedure
• Another service enables one to change various elements of

the SQLPL source for a procedure: schema, version ID, all
the options
• Can specify new values, or have values removed

• Also a service to deploy SQLPL source

External-to-native conversion (1)

• Some SQL source code changes may be required
• One reason for that: some error-handling logic that worked for

an external SQL procedure won’t produce the desired
behavior in a native SQL procedure
• As previously noted, native SQL procedures allow nested

compound statements, providing a means of coding multi-
statement error handlers
• Lacking that option, people coding external SQL procedures would

sometimes use an IF block to implement the multi-statement handler
• Problem: an “always true” condition used to enter an IF-based

handler (IF 1=1 THEN…) will – in a native SQL procedure – clear the
diagnostics area (oops)

• In “going native”, change these condition handlers to compound SQL
statements set off by BEGIN and END

External-to-native conversion (2)
• Another potential reason for SQL source code changes when

converting from external to native: differences in unqualified
column/variable/parameter name resolution
• You could have in your SQL procedure an unqualified variable or

parameter name that’s the same as the name of a column in a
table accessed by the procedure
• External procedure: DB2 will check first to see if variable of that name

has been declared, then if it’s the name of one of the procedure’s
parameters – if neither is true, assumption is that it’s a column name

• Native: DB2 will check first to see if name is that of a column of a
table referenced by the procedure, then if a variable of that name has
been declared, then if it’s the name of a parameter

• Solution: use qualified names, or a naming convention that
identifies parameters and variables (e.g. use p_ or v_ prefixes)

External-to-native conversion (3a)

• What about the external procedure’s collection?
• The package of an external SQL procedure can be bound

into any collection, and that collection name can be specified
via the COLLID option of CREATE PROCEDURE
• By default, calling program will search in COLLID collection for

external procedure’s package
• When a native SQL procedure is created, the collection name

for the package will be the same as the procedure’s schema
name

External-to-native conversion (3b)

• If the package of a to-be-converted external SQL procedure
was bound into a collection with a name other than the
procedure’s schema name:
• Ensure that the collection with the same name as the procedure’s

schema will be searched when the native SQL procedure is
called,

• -or-
• Put a SET CURRENT PACKAGESET in the body of the native

SQL procedure, referencing external procedure’s collection
name, and bind a copy of the native SQL procedure’s “root”
package into that collection

External-to-native conversion (4)

• For more conversion information, check out the brief (just a
few pages) but highly informative IBM “Technote” at this URL:

http://www-01.ibm.com/support/docview.wss?uid=swg21297948

PROGRAM TYPE SUB vs. MAIN

• An option on the CREATE (or ALTER) PROCEDURE
statement for an external stored procedure

• TYPE SUB has been observed to reduce CPU
consumption associated with a stored procedure by 10% in
some cases
• HOWEVER, TYPE SUB means that the program is

responsible for initialization of work areas
• Some users tried TYPE SUB, then went back to TYPE MAIN

because former led to “unpredictable results,” due to stored
procedure programs not effectively initializing work areas

• TYPE SUB is good for performance, but ensure that your
stored procedure programs are well suited to run as
subroutines

STAY RESIDENT YES or NO

• Another option of CREATE (or ALTER) PROCEDURE for an
external stored procedure

• YES can improve stored procedure CPU efficiency, but it
should NOT be used for stored procedure programs
compiled and linked as non-reentrant and non-reusable
• Go with STAY RESIDENT NO for stored procedure programs

that are non-reentrant and non-reusable
• If STAY RESIDENT NO is specified for a frequently-executed

stored procedure, module load time can be reduced by loading
from the z/OS Virtual Lookaside Facility (VLF)

DB2 10: RETURN TO CLIENT cursors
• DB2 9: stored procedure can return result set one level up in

chain of nested procedures (WITH RETURN TO CALLER)
• For example, if program PROG_A calls stored procedure

PROC_B, and PROC_B calls PROC_C, PROC_B can fetch from
a cursor declared and opened in PROC_C, but PROG_A cannot
• If PROG_A needs that result set, PROC_C can put it in a temporary

table, and PROG_A can get the rows from that temp table, OR
• PROC_B can declare and open a cursor referencing the temp table,

and PROG_A can fetch the result set rows through that cursor)
• A DB2 10 stored procedure can declare a cursor WITH

RETURN TO CLIENT (just like DB2 for LUW)
• “Top-level” program (caller of first stored procedure, which calls

another stored procedure) can fetch rows, but cursor’s result set
is invisible to stored procedures between it and top-level program

Previous slide’s point, in a picture…
• DB2 9:

• DB2 10:

Program XYZ

Stored proc A
Stored proc B
DECLARE C1 CURSOR…

CALL

CALL

WITH RETURN TO CALLER

Program XYZ

Stored proc A
Stored proc B
DECLARE C1 CURSOR…

CALL

CALL

WITH RETURN TO CALLER

WITH RETURN TO CLIENT

Thanks for your time!

Robert Catterall
rfcatter@us.ibm.com

	DB2 for z/OS Stored Procedures – Trends and Technology
	Agenda
	A vision of a modern DB2 for z/OS data-serving system
	The big picture
	Points about the “vision” diagram
	More on the vision diagram
	A great use of MQ and DB2 stored procedures
	A brief review of advances in DB2 for z/OS stored procedure functionality since DB2 V4
	V4: stored procedures introduced
	V5: two significant enhancements
	V6 and V7: DDL, SQLPL, COMMIT
	V8: flexible abend limit, WLM synergy
	V9: “native” SQL procedures
	Native SQL procedures
	Native SQL procedures: big change
	Native SQL procedure efficiency (1)
	Native SQL procedure efficiency (2)
	External vs. native procedure
	The zIIP factor
	Some CPU figures
	Native SQL procedure functionality benefit
	Native SQL procedure lifecycle benefit
	Some go-forward recommendations
	Getting from here to there…
	If you use CICS…
	Running DB2 9 NFM or DB2 10 CM9 or NFM?
	Using external SQL procedures?
	Hints, tips, etc.
	Native SQL procedures and scalability
	Native SQL procedures and system stability
	Native SQL procedure source code management (SCM)
	More on APAR PM29226
	External-to-native conversion (1)
	External-to-native conversion (2)
	External-to-native conversion (3a)
	External-to-native conversion (3b)
	External-to-native conversion (4)
	PROGRAM TYPE SUB vs. MAIN
	STAY RESIDENT YES or NO
	DB2 10: RETURN TO CLIENT cursors
	Previous slide’s point, in a picture…
	Thanks for your time! Robert Catterall rfcatter@us.ibm.com

