

Encryption? Yeah, We Do That

Encryption facilities, challenges, and choices on System z

- Tour System z encryption facilities
- Survey available IBM products
- Briefly discuss third-party technologies (not products)
- Examine criteria for making intelligent selections
 - <u>**Not</u> judging/comparing products** *per se!***</u>**

Some Fundamental Points about Encryption

Encryption is not fun

- Any encryption project involves some (or a lot) of work!
- Encryption does not make your job easier
 - Even once implemented, it's one more thing to keep track of
- Encryption should not advertise itself
 - Done right, encryption is invisible to the users
- Encryption is difficult and complex
 - Unless you have a PhD in math, prepare to not understand many of the details

So Why Would Anyone Want to Encrypt?

Regulatory compliance

- HIPAA, GLBA, Red Flag, Sarbanes-Oxley, et al.
- Recovery from a breach
 - "Do something so this can't happen again!"
- General hygiene (breach prevention)
 - It could happen to you...
- Not encrypting may risk company's future
 - But doing it badly is worse than not doing it at all (data loss!)

Do We Really Need to Care?

Mainframes are secure – we all "know" this

- Not inherently true
- Reflects decades of rigid change control theology
- Aided by historically lagging mainframe Internet connectivity
- Not something you want to bet your job on!
 - Mainframes are increasingly connected to the 'net
 - Inside-the-firewall connections also offer attack vectors
 - Partnering often means data travels far from home
 - Outsourcing means other companies share floorspace, hardware

So You Need To Encrypt Some Data...

Where will the data live?

- Network
- DASD
- Tape
- Flash drives
- DVDs
- Punched cards
- Smoke signals

These are *different*, require different solutions

Narrowing the Problem

On mainframes, DASD and tape are the concerns

- Network traffic: Use SSL (or Connect:Direct or scp or sftp)
- Flash drives, DVDs: Not a z problem
- Punched cards: Hopefully no longer a z problem!
- Smoke signals: Call your CE
- DASD and tape are "data at rest"
 - But are still largely *different* problems from each other

Hardware vs. Software

- Encryption can be performed by
 - Software routines using everyday instructions
 - Software using specialized instructions
 - Hardware: instructions, millicode, HSMs, external servers
- The U.S. government considers encryption a "munition"
 - Places restrictions on its export
 - Includes some hardware facilities, software packages
 - Availability thus limited in some countries

A Word about "Point" Solutions

- Many products include some form of encryption
 - Outlook encrypts stored mail by default
 - Many products encrypt passwords internally
- Not necessarily secure
 - May use weak encryption
 - Are keys sufficiently managed/stored/protected?
- Such point solutions can proliferate
 - Suddenly you have 27 solutions for 27 slightly different problems
 - No commonality, management nightmare

Encryption "Strength"

- Encryption "strength" refers to the likelihood that an attacker can "break" encrypted data
 - Typically tied to bit length of encryption key
 - Exponential: 128-bit key is 2**64 times as strong as 64-bit
 - See "Understanding Cryptographic Key Strength" on youtube.com/user/VoltageOne for a good discussion/illustration
- The encryption community is collaborative
 - Research, algorithms are published, peer-reviewed
 - Cryptographers look for weaknesses in each other's work

Proving Encryption Strength

Cryptographers "cheat" in attacker's favor when analyzing

- Make assumptions like "attacker has multiple known examples of encrypted data and matching plaintext"
- Also assume they'll know plaintext when they find it, and that the encryption algorithm is known
- "Weaknesses" reported are often largely theoretical —only NSA could really exploit
 - Huge amounts of time, brute-force computing power required
 - E.g., recent AES "weakness": ¼ the previous strength, so 2 billion years to crack, not 8 billion..

More About Proving Encryption Strength

This "cheating" ensures encryption strength is real*

- This approach increases security for all
- By the time an algorithm is accepted as a standard and implemented in products, confidence is high
- Even if a weakness is later discovered, it's likely largely theoretical/impractical for most to exploit
- Makes it easy to spot the charlatans
 - Companies whose proprietary algorithms are *not* peer-reviewed
 - Also look for claims like "unbreakable encryption", or focus on key length rather than standards-based cryptography

* Well, as real as the smartest minds in the business can make it!

IBM System Facilities

System z and z/OS encryption capabilities

IBM Common Cryptographic Architecture

- CCA "…provides a comprehensive, integrated family of services that employs the major capabilities of the IBM coprocessors"
 - In other words, common APIs across different platforms
 - Makes it easier to port skills across systems
 - Also smart since IBM HSMs work on multiple hardware
- Offers robust functionality
 - Symmetric and asymmetric encryption operations
 - Key generation, import, and export
 - PIN generation, random number (entropy) generation
 - etc.

Integrated Cryptographic Services Facility

Integrated Cryptographic Services Facility (ICSF)

- z/OS implementation of CCA
- Started Task provides crypto interfaces to crypto card
- Requires hardware facilities for some functions
- Active area for IBM development
 - New ICSF levels often appear between z/OS releases
- Mostly just a toolkit, however
 - Requires "roll-your-own" work to build encryption solutions

SSL on System z

- SSL (Secure Sockets Layer), aka Transport Layer
 Security, is transport-layer network traffic encryption
 - Does "handshake" with partner, determines shared trust
 - Generates key to encrypt traffic for duration of session
 - Uses asymmetric encryption and certificates during handshake
- SSL is standard technology
 - Used for https, secure SMTP, others
 - TCP-only, so some services cannot use it

SSL on System z

System SSL is IBM's SSL implementation

- Part of z/OS Cryptographic Services Base element
- Same underlying code used on z/VM, z/VSE
- z/TPF uses OpenSSL (same functionality)
- Robust, well-documented API
 - GSKxxxxx members in SYS1.SIEALNKE on z/OS

IPSec on System z

IPSec is an IP-layer protocol for securing traffic

- Does certificate-based authentication of partner, ~like SSL
- IPSec works with any protocol, any application
- Seen as slightly less secure than SSL, but more general
- Useful for tunneling host-to-host traffic
- For example, commonly used by VPNs
- Can also be used at application layer (IKE mode)
- Implemented in z/OS TCP/IP
 - IPSec can be offloaded to zIIP
 - Linux for System z includes IPSec too
 - z/VSE, z/VM, z/TPF not playing here (yet?)

CPACF

Central Processor Assist for Cryptographic Functions

- Commonly pronounced "see-paff"
- Single-instruction implementations of AES, DES, etc.
- Combination of silicon and millicode
- Introduced with z9 in 2005
 - Additional functionality came on z10
 - zEnterprise adds still more
- CPACF reduced AES-256 CPU by 60% in our tests
 - Pretty significant if you're doing a lot of encryption

CPACF Enablement

CPACF is free but enabled via Feature Code 3863

- One of those munitions unavailable in countries we don't like
- "How do I tell whether CPACF is enabled?"
 - HMC display
 - Bits in CCVT (Crypto CVT)

http://9.152.32.207:80	80/hmc/content?tas	kId=11&refresh=106		
P0000H29 Details	- P0000H29			1
Instance Prod Information Info	uct Acc rmation Sta	ceptable CP/PCHID	STP Information	zBX Information
Instance Information				10000
CP status:	Service Requir	red Activation profil	e:	SNOY211108
PCHID status:	Exceptions	Last profile use	d:	DEFAULT
zBX Blade status:	Communicatio not active	ns Service state:		false
Group:	CPC	Number of CPs		18
IOCDS identifier:	A2	Number of ICFs		2
IOCDS name:	IODFE7	Number of zAA	Ps:	2
System Mode:	Logically Partitioned	Number of IFLs		2
Alternate SE Status:	Not Operating	Number of zliPs	E Contraction	2
Lockout disruptive task	s: Yes No	Dual AC power	maintenance:	Fully Redundant
		CP Assist for C	rypto functions.	Installed

Crypto Express2 and Crypto Express3

Crypto Express: IBM Cryptographic Security Module

- AKA "Hardware Security Module" or HSM
- Same core technology as 4764/4765 HSMs for other platforms
- Tamper-proof, secure crypto operations via add-in card
- Validated to FIPS 140-2 Level 4 (highest level of validation)
- Crypto Express3 is current, replaced Crypto Express2
 - Which itself replaced PCI X Cryptographic Coprocessor (4758)
 - Similar functionality, improved RAS etc. with each generation
 - Various models with varying number of interfaces

CEX, CEX, and More CEX!

A single CEC can have up to eight CEX installed

- Each CEX contains two interfaces
- Except -1P models for BC machines, which have one
- Each interface can be configured two ways:
 - As cryptographic coprocessor (CEX2C, CEX3C)
 - As SSL accelerator, for RSA operations (CEX2A, CEX3A)
- CEX also support "User-Defined Extensions"
 - Custom operations, created by IBM (for \$), installed on CEX
 - Used by banks, for example, for custom PIN derivation

SSL Handshake Performance

As a CEX2C/3C, CEX still helps with SSL

IBM results using z196 Model 754 (4 full-speed engines)

Method	ETR	CPU%	Crypto%
Software	1204	100	n/a
8 CEX3C	14457	95.24	92.3
4 CEX3A	14429	99.72	80.7

- With (plenty of) CEX, more than 10x improvement
- CEX3A is about double CEX3C!
- CPU utilization 100% without CEX, lower with

CKDS and PKDS

ICSF can populate/manage two special data sets

- **CKDS**: Cryptographic Key Data Set
- **PKDS**: Public Key Data Set
- Each contains encryption keys
- Used by many products
- Keys can be stored in CKDS/PKDS in encrypted form
 - Encrypted ("wrapped) by CEX using Master Key stored in CEX
 - Master Key is entered using ICSF panels or Trusted Key Entry (TKE) workstation feature
 - Master Key is *never* known to z/OS: only to CEX

CKDS, PKDS, and Secure Key Operation

When an encrypted key from CKDS/PKDS is used:

- 1. Application fetches key from *x*KDS
- 2. Calls ICSF with data and encrypted key
- 3. ICSF calls CEX
- 4. CEX decrypts key with Master Key
- 5. CEX performs operation on data
- 6. Crypto result returned to ICSF, thence to application
- Plaintext keys never reside in System z memory
- This is known as Secure Key operation
 - Not *super*-slow, but must do I/O to CEX, etc....
 - Suboptimal for large amounts of encryption

Protected Key Operations

ICSF added Protected Key in 2009

- FMID HCR7770
- Hybrid solution, providing (most of) "Best of both worlds"
- Exploits combination of CPACF and CEX (via ICSF)
- Stored keys in z/OS are still encrypted
 - CEX call decrypts key, re-encrypts with "wrapping key"
 - Copies wrapping key to protected HSA memory
 - Wrapped key returned and used on CPACF calls

Review: Key Operation Modes

Clear Key

- Keys stored unencrypted, CPACF performs operations
- Fastest but least secure
- Secure Key
 - Keys stored encrypted, CEX decrypts key, performs operation
 - Slowest but most secure
- Protected Key
 - Keys stored encrypted, CEX decrypts key, re-encrypts with "wrapping key", returns wrapped key
 - CPACF performs operations
 - "Most of the performance with most of the security"

CPACF and Crypto Express Support

All IBM operating systems support CPACF and CEX

- z/OS ICSF uses CPACF or CEX as appropriate/available
- z/VM guests can use CPACF, be given CEX access
- z/VSE supports CPACF and CEX (no RSA Secure Key)
- z/TPF supports CPACF, CEX as RSA/SSL accelerator
- Current Linux for System z distros fully support both

ICSF and SAF (RACF, ACF2, Top Secret)

- SAF can control ICSF
 - CSFSERV resource class
 - If not activated, no controls over ICSF
- CKDS/PKDS are special to SAF (RACF, ACF2, TSS)
 - Each record (each key) is secured separately
 - Controlled by CSFKEYS resource class

Misconception: "CEX is Always Good"

Easy assumption to make: "Using CEX is always faster"

- Not true: CEX mainly for <u>security</u> not <u>performance</u>
- *Certain* operations (SSL/RSA) are faster
- *Most* operations are slower: ICSF must do I/O to CEX
- For everyday cryptography (besides SSL handshakes):
 - Best performance: CPACF
 - Best security: Crypto Express
- CEX might be cheaper CPU-wise with large data blocks
 - Still slower wall-clock, unless CPU really, really overloaded

Approaches and Criteria

"They all claim they'll solve all our problems!?!"

Hardware or Software?

Hardware:

- Avoids system load, since encryption is offloaded
- Typically does not require code changes
- **But** narrower applicability works or doesn't in given use case
- Cannot provide Separation of Duties controls (discussed next)

Software:

- May be expensive to buy
- Can use significant system resources to run
- But broader solution: can be added to any application

Separation of Duties

Separation of Duties (SoD) is important for real security

- Means "need to know" required for decryption
- E.g., just because you're a DBA, you do not need to see SSNs
- Without it, protection (and compliance) often difficult/impossible
- Fully transparent solutions fail to provide SoD
 - E.g., if table accesses automatically decrypted, no SoD
 - Must be some form of credential/access control in the process

Separation of Duties: The Reality

Implementing true SoD requires application changes

"You can have peace. Or you can have freedom. Don't ever count on having both at once." — Robert A. Heinlein

- You can add security, or you can avoid changing applications
- People always <u>want</u> to avoid having to change applications
- Understandable but unrealistic: no "magic bullets"

Key Management

- Key management equally critical
 - What if you need data off a tape ten years from now?
 - Can you access keys in DR scenarios?
- Robust, flexible key management is a must
 - Key management involves three primary functions:
 - 1. Give encryption keys to applications that must protect data
 - 2. Give decryption keys to users/applications that correctly authenticate according to some policy
 - 3. Allow administrators to specify that policy: who can get what keys, and how they authenticate

Key Management

Key servers generate keys for each new request

- Key server must back those up—an ongoing nightmare
- What about keys generated between backups?
- What about distributing keys?
 - How do you distribute keys among isolated networks?
 - What about partners? How do they get required keys?
- Too many solutions focus on the encryption algorithm
 - Key management is harder and equally critical

IBM Encryption Products

System z and z/OS Hardware and Software from IBM

Encrypting Hardware

IBM encrypting tape drives: TS1130, TS1140

- Whole-tape encryption
- Most useful for protecting backups
- Tivoli Key Lifecycle Manager ("TKLM", aka IBM Security Key Lifecycle Manager for z/OS) manages keys
- Encrypting disk array: DS8000
 - Whole-DASD encryption
 - Protects data in shared environments
 - Also removes worries when DASD decommissioned
 - Performance impact of this encryption is minimal
 - Alas, so is utility, other than specific use cases listed above

InfoSphere Guardium Encryption Expert

Whole database encryption

- Formerly IBM Data Encryption for IMS and DB2 Databases
- Significant performance impact
 - Up to 400% more CPU per IBM, even with CPACF
 - Keys are stored in CKDS
 - Can use Protected Key or Secure Key (CEX) if required
- Limited value
 - Performance hit often unacceptable
 - Most regulations require Separation of Duties

Encryption Facility for z/OS

File-level encryption

- Described "...encrypt sensitive data before transferring it to tape for archival purposes or business partner exchange"
- Includes no-charge decryption client (unsupported)
- Can also compress data before encryption
- Uses "System z format" or OpenPGP (various algorithms)
- Useful tool for specific purposes targeted
 - OpenPGP includes asymmetric algorithms
 - Could be integrated into existing processes
 - z/OS only, further limiting applicability
 - Same product available for z/VSE

IBM® Sterling Connect:Direct®

Automated, secure file transfer between systems

- Formerly Sterling Commerce Connect: Direct
- Formerly Sterling Network Data Mover
- Formerly Systems Center NDM
- Still commonly called "NDM"
- Mature, powerful product
 - Think "FTP or scp, only more programmable and secure"
 - Backbone of many companies' daily operations

ISV Encryption

Approaches and Options

AVOLSEOFN7TPOPYCO/EV DWOLSEOFN7TPOPYCO/EV GA1UEKOBOEIW DE VLL GA1UEKOBOEIW DE VLL ISFJOWJJVVYORJKFTI UVFOTURNEE1ESTNNREF3UR AV3H2YODWEUXUNZISJOW.

Hardware or Software?

- Same criteria as with IBM products
 - Hardware avoids system load, but narrower applicability
 - Software can be expensive to buy/run, but broader solution
- Separation of Duties is important
 - Without it, protection (and compliance) often difficult/impossible
- Key management equally critical
 - What if you need data off a tape ten years from now?
 - Can you access keys in DR scenarios?

Hardware Solutions

Various hardware options

- Tape drives: Oracle (SUN [STK]), Hitachi/HP
- DASD: Usual suspects (EMC, (SUN [STK]), Hitachi/HP)
- Network level: more choices than you can count...
- Need to understand the problem being solved
 - Hardware can be a fine solution to a specific problem!
 - But usually not a general answer: some/most data not eligible

Software Solutions

- z/OS encryption products fall into three categories
 - 1. Very narrow, "point" solutions (e.g., file encryption)
 - 2. SaaS/SOA/SOAP (web services) remote server-based
 - 3. Native (with or without hardware exploitation)
 - Do you want to manage dozens of point solutions?
 - Or one enterprise solution?
 - Also see Enterprise Encryption 101 at www.share.org/Portals/0/Webcasts/2012%20Webcasts/Ge tting%20Started.wmv or http://bit.ly/wtMriL

Point (Narrow) Software Solutions

Plenty of "encrypt a file" products available

- Typically include weak key management, if any
- Intended to encrypt data prior to backup or partner exchange
- Some are specific to tape backup (e.g., FDRCrypt)
- Useful to solve specific point problems
- Many choices
 - Rocket Software
 - CA Technologies
 - Code Magus

- OpenTech
- PKWARE
- Innovation Data Processing

SOA (Web-based) Software Solutions

Server (real or virtual) installed on your network

- z/OS applications pass data to server, returned en/decrypted
- SaaS: Transaction uses SSL, many use SOAP
- Requires minimal software on host
- Weaknesses:
 - Performance: SSL connections involve overhead, delay
 - System z folks often uncomfortable with operations "out there"
 - Effective as z/OS point solution, if performance acceptable
- Several choices
 - Protegrity
 - Safenet

 Liaison Techologies (formerly nuBridges)

Native Software Solutions

- APIs to add to existing applications
 - Make sure usable from all environments, e.g., CICS
 - Language support may be limited
 - Implementation can be complex
 - Some exploit CPACF, some do not
- Again, varied choices:
 - RSA (EMC): C/C++ and Java APIs
 - CFXWorks, Entrust: Java-only APIs
 - Redvers Consulting: COBOL-only API
 - Prime Factors, Advanced Software Products Group: general-purpose APIs

Making Intelligent Choices

First Step: Understand the Problem

• "We need some encryption" isn't sufficient

- To protect what?
- From whom?
- What else will this of necessity affect?
- Requires executive sponsorship
 - Otherwise expect to fail
 - Nobody *wants* to do encryption!
- Expect a successful implementation to spread
 - Picking a very limited solution now may lead to regrets later

Security-Related Questions

- Is algorithm strong, peer-reviewed?
 - No real reason to use anything but AES
 - Asymmetric use cases should usually use "wrapped" AES
- Does it support hardware assists?
 - Improves performance
 - Eliminates side channel risks
- Is key management part of the solution?
 - Must keys be stored multiple places, secured independently?
 - Include key rollover requirements, if needed
 - Long-term historical key access is nothing to fool with!

Operational/Deployment Questions

Is implementation cost reasonable?

- Not just \$\$\$, time and effort are even larger costs
- Consider having to train tens/hundreds of different developers
- Is implementation under your control?
 - Can your folks do most/all of the real work?
 - Must they develop crypto expertise to exploit it?
 - Or is "product" really a Professional Services play by vendor?
- Is it multi-platform?
 - If this is a known requirement, it's a very important one
 - Even if it isn't, what happens if/when encryption use spreads?

Voltage SecureData

Voltage SecureData

Voltage SecureData: Yet Another Encryption Product

• With some key differences, of course!

Available on z/OS, Windows, Linux, HP/UX, AIX, more...

- Built on platform-agnostic codebase (easy to port)
- Can add platforms quickly as customers require them
- Exploits HSMs (and CPACF, Crypto Express)
- ASCII/EBCDIC issues handled transparently

Voltage SecureData

Complete suite of options:

- APIs for application integration
- z/OS Started Task-based encryption server
- Bulk data encryption tools for scripting/data masking (z/FPE, CL)
- SOA server for legacy/lightweight platforms
- Tokenization supported via SOA for sites that require it

SecureData Simple API

z/Protect

z/FPE, SecureData CL

SecureData SOA

Voltage SecureData z/Protect

- Complete z/Protect code to perform encryption: call vshprot using CRYPTID, ssn, length returning rc.
- Cryptid rhymes with "lipid"
 - Defined in z/Protect Started Task configuration
 - Combines all aspects of encryption into 1- to 64-byte name
- Cryptids allow complete centralized control
 - Tell application programmers "Use the Cryptid named XYZ"
 - Administrator changes Cryptid definition for key rollover, etc.
 - The simplest encryption API available anywhere
 - Makes encryption much less difficult for applications teams

Key Management

Voltage key management eases most headaches

- Keys are generated dynamically based on identity
- Enables multiple key servers, serving same keys
- Allows geographic/network isolation
- Requires backup only when server configuration changes
- Key requests are authenticated: separation of duties

Voltage SecureData Benefits

FPE minimizes implementation difficulty

- Databases require no schema changes
- Most applications require minimal or no code changes
- Persistent encryption prevents accidental leakage
 - Compensating controls only cover holes you know about
- True separation of duties
 - DBAs can do their jobs, no access to PII without authorization
- z/Protect revolutionizes integration of encryption
 - Orders of magnitude simpler than any other solution

Conclusion

System z is a full player in the encryption world

- Industry-leading hardware assists, HSM capabilities
- Many encryption approaches exist
 - Suitability depends on specific use cases
 - But be careful, encryption use tends to spread!
- IBM, vendors offer varied products
 - Some quite powerful, some very limited
- Voltage SecureData is available on many platforms
 - Enterprise-strength, proven in largest encryption projects

Questions?

Phil Smith III 703.476.4511 (direct) phil@voltage.com www.voltage.com

61