Data Reduction Meets Reality
What to Expect From Data Reduction

Doug Barbian and Martin Murrey
Oracle Corporation

Thursday August 11, 2011
9961: Data Reduction Meets Reality
Introduction

• “Data deduplication may be the best thing that ever happened to backups!” - Rich Castagna, Storage Media Group

• Less is More!
 • In this presentation we will show you how data reduction is comprised of compression and deduplication technologies.
 • Effective use of these technologies can significantly reduce data storage and transmission costs.
What is Data Reduction?

• A combination of 2 technologies designed to reduce the amount of space needed to store data.
 - Data Compression
 • Well known technology, widely used, in use for decades. It replaces repeating data patterns with a smaller ‘symbol’.
 - Data Deduplication
 • Newer technology for data reduction. More widely used in open systems. It replaces redundant pieces of data with a reference to the original instance.
• These technologies can be combined and are multiplicative.
 - Data Compression * Data Deduplication = Overall Data Reduction
These Technologies are Multipliers

Total Data Reduction = 20:1
Data Compression

- Data Compression is the process of replacing repeating data strings in a data stream with smaller sized symbols. For example, using the Run Length Encoding (RLE) technique, the string “wwwwww” can be replaced with the symbol 8w.
- Data Compression can be done in the host or storage subsystem.
- Types of Data Compression include: LZ, ZLE, GZIP, BZIP, LZSTK. All accomplish the same basic task.
- Typical compression ratios range from 2:1 to 5:1.
- For some customers compression alone can provide enough space savings.
What is Data Deduplication?

- It is the process of eliminating redundant pieces of information and replacing them with a reference to the original instance.

Modes of Deduplication

- **Inline**: Data is deduplicated as it is ingested. Requires more processing power to ingest data but less disk space, because duplicate data is never written to the storage media.
- **Post**: Data is deduplicated after it has landed on the storage system. Requires less processing power but more disk space.

Levels of Deduplication

- **File**: Entire files are deduped. It is faster and more efficient but sensitive to small changes in files.
- **Block**: Requires more processing and generates more meta data, but can be more effective because increased granularity.
- **Byte**: Strings of bytes are deduped. Very processor intensive.
How Does Data Deduplication Work?

- Take a data stream as input and:
 - Break data into pieces (files, or blocks, or bytes).
 - Create a unique digital signature for each piece.
 - Store the signature in a dictionary and the unique data in an Instance Repository (IR).
 - As new data arrives check to see if its signature has been seen before. If seen before, store a reference, if not store the new instance data in the IR.
 - Deduplication performs a transformation of the data resulting in data that is reduced and distributed.
Data Deduplication

Input Data Stream

A B C D A A B C

Dedupe

Reduced Data Stream

A B C D A A B C

Instance Repository (IR)

A B C D
Creating Unique Digital Signatures

• Create a signature for each unique piece of data that will be stored on the system.
• To uniquely identify each 4K block on a 100TB system, you need approx 26.8 billion digital signatures!
• Using a Secure Hash Algorithm (SHA) is a common way to create digital signatures.
• SHAs include but are not limited to: SHA1, SHA256, SHA512. SHA256 generates a 32 byte signature. The probability of a SHA256 hash collision is less than 1×10^{-77}.
Remote Replication W/R to Deduplication

• Suppose for instance you have one data center (source) and a remote data center (target) each with copies of all backup data. Both sites have dedupe capabilities. To replicate data from the source to the target you can:

1. Reconstitute all the data at the source, send it to the target and have the target dedupe the data stream. (There must be an easier way.)

2. Send the reduced version of the data stream from source to target. Send only the dedupe data from the source that does not already reside on the target.

• Reduced replication can significantly reduce transfer time and processor resources required to replicate the data from one site to another.
Reduced Replication

Source Node

Transmit the reduced data stream

Target Node

Dataset

A B C D E

A B C D E

A B C D E

Instance Repository

Send missing IR data

Instance Repository

A B C D E

D E F D F

D E F
Benefits of Deduplication

• It can dramatically reduce physical storage requirements because only unique data is written. This in turn reduces power, cooling and footprint requirements for the data center.

• For data that has a required retention period only one copy of the data needs to be saved not many copies.

• Coupled with compression, deduplication acts as a multiplier that yields even greater data reduction.

• Dedupe solutions work very well with backup data streams and allow you to use your existing backup applications and procedures.
Choose Your Data Wisely

• “Enterprises need to make decisions based on a deduplication ratio that they can realistically achieve in their environment.” – Jerome Wendt DCIG

• Select datasets that are appropriate for deduplication. Choosing the wrong data to dedupe can cause data expansion due to the generation of metadata.

• Types of data that will result in higher dedupe ratios include: Datasets with a low change rate; System volumes; libraries; and Full Volume Backups.

• Use a dedupe analysis tool before committing the data to deduplication. An automated tool that can analyze your datasets is preferable.
Typical Data Reduction Ratios

- Industry analysis shows:
 - Compression and dedupe ratios vary widely depending on:
 - the variability of the data; the type of backup;
 - the retention period; and the change rate.
 - Typical dedupe ratio claims in the open systems environment range from 4:1 to 50:1.
 - Typical dedupe ratio claims in the mainframe environment range from 2:1 to 20:1.
- Set reasonable expectations for your reduction ratio!
Example: Storage Requirements for a Week of Backups

• Assume a set of full backups one for each day for one week, given 4:1 compression ratio and a 20% data change rate (5:1 dedupe ratio). If you backup 4TB of data each day with no data reduction you would need 28TB of storage.

• If you realize a compression ratio of 4:1 the storage needed is reduced to 1TB per day or 7TB total.

• Adding in a 5:1 dedupe ratio there is 1TB/5 or 200GB of unique data per day. This results in a total storage requirement of 1TB + (6 * .2TB = 1.2TB) or 2.2TB. The overall reduction ratio is (28TB Nominal / 2.2TB Reduced) or 12.7:1. The storage space savings realized is 25.8TB!
Is Data Deduplication Free?

- Inline deduplication requires processing power to support the required ingest rates.
- Some solutions require additional hardware; some have deduplication embedded in the product.
- Data Deduplication generates Metadata in the 5% to 10% range.
- Data Deduplication requires a reconstruction process to render the data in its original format.
- So while data deduplication has great potential it does come with some costs.
Recommendations

• Set reasonable expectations for reduction ratios.
• Analyze your data first. Use a tool to identify good dedupe data sets.
• Select a solution that allows easy control over which data sets will be deduped and those that will not be deduped.
• Select a solution that allows easy monitoring of the overall compression and deduplication effectiveness.
• Consider solutions that incorporate both deduplication and compression.
• Select a data reduction solution that is easy to implement and manage.
Summary

• Data reduction is comprised of compression and deduplication technologies.
• These technologies are multiplicative. When used together they will yield significant increases in storage efficiency.
• Proper analysis and selection of dedupe data sets will help ensure the highest reduction ratios will be achieved.

• Thanks for your time. We hope you have gained a better understanding of Data Reduction Technologies.
• Questions and Answers.