Enhanced Disaster Recovery Options

Irene Adler and Mitch Mackrory
Oracle Corporation

Thursday, August 11, 2011: 1:30 PM-2:30 PM
Session 09894
Agenda

- Some Definitions
 - (BC/DR/RPO/RTO)
- Tapeless, Tiered Tapeless, Touchless and Break Link
- Hierarchy of Performance & Capacity
- Some VSM Recovery Options
- VTV Copies
- Auto Archiving

- Export/Import and Physical Vaulting
- RTV Utility
- Clustered VTSS
 - Standard Clustered
 - Extended Clustered
- Cross-TapePlex Replication
- Concurrent DR Test
- Q&A
Some Definitions: (BC/DR/RPO/RTO)

- **Business Continuity**
 - The ability to continue operations smoothly after a failure or outage
- **Disaster Recovery**
 - The ability to recover from a disaster
- **RPO**
 - The Recovery Point Objective is how far back in time we need to go to be able to recover
- **RTO**
 - The Recovery Time Objective is how long it will take us to recover
Tapeless, Tiered Tapeless, Touchless and Break Link

- These are terms loosely used within Oracle and/or outside
- **Tapeless** means no tape is attached
 - This can be used for part or all of a configuration
- **Tiered Tapeless** means we have a tiered structure of capacity and performance in a tapeless configuration
 - Includes VLE (Virtual Library Extension) as a second tier
- **Touchless** is when we have any of the above and we add automated tape
- **Break Link** is an important concept where we break the automated link between disk and tape
 - This can be a critical feature of a disaster recovery design
Hierarchy of Performance and Capacity

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Tier</th>
<th>Perform</th>
<th>Capacity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>VTSS</td>
<td>Tapeless</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VLE</td>
<td>Tiered Tapeless</td>
<td>Faster Access</td>
<td>More Capacity</td>
<td>Lower $$$ Cost</td>
</tr>
<tr>
<td>ACS</td>
<td>Touchless</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vault</td>
<td>Break Link</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some VSM Recovery Options

- VTV copies
- Export/Import
- Auto Archiving
- Physical Vaulting
- RTV Utility
- Clustered VTSS
- Extended Clustering
- Cross-TapePlex Replication
- Concurrent Disaster Recovery Test
VTV Copies

- VTV copies
 - 1 to 4 VTV copies
 - On different MVCs
 - On MVCs in up to 4 different locations
 - On different media
 - for maximum performance
 - high capacity for archive
 - This allows customers to have VTV copies at their production site, DR site, and other site(s) automatically via parameter definitions
- VTV copies can be synchronous or asynchronous
Automatic Archiving

- VSM Archiving features allow customers ability to **automatically** archive virtual volumes from high performance to high capacity media based on customer-defined policies.

- ARCHAge(nnn) specifies the age (in days) from creation of a VTV before it is archived automatically as specified by ARCHPol.

- ARCHPol specifies up to four Storage Classes that specify:
 - ACS and media type of the archive MVCs
 - VTCS can archive multiple Storage Classes and can:
 - archive VTVs to different MVCs in different ACSs —or—
 - different MVCs in the same ACS

- If ARCHPol is defined, ARCHAge must also be specified on the Management Class statements.
Automatic Archiving (continued)

• Usage would be to migrate VTVs to high performance media for a period of time, say 90 days, when VTVs are considered to be ready for deep archive on high capacity media

• When VTVs meet the ARCHAge criteria, they would be automatically recalled back into the VTSS buffer and re-migrated out according to the ARCHPol parameters

• Some customers choose to make all copies up front and then when Archive executes, it will just delete the high performance copies
 • this eliminates the need to recall and migrate again later
 • saves on VTSS, VLE, and RTD resources
 • but, it does mean additional copies at creation time
EXPORT / IMPORT

• The VTCS EXPORT/IMPORT features allow the customer to EXPORT VTVs to a different site for DR testing or physical vaulting

• Volumes can be EXPORTed:
 - by VTV or VTV-range (VTVs are consolidated to new MVCs)
 - by Management Class(es) (VTVs are consolidated to new MVCs)
 - by MVC or MVC-range (additional MVC copy not made)
 - by Storage Class(es) (additional MVC copy not made)

• EXPORT creates a Manifest File, which contains all of the metadata that pertains to the volumes being EXPORTed

• IMPORT will import volumes using the Manifest File into a separate CDS and VSM system at another TapePlex
Physical Vaulting

• Off-site physical vaulting of DR tapes can be accomplished using LCM (Library Content Manager)

• LCM is a software product that was developed specifically for Oracle that interfaces with HSC and VTCS to provide tape management services for Nearline and VSM

• LCM 7.0 replaces the ExLM (Expert Library Manager) product

• LCM 7.0 controls off-site vaulting in concert with the customer's tape management system, in addition to other tape utility functions

• LCM 7.0 is a replacement for the standalone VSM Offsite Vaulting Utilities
Physical Vaulting (continued)

- LCM's off-site vaulting services interfaces with the following tape management systems:
 - CA-1
 - DFSMSrmm
 - CA-TLMS
 - Control-T

- LCM uses the VAULT statement to define to LCM an ELS-controlled Vault and allows assignment of attributes via parameters for volumes assigned to the Vault
 - LCM assigns vault slot numbers to each tape being vaulted
 - LCM assigns a time period that the tape should remain in vault
 - LCM controls library ejects of cartridges to be vaulted off-site
 - LCM determines when tapes should be returned to the production environment from the vault and produces a pick list
 - Returning tapes are entered back into Library
RTV (Real Tape Volume) Utility

- RTV is a standalone VTCS utility that is designed to read VTV data directly from an MVC, without any assistance from VTCS, mounted on a native tape drive

- Can be run when VTCS is down

- Used to recover VTV(s) in the event VTCS cannot be brought up due to an outage or disaster of some nature

- Used to read VTVs in TapePlex that has no VSM systems

- RTV works by reading a single VTV directly from an MVC, decompressing the VTV, then writing the data to a single output tape
Clustered VTSS

- With Clustered VTSS, virtual volumes are written to a primary VTSS and then upon dismount are replicated to a secondary VTSS
- Uni-directional - one site replicating to a second site
- Bi-directional - each site replicates to the other
- Replication can be:
 - via ESCON, FICON or IP
 - synchronous or non-synchronous
 - requires no host involvement
 - runs in background
- Secondary acts as a warm standby
- Provides immediate Business Continuance
- Eliminates single point of failure
Uni-Directional Clustered VTSS

Production Site

Primary VTSS

Uni-Directional Replication via ESCON, FICON, or IP CLINKs

CDS

Remote RTDs

Secondary VTSS

DR Test/Remote Site
Bi-Directional Clustered VTSS

Production Site

VTSSA

CDS

Bi-Directional Replication via
ESCON, FICON or IP CLINKS

DR Test/Remote Site

VTSSB

Remote RTDs
Extended Clustered VTSS

- Many-to-one VTSS Clustering - introduced with VTCS 7.0
- Allows many sites to replicate to a single DR repository
 - Customers could have multiple sites with a requirement to store a DR/BC copy at a common site
Extended Clustered VTSS (continued)

- **One-to-many** VTSS Clustering
- Allows one site to replicate to multiple sites
 - Customers may have requirement to have some workload replicated to one site and another workload to a second or third site
Cross-TapePlex Replication

SENDING Site A
- **TAPEPLXA**
 - LPARA
 - SMCA
 - HSCA
 - VTCS

RECEIVING Site B
- **TAPEPLXB**
 - LPARB
 - SMCB/HTTP Server
 - HSCB
 - VTCS

DATA Flow
- **Data** from TAPEPLXA to SL8500
- **Data** from SL8500 to VTSS
- **Data** from VTSS to TAPEPLXB
- **Metadata** from TAPEPLXA to TAPEPLXB via TCP/IP

Names and Types
- **TYPE(SCRATCH)**
 - **NAME(ASCRPL)**
 - (AV1000-AV1999)
- **TYPE(MVC)**
 - **NAME(AMVCPL)**
 - (AM1000-AM1299)
- **TYPE(SCRATCH)**
 - **NAME(ASCRPL)**
 - (AV1000-AV1999)
- **TYPE(MVC)**
 - **NAME(AMVCPL)**
 - (AM1000-AM1299)
- **TYPE(EXTERNAL)**
 - **NAME(AEXTBPL)**
 - (AV1000-AV1999)
- **TYPE(MVC)**
 - **NAME(AMVCCTR)**
 - (BM1000-BM1099)
- **TYPE(MVC)**
 - **NAME(AMVCDR)**
 - (BM2000-BM2099)
Cross-TapePlex Replication with DR Test

Sending Site A
- **TAPEPLXA**
 - **LPARA**
 - **SMCA**
 - **HSCA**
 - **VTCS**
 - **CDS**
 - **VTSS**
 - **SL8500**

Receiving Site B
- **TAPEPLXB**
 - **LPARB**
 - **SMCB/HTTP Server**
 - **HSCB**
 - **VTCS**
 - **CDS**
 - **VTSS**
 - **SL8500**

Metadata
- **TCP/IP**
- **ECAM-T**
- **Data**
- **IP CLINK**

DR Test LPARA
- **SMCA**

Storage Systems
- **SL8500**

Types and Names
- **TYPE(SCRATCH)**
 - **NAME(ASCRPL)**
 - **(AV1000-AV1999)**
- **TYPE(MVC)**
 - **NAME(AMVCPL)**
 - **(AM1000-AM1299)**
 - **NAME(AMVCPL)**
 - **(AM1000-AM1299)**
- **TYPE(EXTERNAL)**
 - **NAME(AEXTBPL)**
 - **(AV1000-AV1999)**
 - **NAME(AMVCCTR)**
 - **(BM1000-BM1099)**
 - **NAME(AMVCDR)**
 - **(BM2000-BM2099)**
Concurrent Disaster Recovery Test
QUESTION TIME