
Dynamic Features of
Linux on System z

Richard Young
IBM STG Lab Services

August 10th, 2011
Session Number 9878

Trademarks & Disclaimer

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries. For a complete list of IBM Trademarks,
see www.ibm.com/legal/copytrade.shtml: AS/400, DB2, e-business logo, ESCON, eServer, FICON, IBM, IBM Logo, iSeries, MVS, OS/390, pSeries, RS/6000, S/390,
System Storage, System z9, VM/ESA, VSE/ESA, WebSphere, xSeries, z/OS, zSeries, z/VM.

The following are trademarks or registered trademarks of other companies

Java and all Java-related trademarks and logos are trademarks of Sun Microsystems, Inc., in the United States and other countries. LINUX is a registered trademark of
Linux Torvalds in the United States and other countries. UNIX is a registered trademark of The Open Group in the United States and other countries. Microsoft,
Windows and Windows NT are registered trademarks of Microsoft Corporation. SET and Secure Electronic Transaction are trademarks owned by SET Secure
Electronic Transaction LLC. Intel is a registered trademark of Intel Corporation. * All other products may be trademarks or registered trademarks of their respective
companies.

NOTES: Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment.
The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O
configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput
improvements equivalent to the performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply. All customer examples cited or
described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved.
Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions. This publication was produced
in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change
without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only. Information
about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm
the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography. References in this
document to IBM products or services do not imply that IBM intends to make them available in every country. Any proposed use of claims in this presentation outside
of the United States must be reviewed by local IBM country counsel prior to such use. The information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any time without notice. Any references in this information to non-IBM Web sites are
provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for
this IBM product and use of those Web sites is at your own risk.

Agenda

• Uses of Dynamic Resource Configuration

• Dynamically Adding Memory Resources to Linux

• Dynamically Adding Virtual CP Resources to Linux

• Automated Adjustment of CP and Memory Resources

(CPU Hotplug)

• Linux on System z Suspend & Resume

Uses of dynamic resource configuration

• Helps to avoid Linux guest restarts and potential
outage/downtime resource allocation changes

• Accommodate unplanned increases in application workload

demands

• It can allow for more efficient overall Hypervisor operation

(reduced overhead)

• Automated policy based reconfiguration more responsive

than manual adjustments.

“Hotplug Memory”

• You can dynamically increase/decrease the memory for your
running Linux guest system.

• To make memory available as hotplug memory you must
define it to your LPAR or z/VM.

• Hotplug memory is supported by z/VM 5.4 with the PTF for
APAR VM64524 and by later z/VM versions.

Dynamically Adding Memory

Dynamically Adding Memory

• This z/VM guest has a user directory entry with 1GB of

initial memory and 2 GB of maximum memory

• In z/VM, changing the memory size or configuration of a

guest causes a storage reset

• If you are running Linux natively in an LPAR without z/VM,
you would use reserved storage in the LPAR definition to

set aside potential additional memory

• In z/VM, define the memory to be dynamically enabled as

“standby” storage

Dynamically Adding Memory

Dynamically Adding Memory

• “DEFINE STORAGE 1G STANDBY 1G” issued for this guest

• Issuing a DEFINE STORAGE command causes storage to

be cleared

• Anything running at the time of the reset will be immediately

terminated without running any shutdown procedures

• This means if you issued this command from a CMS EXEC,
CMS is no longer running because storage has been

cleared.

Dynamically Adding Memory

• Example of IPL and define storage commands in PROFILE

EXEC:

IPLLNX:

CALL DIAG 8,'DEFINE STORAGE 1G STANDBY 1G '

'15'X,

'IPL 200 ' '15'X

'CP MSG * IPL 200'

return

Dynamically Adding Memory

Dynamically Adding Memory

• After IPLing Linux in this guest, observe via /proc/meminfo

that approximately 1GB of memory is available

• The “standby” memory is not reported by /proc/meminfo

• The /sys file system however has an awareness of this
“standby” or “hot plug” memory

• With current level of s390-tools, lsmem can be used to report
this information and chmem to bring elements online or

offline

Dynamically Adding Memory

Core Memory Sections

Dynamically Adding Memory

• When no standby memory is defined, only the 4

“core” memory sections exist

• No hotplug memory sections currently exist

• The next slide will show an example of

/sys/devices/system/memory with hotplug memory

sections available.

Dynamically Adding Memory

Core Memory Sections

Hotplug Memory Sections

Dynamically Adding Memory

• /sys/devices/system/memory shows the eight “sections”.

• Linux allocates the initially allocated memory as “Core”
memory. This is divided in to 4 sections

• The additional memory that can be added is “Hotplug”
memory. This is also divided in to 4 sections

• The state of each memory section can be queried or set

• The size of each section is documented in the

“block_size_bytes” file

Dynamically Adding Memory

Dynamically Adding Memory

• Recent versions of s390-tools include the lsmem command

• lsmem provides a quick easily readable view of the same
information that is in /sys/devices/system/memory directory.

It details:

• Which memory ranges are online or offline

• Which memory is removable

• The size of each range

• The total memory online & offline

• The memory section block size

Dynamically Adding Memory

Dynamically Adding Memory

• One of the four hotplug memory sections is enabled by

echoing “online” in to the state file.

• lsmem shows 256 MB of hotplug memory enabled and

1280MB now online

Dynamically Adding Memory

Dynamically Adding Memory

• After enabling one memory section /proc/meminfo shows an

additional 250MB of memory

• This is 1/4th of our standby memory we defined with the

DEFINE STORAGE command earlier

• Since we have 4 storage “sections” to represent the standby

memory this amount is correct

Dynamically Adding Memory

Dynamically Adding Memory

• echo online is issued for the remaining 3 storage elements

• After enabling all the hotplug memory sections we should
see a full 2GB of memory reported

• The full 2GB of memory is now reported by /proc/meminfo

Dynamically Remove/Add Memory

Dynamically Adding Memory

• The memory sections can be set online or offline via the

chmem command instead of echoing in to the “state” file

• lsmem will reported the memory sections in an accumulated

fashion when the attributes are the same

• Not all memory sections will be removable, and the

removable state can change over time

Summary of Memory Hotplug

• Utilizing hotplug memory does require some advanced

planning:

• z/VM 5.4 with VM64524 or above

• DEFINE STORAGE STANDBY issued before Linux is IPLed

• For native LPAR, RESERVED STORAGE must be defined

• SLES 11 / RHEL 6

• Suspend/Resume restriction: The Linux instance must not
have used any hotplug memory since it was last booted.

• You may not be able to disable hotplug memory that has
been enabled

Summary of Memory Hotplug

• Can be very helpful when exact future memory need is

unknown, without over allocating online memory from the
start.

• After a Linux reboot core memory is made available again
and hotplug memory is freed

Dynamically Managing Virtual CPs from Linux

Dynamically Managing Virtual CPs

• The directory entry shows a guest with two initial virtual CPs

• The maximum potential virtual CPs shown is four

• z/VM does not make the additional potential virtual CPs

available for Linux to enable on its own

• The additional potential virtual CPs must first be defined in

the z/VM guest before dynamically enabling on Linux

Dynamically Managing Virtual CPs

• Here the current z/VM guests virtual resources are displayed from within
Linux

• The two initial and active virtual CPs are shown

• Notice there is no information displayed about the potential additional
virtual CPs

Dynamically Managing Virtual CPs

• Note the mpstat output from before defining the additional

virtual CPs

• Observe the even distribution of idle time and usage

Dynamically Managing Virtual CPs

• The Linux sysfs file system can access information about
the two active virtual CPs

• The kernel has a maximum potential of 64 processors

• No information about the two potential additional virtual

CPs is shown yet

Dynamically Managing Virtual CPs

• Using the vmcp command we pass the zVM CP DEFINE
CPU commands on to our z/VM guest.

• Remember this is a class G guest enabling the additional
resources previously called out in the user directory

• After defining the additional virtual CPs in z/VM we still do
not see them in the Linux /sysfs

Dynamically Managing Virtual CPs

Dynamically Managing Virtual CPs

• By using the z/VM QUERY VIRTUAL command we can

see the additional virtual CPs have been defined to the

guest

• The new virtual CPs are in a “stopped” state

Dynamically Managing Virtual CPs

• mpstat is only reporting two CPUs

• The rescan operation is used to search for new available

CPUs in the guest.

• After rescan, additional /sysfs entries exist

Dynamically Managing Virtual CPs

• mpstat reports 0% use and 0% idle for the new CPUs.

This is because they are stopped and offline

• The new CPUs must still be brought online to Linux

Dynamically Managing Virtual CPs

• Bring the new CPUs online to Linux by echoing 1 in to the

“online” file for the given CPU

Dynamically Managing Virtual CPs

• On a idle system, the new CPUs momentarily show 100%
idle after being brought online

• Once a little bit of workload hits the system, this quickly
changes

Dynamically Managing Virtual CPs

Dynamically Managing Virtual CPs

• You can take offline CPUs that were initially online as well

• Some Considerations

• Obviously multithreaded application or multiple applications in a single
virtual server could potentially benefit from additional virtual CPs

• Could impact monitor applications or middleware that might query the
number of processors on startup (ie the Java Virtual Machine)

• zVM “DEFINE CPU” is a Class G command

• This does NOT add additional capacity to the LPAR, it simply makes
resources available to the guest

• (R.O.T.) Don’t add unnecessary virtual CPs or more virtual CPs than
logical processors.

Automated Policy Based Adjustment of CPs and
Memory

(The CPU Hotplug Daemon)

Automated Adjustment of CPs and Memory

• The hot plug daemon (cpuplugd) can dynamically offline and
re-online processors in Linux

• The hot plug daemon can also add and remove memory

over time via CMM

• The cpuplug daemon checks the system at configurable

intervals

• You must configure the plug and unplug rules for it to

operate

• You must activate the cpuplug daemon to use it, by default it

is inactive

Automated Adjustment of CPs and Memory

• The default rules are NOT recommendations

• You should customize the rules/configuration to fit your

environment

• cpuplugd -V -f -c /etc/sysconfig/cpuplugd - This invokes

cpuplugd in the foreground with verbose messaging to help
you understand its operation

• It is highly recommended you customize its operation before

enabling the cpuplug daemon

• It is important to understand what state you will be in after

you execute a “plug” or “unplug” operation when writing the
rules.

Automated Adjustment of CPs

Excessive
available CP
capacity

Inadequate
available CP
capacity

Desired CP
capacity

Less virtual CPs

More virtual CPs

Automated Adjustment of CPs

Excessive
available CP
capacity

Inadequate
available CP
capacity

Desired Action –

• Remove enough
capacity so you are in the
“green zone” after the plug
rule triggers

• If resource demand is
unchanged, subsequent
intervals should not undo
your action

Desired
CP
capacity

Automated Adjustment of CPs

Excessive
available CP
capacity

Inadequate
available CP
capacity

Desired
CP
capacity

Very likely NOT
your optimal
configuration

Step 1

Step3

Step 5

Step N

Step 2

Step 4

Step 6

Step N+1

Automated Adjustment of CPs

• You can only add/remove a full virtual CP of capacity.

• This means at times you might have 1.25 or more virtual
CPs of idle capacity as an acceptable state.

• Understand the range in which your rules are plugging and
unplugging virtual CPs. It should be at least the size of one

virtual CP, since that is the minimum granularity you can add
or remove.

What happens if I run with the default rules?

• CPU_MIN= 1

• CPU_MAX= 0 (maximum available)

• UPDATE= 10

• HOTPLUG="(loadavg > onumcpus + 0.75) & (idle < 10.0)“

• HOTUNPLUG="(loadavg < onumcpus - 0.25) | (idle > 50)“

• Defined As:

• loadavg: The current loadaverage

• onumcpus: The actual number of cpus which are online

• runable_proc: The current amount of runable processes

• idle: The current idle percentage

What happens if I run with the default rules?

• Where:

• loadavg: the current load average – Comes from the first
/proc/loadavg value. The average number of runnable process. Not
average CPU utilization! One looping process on a system would
cause this to approach 1.0 Five looping processes on a single CPU
system would cause this to approach 5.0

• onumcpus: the actual number of cpus which are online

(Via: /sys/devices/system/cpu/cpu%d/online)

• runable_proc: the current amount of runable processes
(The 4th /proc/loadavg value)

• idle: the current idle percentage – Where 1 idle
processor = 100 and 4 idle processors = 400 (/proc/stat 4th value)

Specific cpuplugd examples for CPU

Automated Adjustment of CPs

• The initial state of the system is:

• 4 virtual CPs

• System is currently completely idle and has more processor
capacity than it currently needs

Automated Adjustment of CPs

Automated Adjustment of CPs

• The cpu hotplug daemon is started in the foreground with

cpuplugd –V –f –c /etc/sysconfig/cpuplugd

• Active rules echoed

• HOTPLUG (loadavg+0.75>onumcpus)|(idle<25.0)

• HOTUNPLUG=(loadavg<onumcpus-.25)|(idle>50)

• Memory hotplug currently disabled, no

/proc/sys/vm/cmm_pages. This will be covered later

• First interval

• loadavg = 2.47

• Idle percent = 0.1

• Max CPU limit reached (all 4 are active)

Automated Adjustment of CPs

Automated Adjustment of CPs

• 2nd Interval

• Loadavg = 2

• Idle = 399 (out of 4 online CPUs)

• Action: CPU ID 3 disabled

• 3rd Interval

• Loadavg = 1.77

• Idle =306 (out of 3 online CPUs)

• Action: CPU ID 2 disabled

Automated Adjustment of CPs

Automated Adjustment of CPs

• Interval 4

• Loadavg = 1.5

• Idle % = 203

• Action = Enable CPU ID 2 (because of loadavg part of rule, not idle%)

• Interval 5

• Loadavg = 1.27

• Idle % = 303

• Action = Disable CPU ID 2 (because of both parts of the unplug rule)

• Load has stayed the same thru all of the intervals, yet we are

adding and removing the same CPU

Automated Adjustment of CPs

Automated Adjustment of CPs

• Messages about processors being enabled or disabled by
CPU hotplug will appear in /var/log/messages.

• In this example 3 of 4 virtual CPs were stopped

• This information could easily be captured for reporting or

alerting

Automated Adjustment of CPs

• Two processes running in a CPU loop on a 4 way system

• Lets take a look at the impact to CPU Hotplug

Automated Adjustment of CPs

• Summary of our little experiment

• Under a steady load to 2 CPU bound processes, CPs zero and one
stay online.

• CP two oscillates between online and offline

• CP three stays offline

• Suggests the plug/unplug rules should be refined, since you are
unable to add a virtual CP without removing it on the next interval.

Automated Adjustment of CPs

• Given:

HOTPLUG (loadavg+0.75>onumcpus)|(idle<25.0)

HOTUNPLUG=(loadavg<onumcpus-.25)|(idle>50)

• The idle part of the rules requires the system be between
25 and 50% idle not to take action. However adding or

removing any CP will change this by a value of 100. This
is not likely what you want.

• Unplugging a CPU when it is 51% idle could impact your

application. What handles the 49% of the CP that was not
idle?

Automated Adjustment of CPs

Automated Adjustment of CPs

• Processor status change messages appear on the Linux
console

• z/VM also issues HCPGSP2629I

Next lets look at the memory management

features

• cpuplugd memory management utilizes CMM (CMM1)

• The cpuplug daemon determines how much memory to add
or remove based upon the rules you put in place

• It is based upon a configurable interval you set

• The memory increment added or removed is also

configurable

• Separate plug and unplug rules are used for memory

• There are NO default memory plug and unplug rules

• If you start cpuplugd without any configuration changes it will

manage CPUs but NOT memory.

Automated Adjustment of Memory

• Writing memory plug and unplug rules

• apcr: the amount of page cache reads as listed in vmstat bi/bo

• freemem the amount of free memory (in megabyte)

• swaprate the number of swapin and swapout operations

• CMM pool size and increment

• CMM_MIN min size of the static page pool (default 0)

• CMM_MAX max size of the static page pool (default 8192 pages)

• CMM_INC amount added/removed (default 256 pages or 1MB)

• apcr can be used to gauge the IO load on Linux system.

With heavier IO rates you may want to allow the system to

utilize more memory to help improve performance. This
memory would get utilized by pagecache.

Automated Adjustment of Memory

• Cpuplugd and CMM1 currently will NOT release pagecache
memory

• With the default interval of 10 seconds, in a memory

constrained situation you will only add 6MB/min or 360MB/hr

• With instantaneous allocations in GB by some application

environments this has the potential to impact application
performance, unless increased

• Lets take a brief look at an example

Automated Adjustment of Memory

Automated Adjustment of Memory

• This guest currently only has a small amount of memory
resident

• In order to see the impact of CPU hotplug we will make more
memory resident

Automated Adjustment of Memory

• The entire 5GB of memory is almost all free

• Only 5MB used as cache

• The “dd” command is used in this example to populate page

cache and consume memory

Automated Adjustment of Memory

Automated Adjustment of Memory

• The memory consumption has more than doubled.

Automated Adjustment of Memory

Automated Adjustment of Memory

Automated Adjustment of Memory

~ 100MB reserved

~ 200MB reserved

Automated Adjustment of Memory

~ 1.1GB reserved

Page reservation stabilized

Automated Adjustment of Memory

• Stabilized 281600 page of memory

• Rules say to unplug memory while freemem > 1750 MB

• The trace shows it is down to 1655 MB

Automated Adjustment of Memory

• Note that the “cached” memory is still 2147. cpuplugd
does not current act upon “cached” memory

• “used” memory has increased. The pages we reserved
with CMM are considered “used”.

Automated Adjustment of Memory

• The size of the memory reserved from CMM can be

queried by reading /proc/sys/vm/cmm_pages

• A trace is not required to obtain that point in time value

Automated Adjustment of Memory

• A 3 is echoed into drop_caches to cause the current

page_cache to be dropped

• This decreased the “used” total and increases the free

memory total

• Since our cpuplugd memory rule is a function of “freemem”

we can now return even more real memory to the
hypervisor

Automated Adjustment of Memory

~ 2.5 GB reserved

~ 2.6 GB reserved

Automated Adjustment of Memory

~ 3.3 GB reserved

Reserved page count
stabilized

CPU Hotplug Summary

• CPU Hotplug memory management will NOT release page
cache memory on its own

• In our example, the CMM module had to be loaded before
starting cpuplugd

• Understand how much memory you want to allow CMM to

claim and the rate at which you will return memory to the
system for use. The last thing you want is a failing memory

allocation, or adverse performance impact.

CPU Hotplug Summary

• Under heavier IO load you might want to make more free
memory available to Linux

• The goal is to allow the Linux to dynamically return pages of
memory to z/VM when they are not in use, and to allow the

entire system to operate more efficiently

• The amount of memory required an application to run is a
function of the application program code, the workload

volume, and any other software added to monitor or manage
the environment.

Linux on System z Suspend and Resume

Suspend and Resume - Uses

• Possible Uses:

• Linux instance with middleware that has long startup or initialization
time.

• Instances with long idle periods during the day where the server is not
used. Use to free memory and processor resources while suspended

• Resume a guest to central storage, moments before it is needed.
(Assuming you know when it will be needed again)

• Provide consistency? Suspend, FlashCopy, and Resume ?

Suspend and Resume - Planning

• Planning for Suspend and Resume

• Kernel 2.6.31 or higher

• RHEL 6 / SLES 11 or higher

• Suspended Linux is written to the designed swap disk

• Must be large enough to hold the memory foot print of the Linux

server

• Restrictions

• No hotplug memory since the last boot

• No CLAW Device Driver

• All tape devices closed and unloaded

• No DCSS with exclusive writable access

Suspend and Resume – Planning

• While suspended:

• Don’t alter the data on the swap device with the suspend Linux

• DCSSs and NSSs used must remain unchanged

• Avoid real and virtual hardware configuration changes

• For all the restrictions and configuration information see:

• Linux on System z Device Drivers, Features, and Commands SC33-
8411-x

Suspend and Resume - Planning

• Kernel Parameters

• resume=<device node for swap partition>

• no_console_suspend - Allows you to see console messages
longer in to the suspend process

• noresume -Skip resume of previously suspended system

• Consider swap file priorities

• You might want to make swap partition for suspend the lowest priority

• Utilize echo disk > /sys/power/state

• Utilize SIGNAL SHUTDOWN and /etc/inittab CTRL-ALT-
DELETE to suspend your system

Suspend and Resume - Preparing

Suspend and Resume

Suspend and Resume - Preparing

Suspend and Resume - Suspending

Suspend and Resume - Suspending

Suspend and Resume – Resume Attempt

Suspend and Resume – Resume Attempt

Suspend and Resume – Attempt Summary

• The resume on the previous page failed

• The initial ram disk did not include zfcp, however the swap

file on the SCSI device is required for the resume operation

• This example only had 3390 model 3 volumes available and

needed to be able to suspend guests larger than 2.2 GB

• This issue is easily resolved by adding zfcp to the initrd

Suspend and Resume – Preparing zfcp

Suspend and Resume - Preparing

Suspend and Resume - Suspending

Suspend and Resume - Suspending

Suspend and Resume - Suspending

Suspend and Resume – Suspended/Resume

Suspend and Resume - Resuming

Suspend and Resume - Resuming

Suspend and Resume - Resuming

Suspend and Resume - Resuming

Suspend and Resume

Suspended
Resumed

If the suspend and resume are completed fast enough your TCP
connections may not even drop. The above ssh session is an example
of that.

Using SIGNAL SHUTDOWN to trigger a suspend

Suspend and Resume - /etc/inittab

• By adding the modified ctrlaltdel entry to /etc/inittab you can suspend
your Linux guest to a swap file when it receive a “Signal shutdown”.

• In the event the suspend fails, a “regular” shutdown would occur.

Suspend and Resume - signal

• Trigging a suspend from z/VM is easy once the Linux
inittab update is in place.

• The standard signal shutdown command should very

quickly suspend the guest

Suspend and Resume - Suspending

Suspend and Resume - Suspended

Suspend and Resume

• After the signal is received by the Linux guest we see that a
sync is issued for the file systems.

• User space and other freezable tasks are then frozen

• The hibernation image is created

• The image is written to the swap partition

• The CPUs and devices are stopped

Suspend and Resume - Summary

• Great option for middleware with long startup times

• Linux hotplug memory should currently be avoided with suspend /

resume

• Ensure your initial ramdisk has all the device drivers you need to

access the swap file and /boot partition for resume

• Ensure your swap file has adequate space to store the Linux

instance

• If the resume fails, a normal IPL will occur

References

• Linux on System z Device Drivers, Features, and Commands

• SC33-8411-09

• z/VM CP Commands and Utilities Reference

• SC24-6175-01

• z/VM Directory Maintenance Facility Commands Reference

• SC24-6188-01

Thank

You

MerciGrazie

Gracias

Obrigado

Danke

Japanese

English

French

Russian

German

Italian

Spanish

Brazilian Portuguese

Arabic

Traditional Chinese

Simplified Chinese

Tamil

Thai

Korean
Hindi

Richard G. Young

Certified I/T Specialist

IBM STG Lab Services

zVM & Linux on z Team Lead

IBM
777 East Wisconsin Ave

Milwaukee, WI 53202

Tel 414 921 4276

Fax 414 921 4276

Mobile 262 893 8662

Email: ryoung1@us.ibm.com

