
1

Leveraging New SQL Features in
DB2 10 for z/OS

Guogen (Gene) Zhang
IBM

August 10, 2011
Session 9840

Agenda

• SQL PL extensions

• Scalar UDF, Table UDF, and XML support

• Bi-temporal for historical data

• Time travel query

• Fine granularity access control

• Row permission & column mask

• New OLAP functions

• Timestamp with more precision, timestamp with time zone

• Extended implicit cast

• XML features

2

2

3

DB2 10 for z/OS DB2 10 for z/OS

• CPU reductions for most workloads

• Five to 10 times more concurrent users

• Greater concurrency for data definition and access

• More online changes for definitions and utilities

• Improved security with improved granularity

• Temporal or versioned data

• pureXML and SQL enhancements to improve
portability

• Productivity improved

SQL PL Extensions for
Scalar UDF, Table UDF, and XML support

3

SQL PL: SQL procedural language
background

• Native SQL procedures (V9)

• Simplifies the task of writing database applications

• DB2 9 for z/OS

• Scalar function support limited to single RETURN statement

• No support for SQL table functions; only external table
functions are supported

§ Extended in V10 to allow for use for:

• SQL scalar functions

• SQL table functions (minimal subset)

• XML type

SQL Scalar Function

CREATE FUNCTION REVERSE (INSTR
VARCHAR(4000))

RETURNS VARCHAR (4000)
DETERMINISTIC
NO EXTERNAL ACTION
CONTAINS SQL

BEGIN
DECLARE REVSTR, RESTSTR VARCHAR(4000)

DEFAULT '';
DECLARE LEN INT;
IF INSTR IS NULL THEN

RETURN NULL;
END IF;
SET RESTSTR = INSTR;
SET LEN = LENGTH(INSTR);
WHILE LEN > 0 DO

SET REVSTR = SUBSTR(RESTSTR, 1, 1)
CONCAT REVSTR;

SET RESTSTR = SUBSTR(RESTSTR, 2, LEN - 1);
SET LEN = LEN - 1;

END WHILE;
RETURN REVSTR;

END

§ Function body contains
control statements.

§ If the input data is null, the
function simply returns null.

§ Otherwise, the function
reverses the order of the
characters in the input string
and returns the modified
string to the invoking
statement.

4

SQL Table UDF

CREATE FUNCTION JTABLE (COLD_VALUE CHAR(9), T2_FL AG CHAR(1))

RETURNS TABLE (COLA INT, COLB INT, COLC INT)

LANGUAGE SQL

SPECIFIC DEPTINFO

NOT DETERMINISTIC

READS SQL DATA

RETURN

SELECT A.COLA, B.COLB, B.COLC

FROM TABLE1 AS A

LEFT OUTER JOIN

TABLE2 AS B

ON A.COL1 = B.COL1 AND T2_FLAG = 'Y'

WHERE A.COLD = COLD_VALUE;

§ function body specifies an SQL
query that returns a result table

§ result table is returned to the
invoking statement

XML type in SQL PL proc

CREATE PROCEDURE DECOMP1(IN XDOC XML) /* or IN DOC BLOB */

LANGUAGE SQL

BEGIN

/* DECLARE XDOC XML;

SET XDOC = XMLPARSE(document DOC); */

INSERT INTO tab1 SELECT *

FROM XMLTABLE('/doc/head/row' PASSING XDOC

COLUMNS C1 INT PATH 'C1',

C2 VARCHAR(10) PATH 'C2') AS X;

INSERT INTO tab2 SELECT *

FROM XMLTABLE('/doc/body/row' PASSING XDOC

COLUMNS C3 INT PATH 'C3',

C4 VARCHAR(10) PATH 'C4') AS X;

END

Parse once and decompose into multiple tables
If using Java caller, document could be parsed into binary XML in the client

Tables: TAB1(C1, C2)

TAB2(C3, C4)

Document:

<doc>

<head>

<row>

<C1>1</C1>

<C2>AAA</C2>

</row>

</head>

<body>

<row>

<C3>10</C3>

<C4>XXXX</C4>

</row>

<row>

<C3>20</C3>

<C4>YYYYY</C4>

</row>

</body>

</doc>

Decomposition into multiple tables

5

Bitemporal Support
- Time travel query

Bitemporal Support

• New concept of System_time and Business_time period

• System_time captures DB2’s creation and deletion of rows and
automatically keeps historical versions of rows.

• Business_time allows users to create their own validity period for a
given row.

• Value to customers

• meet compliance requirements: automatic propagation of old rows
to a history table.

• performs better than the home-grown solution.

• easier to manage

6

CREATE TABLE policy
(client CHAR(4) NOT NULL,
type CHAR(4) NOT NULL,
copay SMALLINT NOT NULL,
eff_beg DATE NOT NULL,
eff_end DATE NOT NULL,
sys_start TIMESTAMP(12) NOT NULL IMPLICITLY HIDDEN

GENERATED ALWAYS AS ROW BEGIN,
sys_end TIMESTAMP(12) NOT NULL IMPLICITLY HIDDEN

GENERATED ALWAYS AS ROW END,
trans_id TIMESTAMP(12) IMPLICITLY HIDDEN

GENERATED ALWAYS AS TRANSACTION START ID,
PERIOD BUSINESS_TIME(eff_beg, eff_end),
PERIOD SYSTEM_TIME(sys_start, sys_end));

Bitemporal Support – Example

CREATE TABLE policy_hist LIKE policy;

ALTER TABLE policy
ADD VERSIONING USE HISTORY TABLE policy_hist;

CREATE UNIQUE INDEX ix_policy
ON policy (client, BUSINESS_TIME WITHOUT OVERLAPS);

Bitemporal Support – Example (cont)

7

Step Actual Date Activity
------ ---------------- ---------
1 01/01/2004 Issue PPO Policy to Customer C882 with

copay amount $10 starting from
02/01/2004 (future event).

2 09/01/2004 Customer called and changed to HMO as of
today (present event)

3 03/01/2006 Copay increase to $15 starting 01/01/2007
(future event)

4 06/01/2008 Cancel policy as of today (present event)
5 09/01/2008 Correct error by retroactively updating policy

to POS from 05/01/2006 to 10/01/2007
(past event)

Bitemporal Support – Example (cont)

Step Actual Date Activity
------ ---------------- ---------
1 01/01/2004 Issue PPO Policy to Customer C882 with

copay amount $10 starting from
02/01/2004 (future event).

INSERT INTO policy VALUES
(‘C882’, ‘PPO’,10,’02/01/2004’,’12/31/9999’);

Bitemporal Support – Example (cont)

8

Step Date Activity
------ ------ ----------
1 01/01/2004 (Future) Issue PPO Policy to Customer C882 with copay amount $10 starting from 02/01/2004
2 09/01/2004 (Present) Customer called and changed to HMO as of today
3 03/01/2006 (Future) Copay increase to $15 starting 01/01/2007
4 06/01/2008 (Present) Cancel Policy as of today
5 09/01/2008 (Past) Correct error by retroactively updating policy to POS from 05/01/2006 to 10/01/2007

PPO/10

02/01/2004

9999-12-31…2004-01-01...12/31/999902/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy

Bitemporal Support – Example (cont)

Step Actual Date Activity
------ ---------------- ---------
2 09/01/2004 Customer called and changed to HMO as of

today (present event)

UPDATE policy FOR PORTION OF BUSINESS_TIME
FROM ‘09/01/2004’ TO ‘12/31/9999’
SET type = ‘HMO’
WHERE client = ‘C882’;

Bitemporal Support – Example (cont)

9

Step Date Activity
------ ------ ----------
1 01/01/2004 (Future) Issue PPO Policy to Customer C882 with copay amount $10 starting from 02/01/2004
2 09/01/2004 (Present) Customer called and changed to HMO as of today
3 03/01/2006 (Future) Copay increase to $15 starting 01/01/2007
4 06/01/2008 (Present) Cancel Policy as of today
5 09/01/2008 (Past) Correct error by retroactively updating policy to POS from 05/01/2006 to 10/01/2007

PPO/10

02/01/2004

9999-12-31…2004-09-01…12/31/999909/01/200410HMOC882

9999-12-31…2004-09-01…09/01/200402/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy

09/01/2004

HMO/10

Bitemporal Support – Example (cont)

Step Actual Date Activity
------ ---------------- ---------
3 03/01/2006 Copay increase to $15 starting 01/01/2007

(future event)

UPDATE policy FOR PORTION OF BUSINESS_TIME
FROM ‘01/01/2007’ TO ‘12/31/9999’
SET copay = 15
WHERE client = ‘C882’;

Bitemporal Support – Example (cont)

10

Step Date Activity
------ ------ ----------
1 01/01/2004 (Future) Issue PPO Policy to Customer C882 with copay amount $10 starting from 02/01/2004
2 09/01/2004 (Present) Customer called and changed to HMO as of today
3 03/01/2006 (Future) Copay increase to $15 starting 01/01/2007
4 06/01/2008 (Present) Cancel Policy as of today
5 09/01/2008 (Past) Correct error by retroactively updating policy to POS from 05/01/2006 to 10/01/2007

PPO/10

02/01/2004

9999-12-31…2006-03-01…12/31/999901/01/200715HMOC882

9999-12-31…2006-03-01…01/01/200709/01/200410HMOC882

9999-12-31…2004-09-01…09/01/200402/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy

09/01/2004

HMO/10

01/01/2007

HMO/15

Bitemporal Support – Example (cont)

Step Actual Date Activity
------ ---------------- ---------
4 06/01/2008 Cancel policy as of today (present event)

UPDATE policy
SET eff_end = ‘06/01/2008’
WHERE client = ‘C882’
AND eff_end = ‘12/31/9999’;

Bitemporal Support – Example (cont)

11

Step Date Activity
------ ------ ----------
1 01/01/2004 (Future) Issue PPO Policy to Customer C882 with copay amount $10 starting from 02/01/2004
2 09/01/2004 (Present) Customer called and changed to HMO as of today
3 03/01/2006 (Future) Copay increase to $15 starting 01/01/2007
4 06/01/2008 (Present) Cancel Policy as of today
5 09/01/2008 (Past) Correct error by retroactively updating policy to POS from 05/01/2006 to 10/01/2007

PPO/10

02/01/2004

9999-12-31…2008-06-01…06/01/200801/01/200715HMOC882

9999-12-31…2006-03-01…01/01/200709/01/200410HMOC882

9999-12-31…2004-09-01…09/01/200402/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy

09/01/2004

HMO/10

01/01/2007

HMO/15

06/01/2008

Bitemporal Support – Example (cont)

Step Actual Date Activity
------ ---------------- ---------
5 09/01/2008 Correct error by retroactively updating policy

to POS from 05/01/2006 to 10/01/2007
(past event)

UPDATE policy FOR PORTION OF BUSINESS_TIME
FROM ‘05/01/2006’ TO ‘10/01/2007’
SET type = ‘POS’
WHERE client = ‘C882’;

Bitemporal Support – Example (cont)

12

Step Date Activity
------ ------ ----------
1 01/01/2004 (Future) Issue PPO Policy to Customer C882 with copay amount $10 starting from 02/01/2004
2 09/01/2004 (Present) Customer called and changed to HMO as of today
3 03/01/2006 (Future) Copay increase to $15 starting 01/01/2007
4 06/01/2008 (Present) Cancel Policy as of today
5 09/01/2008 (Past) Correct error by retroactively updating policy to POS from 05/01/2006 to 10/01/2007

PPO/10

02/01/2004

9999-12-31…2008-09-01…06/01/200810/01/200715HMOC882

9999-12-31…2008-09-01…10/01/200701/01/200715POSC882

9999-12-31…2008-09-01…01/01/200705/01/200610POSC882

9999-12-31…2008-09-01…05/01/200609/01/200410HMOC882

9999-12-31…2004-09-01…09/01/200402/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy

09/01/2004

HMO/10

01/01/2007

HMO/15

06/01/200805/01/2006 10/01/2007

POS/10 POS/15

Bitemporal Support – Example (cont)

PPO/10

02/01/2004

9999-12-31…2008-09-01…06/01/200810/01/200715HMOC882

9999-12-31…2008-09-01…10/01/200701/01/200715POSC882

9999-12-31…2008-09-01…01/01/200705/01/200610POSC882

9999-12-31…2008-09-01…05/01/200609/01/200410HMOC882

9999-12-31…2004-09-01…09/01/200402/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy

09/01/2004

HMO/10

01/01/2007

HMO/15

06/01/200805/01/2006 10/01/2007

Question: On 09/15/2008, client calls and complains. Client saw
an out-of-network specialist on 07/01/2007.
Claims dept. denied client’s claim due to HMO coverage for this

visit on 07/15/2007. Client demands reimbursement.

POS/10 POS/15

Bitemporal Support – Example (cont)

13

PPO/10

02/01/2004

9999-12-31…2008-09-01…06/01/200810/01/200715HMOC882

9999-12-31…2008-09-01…10/01/200701/01/200715POSC882

9999-12-31…2008-09-01…01/01/200705/01/200610POSC882

9999-12-31…2008-09-01…05/01/200609/01/200410HMOC882

9999-12-31…2004-09-01…09/01/200402/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy

09/01/2004

HMO/10

01/01/2007

HMO/15

06/01/200805/01/2006 10/01/2007

SELECT * FROM POLICY
FOR BUSINESS_TIME AS OF ‘2007-07-01’

WHERE CLIENT=‘C882’;
Answer: Customer has “POS”, so should be reimbursed.

POS/10 POS/15

Bitemporal Support – Example (cont)

Question: Did our claims department make an
error denying the client's claim on 07/15/2007?

To answer this: Need historical data to see what
claims department saw on 07/15/2007. Thus, the
need for a bitemporal solution.

Bitemporal Support – Example (cont)

14

2008-09-01…2008-06-01…06/01/200801/01/200715HMOC882

2008-09-01…2008-06-01…01/01/200709/01/200410HMOC882

2008-06-01…2006-03-01…12/31/999901/01/200715HMOC882

2006-03-01…2004-09-01…12/31/999909/01/200410HMOC882

2004-09-01…2004-01-01…12/31/999902/01/200410PPOC882

sys_endsys_starteff_endeff_begcopaytypeclient

Table: policy_hist

SELECT * FROM policy
FOR BUSINESS_TIME AS OF ‘2007-07-01’
FOR SYSTEM_TIME AS OF ‘2007-07-15’
WHERE client=‘C882’;

Answer: At 07/15/2007, claims saw ‘HMO’.

Bitemporal Support – Example (cont)

Fine granularity access control:
Row permission and Column Mask

15

• Separation of duties

• Database administrators such as DBADM can access sensitive data

• No designated authority such as SECADM to manage security policies

• Granularity of privilege model

• Privileges are granted at database object level

• Difficult to protect personal and sensitive information within the object

• Cannot easily comply with data protection laws such as HIPPA, GLBA

• Overloading applications with security logic

• Can be bypassed by malicious users

• Hampers the ability to use ad-hoc query tools, report generation tools

• Alternative views for each group of users

• Can be bypassed by malicious users

• View’s updatability may not correctly reflect security policies

• Evolution of security policies

• Difficult to manage and maintain

Concerns about Database Security

• Tighter security
• Data-centric within database

• No backdoor to bypass views or applications

• More granularity via row permissions and
column masks

• Separation of duties

• Designated SECADM authority

• No authority including DBADM is exempted
from the control

• Relief for the evolution of security policies

• Easy to implement
• More flexibility via SQL

• Separation of security logic and application
logic

Solution : Row and Column Access Control

16

• Row Permission

• a database object that expresses a row access control rule for a
table

• contains a rule in the form of an SQL search condition that describes
to which rows the users have access

• applied by DB2 after the checking of table privileges (e.g. SELECT,
INSERT privilege, etc.)

Row and Column Access Control – new
terminology

• Column Mask

• a database object that expresses a column access control rule for a
specific column in a table

• contains a rule in the form of an SQL CASE expression that
describes to what masked value returned for a column value the
users have access

• applied by DB2 after the checking of table privileges (e.g. SELECT,
UPDATE privilege, etc.)

Row and Column Access Control – new
terminology (cont’d)

17

Think a Decomposed View

• Row Permission

• The WHERE clause of the EMPLOYEE_VIEW

• Column Mask

• The outermost SELECT clause in the EMPLOYEE_VIEW
definition

CREATE VIEW EMPOLYEE_VIEW AS

SELECT (CASE … END) SSN, (CASE … END) SALARY
FROM EMPLOYEE
WHERE STATE = ‘CA’ AND

LASTNAME = ‘SMITH’ AND

BDATE > ‘1970-01-01’

Row and Column Access Control –
Concept

• Row Permission

CREATE PERMISSION EMPLOYEE_PERMISSION ON EMPLOYEE

FOR ROWS WHERE STATE = ‘CA’ AND

LASTNAME = ‘SMITH’ AND

BDATE > ‘1970-01-01’

ENFORCED FOR ALL ACCESS ENABLE ;

• Column Mask

CREATE MASK SSN_MASK ON EMPLOYEE

FOR COLUMN SSN RETURN

CASE WHEN SESSION_USER = ‘SMITH’

THEN SSN

ELSE CHAR('XXX-XX-‘) || SUBSTR(SSN,8,4)

END

ENABLE;

� SELECT SSN FROM EMPLOYEE;

Row and Column Access Control –
Examples

18

• New Built-in Functions

� VERIFY_GROUP_FOR_USER

• Verify primary and secondary authorization IDs

� VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER

• Verify primary authorization ID’s role

WHERE
VERIFY_GROUP_FOR_USER (SESSION_USER, ‘MGR’, ‘PAYROLL’) = 1

WHERE
VERIFY_GROUP_FOR_USER (SESSION_USER, ‘MGR’, ‘PAYROLL’) = 1

WHERE
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER (SESSION_USER,

‘MGR’, ‘PAYROLL’) = 1

WHERE
VERIFY_TRUSTED_CONTEXT_ROLE_FOR_USER (SESSION_USER,

‘MGR’, ‘PAYROLL’) = 1

Who can see what?

Activate Row and Column Access Control

• Activated by SECADM authority only

• Job card … ,USER=SECADM, …

• Invalidate packages and cached statements

• Row permissions and column masks become effective in DML

• All row permissions are merged to filter out rows

• Multiple row permissions are connected with ‘OR’

• All column masks are applied to mask output columns

• Generate default row permission 1 = 0 if activated for row

ALTER TABLE table-name

ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL;

ALTER TABLE table-name

ACTIVATE ROW ACCESS CONTROL;

ALTER TABLE table-name

ACTIVATE ROW ACCESS CONTROL
ACTIVATE COLUMN ACCESS CONTROL;

ALTER TABLE table-name

ACTIVATE ROW ACCESS CONTROL;

19

• Deactivated by SECADM authority only

• Job card … ,USER=SECADM, …

• Invalidate packages and cached statements

• Row permissions and column masks become ineffective in DML

• Remove default row permission 1 = 0 if deactivated for row

• Open all access to the table

ALTER TABLE table-name

DEACTIVATE ROW ACCESS CONTROL
DEACTIVATE COLUMN ACCESS CONTROL;

ALTER TABLE table-name

DEACTIVATE ROW ACCESS CONTROL;

ALTER TABLE table-name

DEACTIVATE ROW ACCESS CONTROL
DEACTIVATE COLUMN ACCESS CONTROL;

ALTER TABLE table-name

DEACTIVATE ROW ACCESS CONTROL;

Deactivate Row and Column Access Control

New OLAP functions:
Moving Average, Running Total, etc.

20

Overview

• DB2 9 for z/OS has already supported 2 classes of
OLAP specifications

• Ranking – RANK(), DENSE_RANK()

• Numbering – ROW_NUMBER().

• DB2 10 for z/OS introduces the last class of OLAP
specifications

• Aggregation Specifications – SUM(), AVG() and other
aggregate functions etc.

Moving Sums and Moving Averages

• compute a single value for the current row based on
some or all of the rows in a defined group.

• support cumulative sums and moving averages by using
a window.

• can be used in a select-list, or in the ORDER BY clause
of a select-statement.

• Limitation: cannot use with XMLQUERY function or an
XMLEXISTS predicate,

21

Example DataExample Data

CREATE TABLE EMP
(EMPNO CHAR(6) NOT NULL,
FIRSTNME VARCHAR(10) NOT NULL,
LASTNAME VARCHAR(10) NOT NULL,
WORKDEPT CHAR(3) ,
SALARY DECIMAL(7, 2)
);

Data in the table:
EMPNO FIRSTNAME LASTNAME WORKDEPT SALARY
------ ---------- ---------- -------- ---------
000010 CHRISTINE HASS A00 52750.00
000030 SALLY KWAN C01 38250.00
000110 VINCENZO LUCCHESSI A00 46500.00
000140 KIM NATZ C01 47250.00
000150 HEATHER NICHOLLS C01 47250.00
200010 DIAN HEMMINGER A00 29250.00
200120 GREG ORLANDO A00 29250.00
200130 DOLORES QUINTANA C01 19350.00

EXAMPLE for EXAMPLE for
RANK,DENSE_RANK,ROW_NUMBER from V9RANK,DENSE_RANK,ROW_NUMBER from V9

Display the workdept, salary, firstname, lastname, rank in the dept based on salary,
dense_rank in the dept base on salary, row_nUmber in the dept based on salary.

SELECT workdept, salary, firstname, lastname,
RANK() OVER (PARTITION BY workdept order by salary d esc) as

dept_rank,
DENSE_RANK() OVER (PARTITION BY workdept order by sa lary desc)

as denserank,
ROW_NUMBER() OVER (PARTITION BY workdept order by sa lary desc)

as rownum
FROM EMP;

WORKDEPT SALARY FIRSTNAME LASTNAME DEPT_RANK DENSERANK ROWNUM
-------- --------- ---------- ---------- --------- ----- ---- ------
A00 52750.00 CHRISTINE HASS 1 1 1
A00 46500.00 VINCENZO LUCCHESSI 2 2 2
A00 29250.00 DIAN HEMMINGER 3 3 3
A00 29250.00 GREG ORLANDO 3 3 4
C01 47250.00 KIM NATZ 1 1 1
C01 47250.00 HEATHER NICHOLLS 1 1 2
C01 38250.00 SALLY KWAN 3 2 3
C01 19350.00 DOLORES QUINTANA 4 3 4

22

Example DataExample Data

create table Sales_history (
Territory VARCHAR(10), -- Business Territory
Month INTEGER, -- Six-digit in YYYYMM format
Sales INTEGER -- Total sales for Territory/ Month

)

Data in the table:
Territory Month Sales
---------- ---------- -----------
East 199810 10
East 199811 4
East 199812 10
East 199901 7
East 199902 10
West 199810 8
West 199811 12
West 199812 7
West 199901 11
West 199902 6

EXAMPLE for Moving SUM, Moving AVG, etcEXAMPLE for Moving SUM, Moving AVG, etc

Display the business territory, month, total sales for each territory/month and the sale in the
territory averaged over the current month and the preceding two months.

SELECT Sh.Territory, Sh.Month, Sh.Sales,
AVG(Sh.Sales) OVER (PARTITION BY Sh.Territory

ORDER BY Sh.Month
ROWS 2 PRECEDING) as Moving _average

FROM Sales_history as Sh;

Territory Month Sales Moving_average
---------- ---------- ----------- ----------------
East 199810 10 10
East 199811 4 7
East 199812 10 8
East 199901 7 7
East 199902 10 9
West 199810 8 8
West 199811 12 10
West 199812 7 9
West 199901 11 10
West 199902 6 8

23

Example DataExample Data

create table stock (date date,symbol char(3),close_price
dec(9,3));

insert into stock values ('2007-04-23','XYZ',110.125);
insert into stock values ('2007-04-24','XYZ',109.500);
insert into stock values ('2007-04-25','XYZ',110.000);
insert into stock values ('2007-04-26','XYZ',119.750);
insert into stock values ('2007-04-27','XYZ',110.625);
insert into stock values ('2007-04-30','XYZ',111.125);
insert into stock values ('2007-05-01','XYZ',113.750);
insert into stock values ('2007-05-02','XYZ',114.000);
insert into stock values ('2007-05-03','XYZ',113.750);
insert into stock values ('2007-05-04','XYZ',112.125);
insert into stock values ('2007-05-07','XYZ',109.750);
insert into stock values ('2007-05-08','XYZ',111.000);
insert into stock values ('2007-05-09','XYZ',110.750);

EXAMPLE for Moving SUM, Moving AVG, etc EXAMPLE for Moving SUM, Moving AVG, etc
---- ROWSROWS

Find the seven day centered moving average of XYZ stock for each day the stock traded. The window
is specified by the rows clause.

SELECT date,symbol, close_price, decimal(avg(close_price) over (order by
date rows between 3 preceding and 3 following) ,6,3)
as smooth_cp

FROM stock

DATE SYMBOL CLOSE_PRICE SMOOTH_CP
--- ---------------
04/23/2007 XYZ 110.125 112.343
04/24/2007 XYZ 109.500 112.000
04/25/2007 XYZ 110.000 111.854
04/26/2007 XYZ 119.750 112.125
04/27/2007 XYZ 110.625 112.678
04/30/2007 XYZ 111.125 113.285
05/01/2007 XYZ 113.750 113.589
05/02/2007 XYZ 114.000 112.160
05/03/2007 XYZ 113.750 112.214
05/04/2007 XYZ 112.125 112.160
05/07/2007 XYZ 109.750 111.339
05/08/2007 XYZ 111.000 110.642
05/09/2007 XYZ 110.750 110.125
05/10/2007 XYZ 108.000 109.725
05/11/2007 XYZ 109.125 109.718

24

EXAMPLE for Moving SUM, Moving AVG, etc EXAMPLE for Moving SUM, Moving AVG, etc
---- RANGERANGE

For the stock XYZ, find the 7 day historical average for each day the stock traded.
The window is specified by the range clause.
SELECT date,substr(DSN8.dayname(date),1,9) as day, close_price,

decimal(avg(close_price) over (order by date range

00000006. preceding),7,2) as avg_7_range,
count(close_price) over (order by date range

00000006. preceding) as count_7_range
FROM stock

DATE DAY CLOSE_PRICE AVG_7_RANGE COUNT_7_RANGE

04/23/2007 Monday 110.125 110.12 1
04/24/2007 Tuesday 109.500 109.81 2
04/25/2007 Wednesday 110.000 109.87 3
04/26/2007 Thursday 119.750 112.34 4
04/27/2007 Friday 110.625 112.00 5
04/30/2007 Monday 111.125 112.20 5
05/01/2007 Tuesday 113.750 113.05 5
05/02/2007 Wednesday 114.000 113.85 5
05/03/2007 Thursday 113.750 112.65 5
05/04/2007 Friday 112.125 112.95 5
05/07/2007 Monday 109.750 112.67 5
05/08/2007 Tuesday 111.000 112.12 5
05/09/2007 Wednesday 110.750 111.47 5
05/10/2007 Thursday 108.000 110.32 5
05/11/2007 Friday 109.125 109.72 5

Greater Timestamp Precision,
Timestamp WITH TIME ZONE

25

Background

Problem:
• The existing TIMESTAMP data type does not capture an

associated time zone, the timestamp is ambiguous

• Some customers store time zone in another column

Solution:
• New data type

TIMESTAMP WITH TIME ZONE

New Terminology

• fractional second - A portion of a second that is greater
than 0 but less than 1.

• timestamp precision - The maximum number of digits
that can be included in a fractional second.

26

Timestamp

• A timestamp is a six or seven-part value (year, month,
day, hour, minute, second, and optional fractional
second) with an optional time zone specification that
represents a date and time. The time could include
specification of a fraction of a second.

• The number of digits in the fractional second is specified
using an attribute in the range from 0 to 12 with a
default of 6.

• Example: TIMESTAMP(12)
'2000-01-15-08.30.00.123456789012'

• TIMESTAMP WITH TIME ZONE format:

<timestamp> TZH:TZM

TZH (time zone hour) – ‘xhh’ -24 to 24

TZM (time zone minute) – ‘mm’ 00 to 59 (has to be 00 if TZH is
24)

• Example:

New York is 4 hours behind UTC, so New York time “11:42" on
2009-06-09 can be represented as ‘2009-06-09-11.42.00.000000-
04:00'.

Same UTC representation:
‘2009-06-09-11.42.00.000000-04:00'

‘2009-06-09-08.42.00.000000-07:00'

‘2009-06-09-15.42.00.000000-00:00‘

27

CREATE TABLE LAB15_Table

(ID INTEGER NOT NULL WITH DEFAULT,

TSTZ12 TIMESTAMP(12) WITH TIME ZONE WITH DEFAULT

'9999-12-31-23.59.59.123456789012 +14:00');

INSERT INTO LAB15_Table(ID, TSTZ12)

VALUES (4,

TIMESTAMP '2012-12-31 02:02:02.123456789012+08:00' AT TIMEZONE '-
08:00');

INSERT INTO LAB15_Table (ID, TSTZ12)

VALUES (5,

TIMESTAMP '2012-12-31 02:02:02.123456789012+08:00'

AT TIMEZONE SESSION TIME ZONE)

More Examples:

Extended Implicit CAST Support

28

Overview

• Extended support for implicit casts: implicit cast between string

and numeric data types

• Indexable/sargable predicates

• new semantics of assignments & comparisons & unions &

expressions & function resolution

Examples

CREATE TABLE employee (
empno INTEGER,
level CHAR(3),

salary DECIMAL(15,2));

INSERT INTO EMPLOYEE VALUES(‘1001’, 3, 89000.39);

UPDATE employee
SET level = level + 1,
salary = salary * '1.1'
WHERE empno = '1001';

29

From Numeric to String

VARCHAR(42)DECFLOAT

VARCHAR(24)FLOAT (REAL, DOUBLE)

VARCHAR(precision+2)NUMERIC/DECIMAL

VARCHAR(20)BIGINT

VARCHAR(11)INTEGER

VARCHAR(6)SMALLINT

Target Data TypeSource Data Type

Numbers Strings: character string (no CLOB, no FOR BIT DATA subtype) or
graphic string (no DBCLOB, UNICODE encoding scheme)

From String to Numeric

N/ACLOB/BLOB/DBCLOB

N/ABINARY/VARBINARY

N/ACHAR/VARCHAR FOR BIT
DATA

DECFLOAT(34)VARGRAPHIC

DECFLOAT(34)GRAPHIC

DECFLOAT(34)VARCHAR

DECFLOAT(34)CHAR

Target Data TypeSource Data Type

30

XML features

• XML Schema enhancements

• Automatically enforce schema conformance

• Validation inside engine

• Native XML date and time support and index support

• XML update support

• XML multi-versioning

• Binary XML

• CHECK XML

Summary

• DB2 10 for z/OS offers great improvements in
performance, simplicity and productivity

• We've learned some important SQL features that will
improve app development productivity

