Best Practices for Replicating Linux

Session 09814
Brad Hinson, Red Hat
Gail Riley, EMC
Objectives

After completing this session, you will be able to:

• Discuss the considerations when implementing replication
• Understand the Red Hat clone process
• Describe the tasks for accessing a Local and Remote replica in a Linux on System z environment
Disaster Recovery versus Disaster Restart

- Most business critical applications have some level of data interdependencies
- Disaster recovery
 - Restoring previous copy of data and applying logs to that copy to bring it to a known point of consistency
 - Generally implies the use of backup technology
 - Data copied to tape and then shipped off-site
 - Requires manual intervention during the restore and recovery processes
- Disaster restart
 - Process of restarting mirrored consistent copies of data and applications
 - Allows restart of all participating DBMS to a common point of consistency utilizing automated application of recovery logs during DBMS initialization
 - The restart time is comparable to the length of time required for the application to restart after a power failure
Forms of Remote Replication

• Synchronous Replication
 • Identical copies of data across storage systems where writes are committed across to remote systems/sites first which increases execution time
 • Source = Target
• Asynchronous Replication
 • Data is a point-in-time consistent copy but writes happen locally and are sent across to remote systems/sites at a periodic interval
 • Source \(\not\equiv\) Target
• Data Distribution -
 • Data is copied from one storage system to another without maintaining a consistent recoverable copy
 • Source \(\not\equiv\) Target
Symmetrix Remote Data Facility: Two Site solutions

SRDF/Synchronous
- No data exposure
- Some performance impact
- Limited distance

SRDF/Asynchronous
- Predictable RPO
- No performance impact
- Extended distance

SRDF/AR
- Data Movement solution
- No performance impact
- Unlimited distance
Forms of Local Replication

• Full Volume Copy - Clone
 • Data is copied from the Source Device to a Target Device of equal size and emulation

• Pointer Based Replication - Snap
 • The Target Device is a virtual device housing a collection of pointer between the Source and a reserve area for a point-in-time view
TimeFinder – Local Replication

- Clone
 - Provides up to 16 concurrent, instant Point-in-Time:
 - Copies of a Volume
 - Immediately accessible after activation
 - The CLONE is completed in the background in the Symmetrix
 - Target device can be larger than Source
- Snap
 - SNAP’S create logical point-in-time “snapshots” of a source volume
 - Requires only a fraction of the source volume’s capacity (based on percentage of writes)
 - Multiple Snapshots can be created from a source volume and are available immediately
 - Snapshots support read / write processing
 - Supports mainframe and open systems host environments
Creating a TimeFinder Consistent Copy

- Different options depending on application and host requirements
- Server
 - Pause I/O at the Server Level to provide a Consistent Point-in-Time Copy
- Application
 - Stop the application and unmount the file system prior to activate or split
 - Database hot backup mode
 - Database freeze/thaw
- Symmetrix based
 - Enginuity Consistency Assist (ECA) holds IO at the Symmetrix until all Splits/Activate complete
SRDF/Consistency Groups Overview

- Preserves dependent-write consistency of devices
 - Ensures application dependent write consistency of the application data remotely mirrored by SRDF operations in the event of a rolling disaster
 - Across multiple Symmetrix systems and/or multiple SRDF groups within a Symmetrix system
- A composite group comprised of SRDF R1 or R2 devices
 - Configured to act in unison to maintain the integrity of a database or application distributed across Symmetrix systems
- Included with SRDF/S and SRDF/A
 - SRDF/S using Enginuity Consistency Assist (ECA)
 - SRDF/A using Multi Session Consistency (MSC)

Ensures dependent-write consistency of the data remotely mirrored by SRDF
Linux on System z Replication Devices

- The Symmetrix SRDF and TimeFinder replicate disk drives
 - FBA
 - SCSI/FBA devices
 - z/VM edev
 - CKD
- The Symmetrix supports the z/VM FlashCopy command
Replication Options

- Storage array supplied replication process for local and remote replication

- Linux Operating Systems utilities
 - Red Hat clone rpm – local replication
 - rsync for remote directory refresh

- Create your own local replication process
Red Hat Clone rpm

- Provided with RHEL Virtualization Cookbook

- Requirements
 - Cloner guest, source guest (separate guests, cloner can't clone itself)
 - z/VM user definition for new/target clone must exist
 - Cloner must have privilege class B for FlashCopy and attach*
 - For “dd” options, cloner must LINK disks to copy
 - OPTION LNKNOPAS or
 - LINK password set to “ALL” for read & write
 - MDISK definitions for DASD, not DEDICATE
 - For LVM installs, cloner Volume Group name must be different from source

*attach is used for FCP port access
Red Hat Clone rpm

- Configuration file (/etc/sysconfig/clone)
 - AUTOLOG=
 - Boot guest automatically after cloning
 - CLONE_METHOD=
 - FlashCopy “auto” or Linux “dd”
 - CLONE_FCP=
 - symclone or Linux “dd”

- Clone configuration files (/etc/clone)
 - rhel.conf.sample: sample values. Copy to {target ID}.conf
 - Similar values can be copied to shared.conf
rpm -ivh clone-1.0-12.s390x.rpm
Preparing... ## [100%]
1:clone ## [100%]

cp /etc/clone/rhel.conf.sample /etc/clone/newguestID.conf
vi /etc/clone/newguestID.conf

clone -v masterguestID newguestID

This will copy disks from masterguestID to newguestID
Host name will be: newguestID.s390.bos.redhat.com
IP address will be: 10.16.105.65
Do you want to continue? (y/n): y

[...]
Invoking Linux command: dasdfmt -p -b 4096 -y -F -f /dev/dasdd
cyl 3338 of 3338 |###| 100%
Invoking Linux command: dd bs=4096 count=600840 if=/dev/dasdc of=/dev/dasdd
[...]
Red Hat Clone rpm

- CLONE_FCP=dd
 - Read zFCP configuration on source system
 - Specify zFCP configuration of target system
 - /etc/clone/zfcp-{target}.conf
 - Attach source and target FCP port to cloner
 - Clone will bring both sets of LUNs online, use Linux “dd” to copy
- CLONE_FCP=symclone
 - Specify device group in configuration (SYMDG=)
 - Clone calls Symmetrix command-line utilities:
 - symclone {create, activate}
 - symclone {verify} gives updates until copy complete
 - symclone {terminate} to break connection
Red Hat Clone rpm

```
# clone -v masterguestID newguestID
[...]

Calling symclone to copy FCP disks ...

Execute 'Create' operation for device group
'clone-dg' (y/[n]) ? y
[...]
Execute 'Activate' operation for device group
'clone-dg' (y/[n]) ? y
[...]
waiting for symclone to complete...
None of the devices in the group 'clone-dg' are in 'Copied' state.
None of the devices in the group 'clone-dg' are in 'Copied' state.
[...]
All devices in the group 'clone-dg' are in 'Copied' state.

Execute 'Terminate' operation for device group
'clone-dg' (y/[n]) ? y
```
Clone rpm - prereq’s for symclone

- On the Linux instance where the clone will be executed
 - Solutions Enabler is required
 - Minimum of 1 gatekeeper required
 - Create a Symmetrix device group containing the Symmetrix device (symdev) source and symdev target devices
CKD Replication Considerations

- Minimal changes may be required for CKD local and/or remote replication, but it depends.....

- Minidisks
 - Full or partial – if replicating z/VM, no directory changes needed at remote site
 - mdisk rdev – same as DEDICATE
 - Avoid duplicate VOLSER at same LPAR, site

- DEDICATE/ATTACH
 - No change if real device address is the same at the primary and backup site
 - Use virtual addresses to mask changes at the Linux layer
SCSI Considerations

• Why is SCSI being implemented?
 • Performance – asynchronous I/O
 • Familiar to open systems users
 • Better use of physical devices
 • Ability to have larger devices
 • kernel dependent - currently 2TB max
 • Dynamic configuration – can add a new LUN without IOCDS change

• What are the challenges?
 • SAN - not familiar to everyone, zoning and masking required
 • To use NPIV or not
 • How to handle changing WWxN LUN information
 • Performance monitoring is at the Linux layer
FCP Path Relationship without NPIV

(z/VM Channel/subchannel device) + (Symmetrix port WWPN + LUN (Symmetrix Logical Volume))

6580 + (5006048ad5f066c0 + 0001) = /dev/sdX
CHPIDs/Base WWPNs
84/500507640122b2b4
85/5005076401a2b66e

CHPIDs, z/VM IOdevices
84/1300-131F
85/1400-141F

NPIV Relationship to Symmetrix, System z and Linux Guest Virtual Machine

FA – WWPN
5006048ad5f066c0
LUNs: 0000 0001 008F ...

CHPID-VMAX zone with NPIV

CHPID-VMAX zone with NPIV

Red Hat
CHPID 1300 (84)

Linux (Red Hat)

WWPN 5000972081a9114
LUNs:
0x0000000000000000
0x0001000000000000

WWPN 5000972081a9114
LUNs:
0x0000000000000000
0x0001000000000000
SCSI Considerations with Replication

- WWxN will change
 - When using NPIV and a different FCP port (subchannel) than the source FCP port
 - Using the same FCP port/subchannel number on a different LPAR
 - Using a FCP port at a different site
 - No NPIV, different CHPID

- WWxN will not change with no NPIV and any port on same CHPID
 - This means all LUNs mapped and masked to CHPID WWxN may be seen through all FCP ports/subchannels on the CHPID
SCSI Considerations with Replication

- Use a different, unique WWxN (NPIV port) for your clone SCSI devices
 - For nonNPIV use a different CHPID
- How can I get Linux to recognize the new WWxN and find its data?
 - Update specific Linux files
 - Use scripting
 - Use Logical Volume Manager (LVM)
Minimize changes to Linux for failover

- Use Linux facilities already in place when using NPIV
 - `/etc/zfcp.conf` - List second site (DR) entries also along with Site 1
 - Correct paths will be found at each site
 - Updates are made in one location

```
# site 1 R1 path
0.0.1330 0x50000972081a9114 0x0000000000000000
0.0.1330 0x50000972081a9114 0x0000000000000000
                      .................
# # site 1 R1 path
# # site 2 R2 path
0.0.1430 0x50000972081a9128 0x0000000000000000
0.0.1430 0x50000972081a9128 0x0001000000000000
      ........
# # site 2 R2 path
0.0.1010 0x50000972081acd59 0x0000000000000000
0.0.1010 0x50000972081acd59 0x0001000000000000
       ....
# # site 2 R2 path
0.0.1110 0x50000972081acd65 0x0000000000000000
0.0.1110 0x50000972081acd65 0x0001000000000000
                      ...................```

.........................................
VM Directory – Production and Clone

• Production Site 1 and 2

USER PR192166

* FCP for R1 site
dedicate 1330 1330
dedicate 1430 1430
* FCP for R2 site
dedicate 1010 1010
dedicate 1011 1011

........

• Clone Site 1 and/or 2

USER CL192166

* FCP for R1 site – R1 CLONE
dedicate 1331 1331
dedicate 1431 1431
* FCP for Site 2 – R2 Clone
dedicate 101a 101a
dedicate 111a 111A

........
Red Hat Multipathing

- `/etc/multipath.conf` – basic configuration file
  - Created and maintained by the multipath program
  - `/etc/multipath/bindings`
  - `/etc/multipath/wwids`
- Both files contain wwid for each device with different entries for Site 1 and Site 2 ➔ different physical device
  - Site 1
    360000970000192601700533030383737
  - Site 2
    360000970000192601715533030333032
Use LVM with Replicated Copies

- LVM masks the changing SCSI multipath information
- Volume groups (VG) are made up of LVM physical volumes (PVs)
- LVM physical volumes are identified by PV UUID, not multipath device UUID/WWID
- Logical volumes (LVs) are associated to LVM volume groups
- Filesystems are associated to logical volumes in /etc/fstab
- All LVM entities are found, brought online and the filesystem mounted at Site 2, no different than Site 1
How can I test my replication environment?

• Clones/Snaps can be used at the Primary or DR site
  • Ensure consistency across all devices at time of clone creation if there are interdependencies
• System Considerations - Make sure you have a unique environment for your clone
  • Create a separate VM directory entry for clone use
  • CKD minidisks
    • make sure the VOLSER is unique if using fullpack minidisks
  • DEDICATE/ATTACH
    • make sure the same virtual address is used
• Change the network – IP address, DNS as appropriate
• Use different NPIV/WWxn ports than the production environment
• Are there cron jobs you need to disable on the clone?
Application Considerations when Cloning

• Does it start up automatically?
• Does it connect to another application, IP address?
• Does it use a NFS mounted filesystem?
• Does it export information when it starts?
• Does it download or upload information when it starts or sometime during its instantiation?
• Does the application rely on a specific
  • Hostname
  • IP address
  • raw device
• Identify any application interdependencies
Linux Replication Considerations

- Both Local and Remote Replication have device considerations
  - CKD and/or FBA devices are supported
  - Use device-by-path, not device-id for device setup
  - Replicated devices have the same virtual addresses at both sites
  - SCSI LUN mapping is the same at both sites
  - Let LVM assist you in reducing changes for replicated copies

- Other considerations
  - Automate the process wherever possible
  - Standardize wherever possible, i.e., addressing scheme for system, application, other devices
  - Shared R/O Linux kernel –
    - May create unintended interdependencies between (application) environments
    - One environment can force another to upgrade
  - Don’t forget about backups at the DR site
Discussion Topic Recap

- Replication methods
  - Sync vs. async
  - Manual vs. clone rpm
- Script customization for local and/or remote copies
- NPIV requirements
- Local vs. Remote replication considerations
- Use of LVM to handle replication failover
- Application considerations