

Best Practices for Replicating Linux

Session 09814 Brad Hinson, Red Hat Gail Riley, EMC

Objectives

After completing this session, you will be able to:

- Discuss the considerations when implementing replication
- Understand the Red Hat clone process
- Describe the tasks for accessing a Local and Remote replica in a Linux on System z environment

Disaster Recovery versus Disaster Restart

- Most business critical applications have some level of data interdependencies
- Disaster recovery
 - Restoring previous copy of data and applying logs to that copy to bring it to a known point of consistency
 - Generally implies the use of backup technology
 - Data copied to tape and then shipped off-site
 - Requires manual intervention during the restore and recovery processes
- Disaster restart
 - Process of restarting mirrored consistent copies of data and applications
 - Allows restart of all participating DBMS to a common point of consistency utilizing automated application of recovery logs during DBMS initialization
 - The restart time is comparable to the length of time required for the application to restart after a power failure

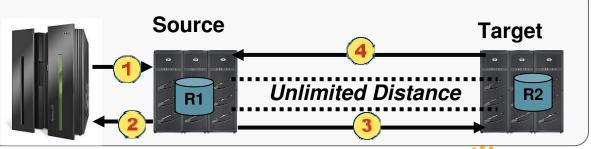
Forms of Remote Replication

- Synchronous Replication
 - Identical copies of data across storage systems where writes are committed across to remote systems/sites first which increases execution time
 - Source = Target
- Asynchronous Replication
 - Data is a point-in-time consistent copy but writes happen locally and are sent across to remote systems/sites at a periodic interval
 - Source
 ≅ Target
- Data Distribution -
 - Data is copied from one storage system to another without maintaining a consistent recoverable copy
 - Source ≠ Target

Symmetrix Remote Data Facility: Two Site solutions

SRDF/Synchronous

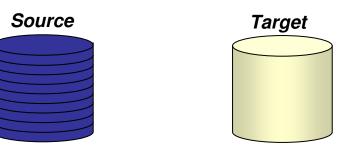
- No data exposure
- Some performance impact
- Limited distance

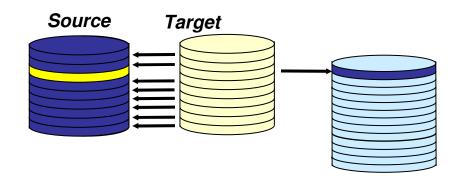

SRDF/Asynchronous

- Predictable RPO
- No performance impact
- Extended distance

SRDF/AR

- Data Movement solution
- No performance impact
- Unlimited distance

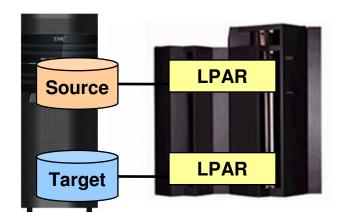

Forms of Local Replication


Full Volume Copy - Clone

Data is copied from the Source Device to a Target Device of equal

size and emulation

- Pointer Based Replication Snap
 - The Target Device is a virtual device housing a collection of pointer between the Source and a reserve area for a point-in-time view

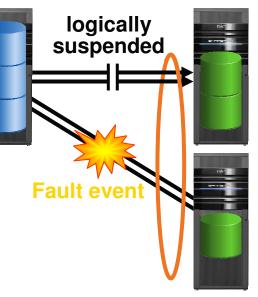


TimeFinder – Local Replication

- Clone
 - Provides up to 16 concurrent, instant Point-in-Time:
 - Copies of a Volume
 - Immediately accessible after activation
 - The CLONE is completed in the background in the Symmetrix
 - Target device can be larger than Source
- Snap
 - SNAP'S create logical point-in-time "snapshots" of a source volume
 - Requires only a fraction of the source volume's capacity (based on percentage of writes)
 - Multiple Snapshots can be created from a source volume and are available immediately
 - Snapshots support read / write processing
 - Supports mainframe and open systems host environments

Creating a TimeFinder Consistent Copy

- Different options depending on application and host requirements
- Server
 - Pause I/O at the Server Level to provide a Consistent Point-in-Time Copy
- Application
 - Stop the application and unmount the file system prior to activate or split
 - Database hot backup mode
 - Database freeze/thaw
- Symmetrix based
 - Enginuity Consistency Assist (ECA) holds IO at the Symmetrix until all Splits/Activate complete



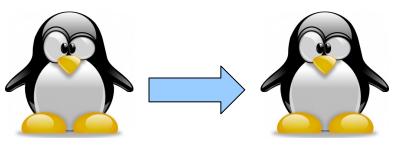
SRDF/Consistency Groups Overview

- Preserves dependent-write consistency of devices
 - Ensures application dependent write consistency of the application data remotely mirrored by SRDF operations in the event of a rolling disaster
 - Across multiple Symmetrix systems and/or multiple SRDF groups within a Symmetrix system
- A composite group comprised of SRDF R1 or R2 devices
 - Configured to act in unison to maintain the integrity of a database or application distributed across Symmetrix systems
- Included with SRDF/S and SRDF/A
 - SRDF/S using Enginuity Consistency Assist (ECA)
 - SRDF/A using Multi Session Consistency (MSC)

Ensures dependent-write consistency of the data remotely mirrored by SRDF

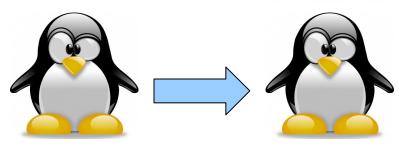
Linux on System z Replication Devices

- The Symmetrix SRDF and TimeFinder replicate disk drives
 - FBA
 - SCSI/FBA devices
 - z/VM edev
 - CKD
- The Symmetrix supports the z/VM FlashCopy command



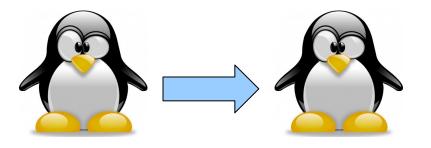
Replication Options

- Storage array supplied replication process for local and remote replication
- Linux Operating Systems utilities
 - Red Hat clone rpm local replication
 - rsync for remote directory refresh
- Create your own local replication process



- Provided with RHEL Virtualization Cookbook
 - http://www.vm.ibm.com/devpages/mikemac/SG247932.tgz
 - http://people.redhat.com/bhinson/clone/ (latest copy)
- Requirements
 - Cloner guest, source guest (separate guests, cloner can't clone itself)
 - z/VM user definition for new/target clone must exist
 - Cloner must have privilege class B for FlashCopy and attach*
 - For "dd" options, cloner must LINK disks to copy
 - OPTION LNKNOPAS or
 - LINK password set to "ALL" for read & write
 - MDISK definitions for DASD, not DEDICATE
 - For LVM installs, cloner Volume Group name must be different from source

^{*}attach is used for FCP port access

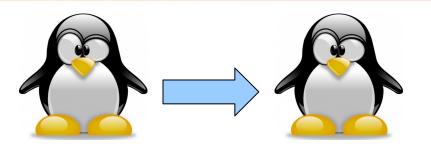


- Configuration file (/etc/sysconfig/clone)
 - AUTOLOG=
 - Boot guest automatically after cloning
 - CLONE_METHOD=
 - FlashCopy "auto" or Linux "dd"
 - CLONE_FCP=
 - symclone or Linux "dd"
- Clone configuration files (/etc/clone)
 - rhel.conf.sample: sample values. Copy to {target ID}.conf
 - Similar values can be copied to shared.conf

rpm -ivh clone-1.0-12.s390x.rpm

Preparing... ############# [100%] 1:clone ############## [100%]

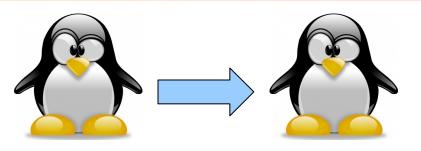
cp /etc/clone/rhel.conf.sample /etc/clone/newguestID.conf # vi /etc/clone/newguestID.conf


clone -v masterquestID newquestID

This will copy disks from masterguestID to newguestID Host name will be: newguestID.s390.bos.redhat.com

IP address will be: 10.16.105.65 Do you want to continue? (y/n): y

 $[\ldots]$ Invoking Linux command: dasdfmt -p -b 4096 -y -F -f /dev/dasdd Invoking Linux command: dd bs=4096 count=600840 if=/dev/dasdc of=/dev/dasdd


14 [...]

- CLONE_FCP=dd
 - Read zFCP configuration on source system
 - Specify zFCP configuration of target system
 - /etc/clone/zfcp-{target}.conf
 - Attach source and target FCP port to cloner
 - Clone will bring both sets of LUNs online, use Linux "dd" to copy
- CLONE_FCP=symclone
 - Specify device group in configuration (SYMDG=)
 - Clone calls Symmetrix command-line utilities:
 - symclone {create, activate}
 - symclone {verify} gives updates until copy complete
 - symclone {terminate} to break connection

clone -v masterguestID newguestID [...]

Calling symclone to copy FCP disks ...

Execute 'Create' operation for device group 'clone-dg' (y/[n]) ? **y**

[...]

Execute 'Activate' operation for device group 'clone-dg' (y/[n]) ? **y**

[...]

waiting for symclone to complete...

None of the devices in the group 'clone-dg' are in 'Copied' state.

None of the devices in the group 'clone-dg' are in 'Copied' state.

 $[\ldots]$

All devices in the group 'clone-dg' are in 'Copied' state.

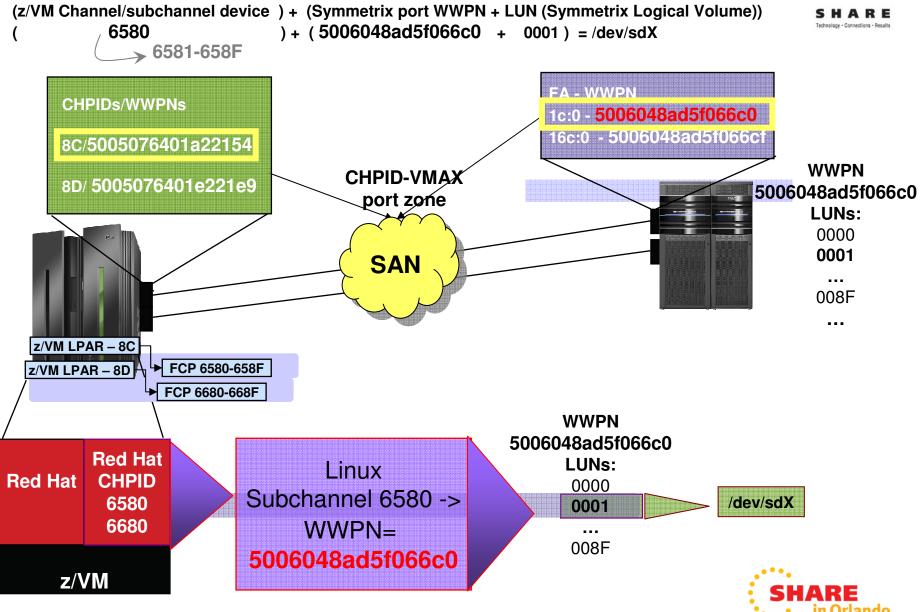
Execute 'Terminate' operation for device group 'clone-dg' (y/[n]) ? **y**

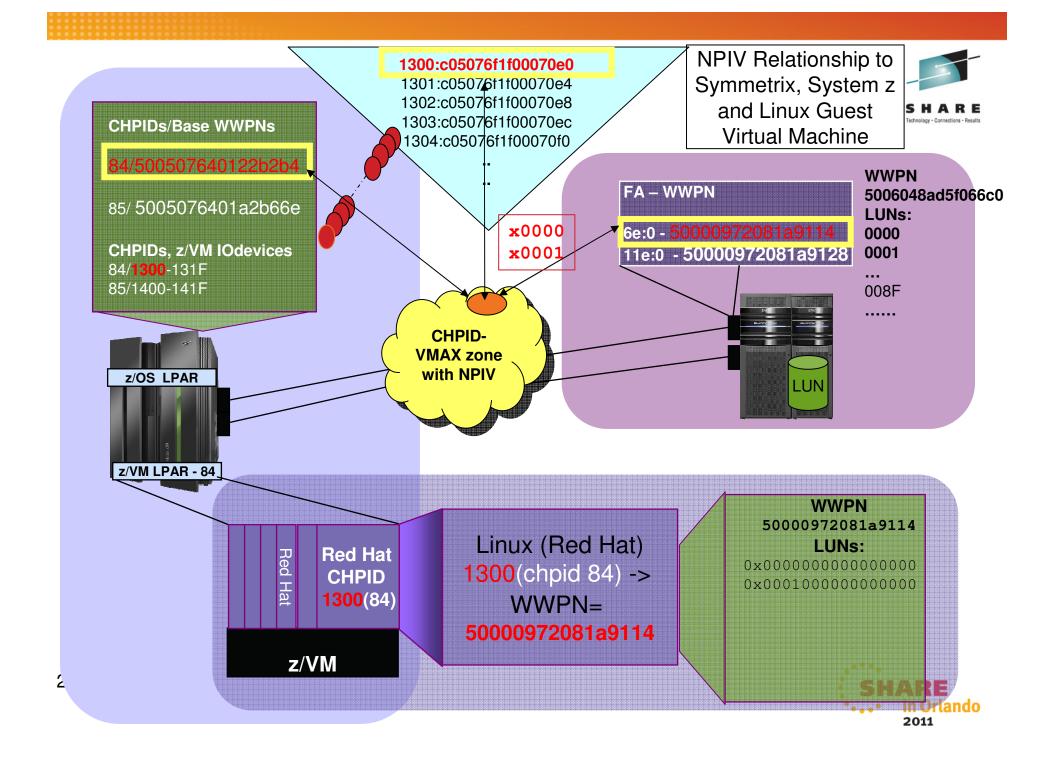
Clone rpm - prereq's for symclone

- On the Linux instance where the clone will be executed
 - Solutions Enabler is required
 - Minimum of 1 gatekeeper required
 - Create a Symmetrix device group containing the Symmetrix device (symdev) source and symdev target devices

CKD Replication Considerations

- Minimal changes may be required for CKD local and/or remote replication, but it depends.....
- Minidisks
 - Full or partial if replicating z/VM, no directory changes needed at remote site
 - mdisk rdev same as DEDICATE
 - Avoid duplicate VOLSER at same LPAR, site
- DEDICATE/ATTACH
 - No change if real device address is the same at the primary and backup site
 - Use virtual addresses to mask changes at the Linux layer


SCSI Considerations


- Why is SCSI being implemented?
 - Performance asynchronous I/O
 - Familiar to open systems users
 - Better use of physical devices
 - Ability to have larger devices
 - kernel dependent currently 2TB max
 - Dynamic configuration can add a new LUN without IOCDS change
- What are the challenges?
 - SAN not familiar to everyone, zoning and masking required
 - To use NPIV or not
 - How to handle changing WWxN LUN information
 - Performance monitoring is at the Linux layer

FCP Path Relationship without NPIV

SCSI Considerations with Replication

- WWxN will change
 - When using NPIV and a different FCP port (subchannel) than the source FCP port
 - Using the same FCP port/subchannel number on a different LPAR
 - Using a FCP port at a different site
 - No NPIV, different CHPID
 - WWxN will not change with no NPIV and any port on same CHPID
 - This means all LUNs mapped and masked to CHPID WWxN may be seen through all FCP ports/subchannels on the CHPID

SCSI Considerations with Replication

- Use a different, unique WWxN (NPIV port) for your clone SCSI devices
 - For nonNPIV use a different CHPID
- How can I get Linux to recognize the new WWxN and find its data?
 - Update specific Linux files
 - Use scripting
 - Use Logical Volume Manager (LVM)

Minimize changes to Linux for failover

- Use Linux facilities already in place when using NPIV
 - /etc/zfcp.conf List second site (DR) entries also along with Site 1
 - · Correct paths will be found at each site
 - Updates are made in one location

VM Directory – Production and Clone

Production Site 1 and 2

USER **PR192166**

* FCP for R1 site dedicate 1330 1330 dedicate 1430 1430 * FCP for R2 site dedicate 1010 1010 dedicate 1011 1011 Clone Site 1 and/or 2

USER **CL192166**

* FCP for R1 site - R1 CLONE dedicate 1331 1331 dedicate 1431 1431

* FCP for Site 2 - R2 Clone dedicate 101a 101a dedicate 111a 111A

.

Red Hat Multipathing

- /etc/multipath.conf basic configuration file
 - Created and maintained by the multipath program
 - /etc/multipath/bindings
 - /etc/multipath/wwids
- Both files contain wwid for each device with different entries for Site 1 and Site 2 → different physical device
 - Site1

360000970000192601700533030383737

Site2

3600009700001926017155330303333032

Use LVM with Replicated Copies

- LVM masks the changing SCSI multipath information
- Volume groups (VG) are made up of LVM physical volumes (PVs)
- LVM physical volumes are identified by PV UUID, not multipath device UUID/WWID
- Logical volumes(LVs) are associated to LVM volume groups
- Filesystems are associated to logical volumes in /etc/fstab
- All LVM entities are found, brought online and the filesystem mounted at Site 2, no different than Site 1

How can I test my replication environment?

- Clones/Snaps can be used at the Primary or DR site
 - Ensure consistency across all devices at time of clone creation if there are interdependencies
- System Considerations Make sure you have a unique environment for your clone
 - Create a separate VM directory entry for clone use
 - CKD minidisks
 - make sure the VOLSER is unique if using fullpack minidisks
 - DEDICATE/ATTACH
 - make sure the same virtual address is used
 - Change the network IP address, DNS as appropriate
 - Use different NPIV/WWxn ports than the production environment
 - Are there cron jobs you need to disable on the clone?

Application Considerations when Cloning

- Does it start up automatically?
- Does it connect to another application, IP address?
- Does it use a NFS mounted filesystem?
- Does it export information when it starts?
- Does it download or upload information when it starts or sometime during its instantiation?
- Does the application rely on a specific
 - Hostname
 - IP address
 - raw device
- Identify any application interdependencies

Linux Replication Considerations

- Both Local and Remote Replication have device considerations
 - CKD and/or FBA devices are supported
 - Use device-by-path, not device-id for device setup
 - Replicated devices have the same virtual addresses at both sites
 - SCSI LUN mapping is the same at both sites
 - Let LVM assist you in reducing changes for replicated copies
- Other considerations
 - Automate the process wherever possible
 - Standardize wherever possible, i.e., addressing scheme for system, application, other devices
 - Shared R/O Linux kernel
 - May create unintended interdependencies between (application) environments
 - One environment can force another to upgrade
 - Don't forget about backups at the DR site

Discussion Topic Recap

- Replication methods
 - Sync vs. async
 - Manual vs. clone rpm
- Script customization for local and/or remote copies
- NPIV requirements
- Local vs. Remote replication considerations
- Use of LVM to handle replication failover
- Application considerations

