
1

Predictive Failure Analysis – Customer Experience
Sam Knutson, GEICO

Detecting and Diagnosing Problems when z/OS
“Thinks” it is Running Okay

Bob Abrams, IBM

Thursday, August 11, 2011
Session Number: 09807

2

2

z/OS Predictive Failure Analysis (PFA)

• Health Checker runs checks supplied by IBM, vendors
or written by you to detect existing or potential
problems primarily with variation from understand
successful practices

• GEICO has been running Health Checker for z/OS since
the prototype and the first implementation in z/OS in
2005 in z/OS 1.7 base was optional download for z/OS
1.4 to 1.6

• We run Health Checker all the time from IPL. You
should too!

• PFA will attempt to detect problems which require
analysis of history and current trends to detect. PFA
can help you avoid soft failures.

• PFA was introduced with z/OS 1.10
• We run PFA all the time from IPL

3

3

• PFA checks have been delivered in each z/OS release
starting with 1.10 currently for me on 1.12 I run these
• PFA_COMMON_STORAGE_USAGE
• PFA_FRAMES_AND_SLOTS_USAGE
• PFA_LOGREC_ARRIVAL_RATE
• PFA_MESSAGE_ARRIVAL_RATE
• PFA_SMF_ARRIVAL_RATE

• IBM plans to extend PFA over time PFA so PFA will be
useful today but like Health Checker your investment
will be returned with interest in the future

• PFA uses the Health Checker for z/OS infrastructure
but PFA checks are different and need to be treated
differently

• “Prediction is very difficult, especially about the future”
Niels Bohr

z/OS Predictive Failure Analysis (PFA)

4

4

• PFA is constructed largely in Java and the majority of
the CPU used by PFA is eligible to run on zAAP
speciality engines

• APAR OA27495 NEW FUNCTION - ZAAP ON ZIIP
ENHANCEMENT
• ZZ=YES in IEASYSxx
• zAAP on zIIP does not change in any way what is eligible

for specialty processing just allows you to consolidate to
have only one pool of specialty engines. If you have z/OS
1.11 or the PTF for APAR OA27495 applied to 1.10 or 1.9
AND you have only zIIP engines but NO zAAP engines
AND you set a new operating system parameter ZZ=YES
then zAAP eligible workloads will run on the zIIP
alongside zIIP eligible workloads.

• Using zAAP on zIIP is like buying colorsafe Cheer for
your washing machine and being able to mix the lights
and the darks☺☺☺☺

z/OS Predictive Failure Analysis (PFA)

5

5

Dealing with Health Checker Exceptions

• Resolution of a Health Checker exception frequently
requires other subject matter experts cooperation

• Understanding of PFA exceptions and tuning has
required recurring assistance from IBM Level-2 to
adjust the proper “knob” correctly

• Don’t break existing system. Health Checker is
reporting a potential problem don’t make an immediate
visible one trying to hurry in a change.

• Avoid persistent outstanding exceptions it will lead to
'cry wolf syndrome' and Health Checks being
disregarded.

• Running Health Checker and PFA and not looking at
the output does not help you����

6

6

Identifying Exceptions

• Automate notifications from Health Checker!
• We trap HZS* WTO using CA-OPSMVS

• MLWTO avoid processing same event more than
once

• Consider “normal” error HZS0011E READING THE
HZSPDATA DATA SET may want to just process
HZS0001I, HZS0002E, HZS0003E, HZS0004I

• EVENTUAL exceptions are emailed
• CRITICAL exceptions are sent by email and pager

• Most well known SPOOL browsers and MVS monitors
including IOF, SDSF, SYSVIEW, TMON, provide on-line
interfaces to view and manage exceptions

7

7

Sending PFA documentation to IBM

• IBM Level-2 will typically need to see the data that is
causing PFA to raise an exception

• Package the directory for the exception using the PAX
command in batch

• PFA component ID is 5752SCPFA useful to know when
opening a PMR

//UNPAX EXEC PGM=IKJEFT01
//SYSTSPRT DD SYSOUT=*
//SYSEXEC DD DSN=SYS1.SBPXEXEC,DISP=SHR
//SYSTSIN DD *
oshell cd /u/pfauser/PFA_SMF_ARRIVAL_RATE ; +

pax -wvzf /tmp/PMR93649.499.000.BTST.AUG11.PFASAR.pax .
/*

8

8

Sending PFA documentation to IBM

• FTP documentation to IBM this is an example using
batch directly from z/OS but you may have different
procedures

//FTP EXEC PGM=FTP,PARM='(EXIT'

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

testcase.software.ibm.com (timeout 720 exit=12

anonymous

you@yoursite.com

cd /toibm/mvs

lcd /tmp

SENDSITE

binary

put PMR93649.499.000.BTST.AUG11.PFASAR.pax

quit

/*

9

9

PFA : Installation

• RACF userid with OMVS segment we made it unique
as doc specified and it’s home directory is where
PFA will store historical information

• Initially just added /pfauser to our primary USER file
system. Most groups are segregated but odd users
like ekmserv and others we have just created in /u.
Once PFA had been running for a while saw zFS
filling up and needing to be grown i.e. IOEZ00078E
zFS aggregate OMVS.BTST.U.ZFS exceeds 95% full
(2140/2250)

• Historical collection creates LOTS of small files
which add up over time so a separate USS
filesystem is a good idea

10

10

PFA : Installation

• On each system BEFORE starting PFA you need to
copy the PROC from SYS1.SAMPLIB(AIRPROC) to
your execution PROC. I used SYS1.PROCLIB(PFA)

• On each system BEFORE starting PFA you need to
use the supplied script to create a directory
structure

$ cd /u/pfauser
$ su
pwd
/u/pfauser
sh /usr/lpp/bcp/AIRSHREP.sh
All existing data files and directories removed.
Successfully created the Common Storage Usage Check Directory Structure.
Successfully created the Logrec Arrival Rate Check Directory Structure.
Successfully created and populated ini file for the Common Storage Usage Check.
Successfully created and populated ini file for the Logrec Arrival Rate Check.

11

11

PFA : Installation zFS

• Allocated zFS and mounted for PFA. Must have RACF access to
PFSCTL or UID 0 to format ZFS

• zSeries File System (zFS) PARMLIB(IOEPRM00) has
aggrfull(90,5) and aggrgrow=on

• IDCAMS
• DEFINE CLUSTER (NAME(OMVS.ASYS.PFA.ZFS) -

LINEAR CYL(500,500) SHAREOPTIONS(3))
• IOEAGFMT

• PARM=('-aggregate OMVS.ASYS.PFA.ZFS -compat')
• MOUNT FILESYSTEM('OMVS.ASYS.PFA.ZFS')

MOUNTPOINT('/u/pfauser') TYPE(ZFS) MODE(RDWR)
• Don’t forget to update SYS1.PARMLIB(BPXPRMxx)
MOUNT FILESYSTEM('OMVS.&SYSNAME..PFA.ZFS')

MOUNTPOINT('/u/pfauser') /* ZFS for /u/pfauser */
TYPE(ZFS) /* Filesystem type ZFS */
MODE(RDWR) /* Mounted or read/write */

12

12

• PFA checks have had to be customized via HZSPRMxx updates to
avoid spurious notifications in many cases relief later provided by
APARs

/* Predictive Failure Analysis Checks */
ADDREPLACE POLICY STMT(PFA2) UPDATE
CHECK(IBMPFA,PFA_MESSAGE_ARRIVAL_RATE)
PARM='DEBUG(0) STDDEV(16) COLLECTINT(15) MODELINT(360)
COLLECTINACTIVE(1) TRACKEDMIN(0) EXCEPTIONMIN(5)'
REASON('less sensitive to avoid spurious trips')
DATE(20110221)

ADDREPLACE POLICY STMT(PFA4) UPDATE
CHECK(IBMPFA,PFA_MESSAGE_ARRIVAL_RATE)
PARM='DEBUG(0) STDDEV(3) COLLECTINT(15) MODELINT(720)
COLLECTINACTIVE(1) TRACKEDMIN(0) EXCEPTIONMIN(10)'
REASON('less sensitive to avoid spurious trips')
DATE(20110728)

z/OS Predictive Failure Analysis (PFA)

13

13

• OA31644 LOGREC ARRIVAL RATE SPURIOUS AIRH110E
MESSAGE

• OA34655 PFA FRAMES AND SLOTS USAGE SPURIOUS.
PREDICTIVE FAILURE ANALYSIS

• OA34586 HIGH CPU IN PFA AFTER PTF UA50081 FOR APAR
OA29963 APPLIED

• OA35820 PREDICTIVE FAILURE ANALYSIS. Abend0C4 RC4
AIRHMEMA.x'FF' DECIMAL 255 PERSISTENT JOBS CAUSES A
LOOP IN PFA THAT OVERLAYS STORAGE

• OA36462 ABEND0C4 IN AIRHMEXC

• OA36837 PREDICTIVE FAILURE ANALYSIS (PFA) TREATS TSO
USERID AS PERSISTENT JOBS IN
PFA_FRAMES_AND_SLOTS_USAGE CHECK

PFA APARs of interest

14

14

AIRH109E A problem with common storage usage

-----Original Message-----
From: Enterprise Event Management
Sent: Friday, July 24, 2009 3:51 PM
To: Knutson, Sam
Subject: z/OS Health Checker BTST 24 Jul 2009 HZS0004I

CHECK|IBMPFA,PFA_COMMON_STO
z/OS Health Checker BTST 24 Jul 2009 HZS0004I

CHECK|IBMPFA,PFA_COMMON_STORAGE_USAGE|: AIRH109E A problem with
common storage usage |CSA and SQA| above the line was predicted to occur
by 07/24/2009 21:51:17. The current usage is higher than expected based on an
evaluation of the total capacity plus the threshold, the current usage, the
current prediction, and the future prediction modeled at 07/24/2009 15:51:17.

--

* EMAIL NOTIFICATION SENT FROM OPS/MVS *

* *

* SYSTEM :BTST *

* RULE :MSGACTN.HZSINFO *

* GROUP :SKNUTSON *

* DATE :24 Jul 2009 TIME: 15:51:17 *

--

15

15

AIRH109E A problem with common storage usage

• Good exception system is still healthy only 34% used on
ECSA but a task was out of profile. Testing on test Sysplex
had found new bug.

• Recycle of started task temporarily resolved the problem
and CA-CCI RO10195 and CA-DATACOM PTFs RO10065
were created

16

16

PFA_LOGREC_ARRIVAL_RATE

CHECK(IBMPFA,PFA_LOGREC_ARRIVAL_RATE)
START TIME: 08/18/2009 12:03:47.499169
CHECK DATE: 20080330 CHECK SEVERITY: MEDIUM
CHECK PARM: DEBUG(0) STDDEV(2) COLLECTINT(60) MODELINT(360)
COLLECTINACTIVE(1)

* Medium Severity Exception *

The LOGREC entry arrival rate is higher than expected and could cause
a system problem by
08/18/2009 17:49:35.
When the LOGREC entry rate is higher than expected, it can indicate
recurring failures on the system which can eventually lead to
system hang. The prediction used in the comparison was modeled at
08/18/2009 11:49:35.

17

17

PFA_LOGREC_ARRIVAL_RATE

LOGREC Arrival Rate Prediction Report
Last successful model time : 08/18/2009 11:49:35
Next model time : 08/18/2009 17:49:35
Model interval : 360
Last successful collection time: 08/18/2009 11:52:37
Next collection time : 08/18/2009 12:52:37
Collection interval : 60

Key 0 Key 1-7 Key 8-15
__________ __________ __________

Arrivals in last
collection interval: 77 364 8

Predicted rates based on...
1 hour of data: 9 0 5

Jobs having LOGREC arrivals in last collection interval:
Job Name ASID Arrivals
________ ____ ________
DSMD0D 0205 438
NONE-FRR 00D0 1
U38T20 0344 1

18

18

PFA_LOGREC_ARRIVAL_RATE

• ABEND rate can vary widely and quickly

• Out of the box check tends to trip spuriously

• Remember this is saying “look at me” not I am broken

• Adjusted STDEV temporarily

• APAR OA31644 LOGREC ARRIVAL RATE SPURIOUS AIRH110E
MESSAGE was the real resolution to spurious trips from this
check and has been effective

19

19

• I run Health Checker and PFA and you should too
• There are many opportunities for new and improved PFA checks.

I would like to see PFA doing global monitoring of private virtual
storage use for persistent address spaces

• Please work with IBM to tune your checks to work accurately and
improve PFA for everyone

• z/OS 1.12 contains some useful enhancements to PFA which will
not be rolled back to previous releases

• The goal of automatically configured proactive detection failures
or looming problems is laudable

• This is a hard problem and I am not sure when PFA exceptions
will be sufficiently accurate to treat them as operational alerts

• HAL: I've just picked up a fault in the AE35 unit. It's going to go
100% failure in 72 hours. 2001: A Space Odyssey (1968)

PFA Customer Experience Summary

20

20

PFA : References

• Session 2866 IBM Experience Building Remote Checks for the
IBM HEALTH CHECKER for z/OS presented at SHARE in Austin
by James Caffrey

• Manual: z/OS Problem Management G325-2564-04 April 2009 not
included in -02 on April 2009 z/OS V1R10 and Software Products
DVD Collection need to obtain this from the web or a later DVD

• WSC Flash WP101454 by Riaz Ahmad can be found on the web,
www.ibm.com/support/techdocs under the category of “White
Papers.”

• Session 2858 Health Checker: User Experience Beyond
Installation presented at SHARE in Tampa by Sam Knutson and
Dave Danner

• Session 2208 Bit Bucket x’26’ presented at SHARE in Denver

21

21

• James Caffrey (IBM)
• Vincent Bonanno (IBM)
• Bob Abrams (IBM)
• Karla Arndt (IBM)
• Ashvin Desai (IBM)
• Keith Martens (GEICO)

Acknowledgements (Knowing or unKnowing)

22

Detecting and Diagnosing Problems when
z/OS “Thinks” it is Running Okay

z/OS Soft Failure Detection, Avoidance, Diagnosis

Bob Abrams
IBM Poughkeepsie, NY

Thursday, August 11, 2011
Session Number: 9807

Welcome to this SHARE presentation on z/OS soft failure detection,
avoidance and diagnosis.

The goal of this presentation is to show how many parts of the z/OS-based
product stack work together to detect, avoid and diagnose Soft Failures.

23

23

Agenda:
Soft Failures: Detection, Prevention, Diagnosis

• Soft Failure detection & avoidance

• Provided at multiple levels of the stack

• Types of problems handled by each type of soft failure detection

• Soft Failure Detect/Diagnose/Avoid Capabilities in z/OS

• Detection: z/OS Components

• Avoidance: Health Checks

• Detection & diagnosis: PFA, Runtime Diagnostics

• Business Application view: Systems Management products

• Lessons learned on reducing impact of soft failures

All elements work together for an integrated IBM solutionAll elements work together for an integrated IBM solution

approachapproach

Up to now, much of what you have heard about soft failure detection has
been in the context of Predictive Failure Analysis (PFA).

PFA does a great job predicting problems related to “soft failures”, such as
growth in resource usage and surfacing rapid error indicators representative
of damaged system environments.

However, Soft Failure detection goes beyond PFA … soft failures have
been, and continue to be, detected by base system components; many as a
result of problems identified by customers.

Furthermore, many types of soft failures can be avoided by running health
checks on a regular basis.

IBM has actually been working on this problem for a long time, just
didn’t recognize the unifying theme until recently

PFA covers situations where it is difficult for a component to understand its
impact to the system, and where there is no simple component fix.

And Runtime Diagnostics provides an efficient way to diagnose component
issues that may result from soft failures, leading to a system that seems
“sick but not dead”.

This presentation puts these different types of error detection in perspective
and shows that IBM has an integrated solution approach where all of the
solution elements work together to allow you to identify and react to these
types of issues before they impact your system and cause an outage.

24

24

“Sick, but not dead” or

soft failures

Hard failures

Masked
failures

“Sick, but not dead” or

soft failures

Hard failures

Masked
failures

“Sick, but not dead” or

soft failures

Hard failures

Masked
failures

“Sick, but not dead” or

soft failures

Hard failures

Masked
failures

What is a soft failure?

“Your systems don’t break. They just stop working and we don’t know why.”

“Sick, but not dead” or Soft failures

Symptoms of a Soft Failure

� 80% of business impact, but only about
20% of the problems

� Long duration

� Infrequent

� Unique

� Any area of software or hardware

� Cause creeping failures

� Hard to determine how to isolate

� Hard to determine how to recover

� Hard for software to detect internally

� Probabilistic, not deterministic

Manifested as

� Stalled / hung processes

� Single system, sysplex members

� Sympathy Sickness

� Resource Contention

� Storage growth

� CF, CDS growth

� I/O issues (channel paths, response
time)

� Repetitive errors

� Queue growth

� Configuration

� SPOF, thresholds,
cache structure size,
not enabling new features

You can’t put your finger on a specific symptom; the system looks alive, but performing poorly.

There are three general categories of software detected system failures: masked failure, hard failure, and failure
caused by abnormal behavior. A masked failure is a software detected system failure which is detected by the
software and corrected by the software. A hard failure is when the software fails completely, quickly and
cleanly. For example, a hard failure occurs when an operating system kills a process.

A system failure caused by abnormal behavior is defined as unexpected, unusual, or abnormal behavior which
causes the software solution to not provide the service requested. This abnormal behavior of the software
combined with events that usually do not generate failures produce secondary effects that may eventually result
in a system failure. These types of failures are known as soft failures.

Customers have told us that these soft failures are a small percentage of the problems when compared to
masked failures and hard failures, but they cause most of the business impact.

They are hard to diagnose due to the fact that the failure likely does not occur in the address space causing the
problem, but more likely occurs in another address space. This sympathy sickness has been observed when
either hard failures or abnormal behavior generates a system failure which could not be isolated to a failing
component or subcomponent. Failures caused by abnormal behavior often generate sympathy sickness where
the problem escalates from a minor problem to the point that the service eventually stops working. Because
they are difficult to detect, are very unique, can be triggered anywhere in either software or hardware, and occur
infrequently, failure isolation is very difficult.

Hard failures are deterministic in nature. However, a failure caused by soft failures is difficult to recognize within
the component and are probabilistic and depend on secondary effects to cause observable damage.

Typically, soft failures occur in 4 generic areas:

•Exhaustion of shared resources

•Recurring or recursive failures

•Serialization problems such as classic deadlocks and priority inversions

•Unexpected state transition

Soft Failures (“sick but not dead” events) can vary from day to day, or be dependent on workloads, or can be a
result of conditions that build up over time, and, as a result, often cannot be detected by preset or pre-
programmed thresholds (as those often found in monitoring products).

Soft failures tend to manifest themselves in different ways. Configuration issues often appear as:

• Single points of failure / Cache structures too small / Log stream thresholds / Sufficient space for root file
system / Not enabling newer features

25

25

Multi-domain consolidation
Networks

Business applications
Security

Integrated z/OS Soft Failure Detection & Prevention

Health

Checker

Console / Operlog

Performance analysis

Resource management
Automation

Runtime

Diagnostics

z/OS 1.13

Operating System

z/OS Components

(System resources & structures … Single system, Sysplex)

Predictive Failure Analysis (PFA)
Soft Failure
Avoidance

Soft Failure
Detection

Soft Failure
Problem
Determination

Soft Failure Detection
- Performance
- Events
- Take corrective actions

Systems Management
Products

This chart shows the collection of components that work together to deliver a solution focused on detecting, avoiding &
diagnosing soft failures. We’ll discuss each area in sections of this presentation.

•z/OS components

•Health Checks

•PFA & RTD

•Systems management products

PFA is built into the operating system. It is looking for a small number of generic events that could cause a soft failure. It is
not looking for events or soft failures in specific address spaces unless they could cause a system crash or hang. PFA is
operating system centric in that it works on z/OS. It learns the behavior of the individual behavior and creates predictions for
that behavior. It detects soft failures by using complex algorithms imbedded in the component to compare the model
behavior for that particular system to the current behavior. PFA is built using remote health check support and provides the
information for the soft failure via IBM Health Checker for z/OS which issues the exception to the console (if so configured)
as well as the exception and the report data to the health check output in SDSF. From the messages provided by PFA via
the health checker support to the console, other products can be used to further analyze the situation.

When PFA detects a system or job with low resource usage, it invokes RTD on behalf of that system or job to determine
whether there are factors that could be causing a problem.

In addition, the installation can invoke RTD directly via operator command. In either case, the output of PFA & RTD can be
automated on to take further action. In addition, most z/OS management products offer performance analysis and various
forms of resource management.

Later in this presentation, we discuss a set of Tivoli systems management products offered by IBM.

The OMEGAMON XE for Management Console will see all health check alerts including the PFA ones. You can build a
situation that will alert you if a PFA check is raised and forward that event to other Tivoli event management products (like
OMNIBUS or Tivoli Event Console). You can also use Runtime Diagnostics to further analyze PFA results. Runtime
Diagnostics provides detailed analysis either the entire system or address space looking for soft failures. It uses lists of
messages identified by specific components to review critical messages in the joblog. It also stores information about
enqueues to analyze contention, evaluates local lock conditions, and queries a job that has a task in a TCB loop.

Runtime Diagnostics is designed to be used whenever the help desk or operations reports a problem on the system. You
should use Runtime Diagnostics to get ready before calling service. Runtime Diagnostics should also be used to help
identify the address space causing a PFA exception. PFA identifies a list of potential villains. Runtime Diagnostics can be
used to further analyze that address space to detect if it is causing a real problem and to identify what action to take to
resolve the problem.

Runtime Diagnostics and Omegamon XE provide additional lower level details than are provided by PFA. The
documentation for Runtime Diagnostics as well as PFA can be found in the z/OS Problem Management guide. Starting with
z/OS 1.13, PFA calls Runtime Diagnostics to verify abnormally low conditions.

Using customer policy, TSA (via Netview) can detect that a health checker message for PFA exceptions were issued and
drive actions.

26

26

Some general considerations …

• The key to reducing the impact of soft failures is

• Avoid them using z/OS Health Checker

• Enable system checking where possible

• Automate alerts
• Display, take action

• z/OS can survive / recover from most soft failures

• Take advantage of what the base operating system has to offer
• Soft failure detection across many z/OS components

• Start Health Checker, PFA, RTD (R13) at IPL (e.g., COMMNDxx)

The key to reducing the impact of soft failures is

•Avoid them using health checker

•Enable system checking where possible

•Alerts can be acted upon. You can display them, automate on them and
take action to address the detected problem(s)

It is true that z/OS can survive or recover from many forms of soft failures,
as demonstrated by the different types of component checking.

•But you need to take advantage of what the base operating system has to
offer; this requires enabling some function parameters, and starting health
checker, PFA and RTD during the IPL, such as in the COMMNDxx parmlib
member

Most metrics that are used to detect soft failures are very time sensitive,
especially when predicting activity based on averages sampled over time.

Predictive trend analysis is not intended to find immediate problems that will
bring down a system on a machine-time scale, as the sampling minimum is 1
minute … 15 minutes for some checks. With some checks (like the ENQ
request rate), default collection and comparison every minute; so we could
detect something within 2 minutes.

27

27

Detection of Soft Failures by
z/OS Components

• z/OS attempts to detect soft failures as close to the source as possible

• Uses the least amount of resources

• Requires the smallest amount of the stack to do detection

• Detection of a soft failure requires ability to identify when something is
wrong

• Thresholds set by the installation

• In general, components try to avoid soft failures

• “Throttles” may be used to manage internal requests

• Examples follow …

Intro to Component detection of Soft Failures

Several examples of component soft failure detection follow on the next set
of charts

Whenever possible, components try to avoid soft failures!

28

28

Component Examples: Detection, Identification of soft
failures … Single system

Assists in determining why JES2 is not
responding to requests

“Monitor” msgs issued for conditions that
can seriously impact JES2 performance

JES2 MonitorJES2

Prevent deadlocks caused by starvationWLM management of blocking units

Identifies holders, waiters, latches, file
device numbers, file inode numbers, latch
set identifiers, file names, and owning file
systems

D OMVS,WAITERS to diagnose file
system latch contention

(enhanced R13: file latch activity)

Checks for buildup of processes, pages of
shared storage (process & system level)

System Limits

Detected lost messages in sysplex, via
message ordering

XCF communication improvements
(R13)

Explanations for latch usage on D GRSLatch identity exploitationUNIX System
Services

Prevent exhaustion of common storage
resulting from GRSQSCAN processing

GRS ENF 51

Associate name with Latch numberGRS Latch identity string

Identify Blocker/Waiter, Deadly embraces,
Job name, Creator ASID

Enhanced contention analysis for ENQ,
Latch

GRS

FunctionsFeaturesComponent

Details in backup section

29

29

Component Examples: Detection, Identification, recovery of
soft failures … Single system

Improved channel recovery (hardware)Detect & remove “Flapping Links”

Prevent accidental overlays of real UCBs
in SQA by Legacy applications

Captured UCB protection

Abnormally end I/O requests exceeding
I/O timing limits for device; Hyperswap
devices as well

I/O timing facility

Recover channel program error retry from
I/O errors, using a lower level protocol

Media manager

Checks the structure of all index CIs
before writing them to DASD

VSAM RLS index traps

Identify, terminate service tasks beyond a
monitored wait time

CAS contention detectionDFSMS

WLM dynamically move channel paths
from one CU to another, in response to
workload changes

Dynamic Channel Path Management

Identify partner system sharing device

D U,VOL= … D GRS,DEV= …

Identify systems sharing a reserve

Detect incomplete I/O operations, within a
policy driven time period (device, CU,
fabric); recover, FFDC

Missing Interrupt HandlerIOS

FunctionsFeaturesComponent

Details in backup section

30

30

Component Examples: Detection of soft failures … Sysplex

• Not updating status, Not sending signals (ISOLATETIME(0):
Fencing initiated n seconds after FDI exceeded)

• System updating status, not sending signals (Loss of
connectivity: CONNFAIL(YES): remove systems with low weights)

• System Not Updating Status, But IS Sending Signals
(SSUMLIMIT(900) … length of time system can remain not
updating heartbeat (semi-sick), but sending signals)

• Sysplex Member Stalled (MEMSTALLTIME … break out of of an
XCF signaling jam by removing the largest build-up)

• Structure Hang conditions … Take action when connector does
not respond, avoiding user hangs (CFSTRHANGTIME) (R12)

Sysplex Failure
Management,
scenarios

How long to allow …

If a critical member is “impaired” for long enough, XCF will
eventually terminate the member; GRS: remove system

Critical Member
support;

GRS exploitation (R12)

Avoid waiting the Failure Detection Interval (FDI) if the system is
truly dead … detect & reset failed system, eliminate data
corruption, avoid sympathy sickness.

Exploitation of BCPii to
determine dead system
more quickly

Identify unresponsive system, restore to normal operation OR
remove it to avoid sympathy sickness

Stalled member supportXCF / XES

FunctionsFeaturesCompone
nt

Details in backup section

31

31

Multi-domain consolidation
Networks

Business applications
Security

Integrated z/OS Soft Failure Detection & Prevention

HealthHealth

CheckerChecker

Console / Operlog

Performance analysis

Resource management
Automation

Runtime

Diagnostics

z/OS 1.13

z/OS Components
(System resources & structures … Single system, Sysplex)

Predictive Failure Analysis (PFA)

Soft Failure
Avoidance

Soft Failure
Detection

Soft Failure
Problem
Determination

Soft Failure Detection
- Performance
- Events
- Take corrective actions

Operating System

Systems Management
Products

Next we’ll discuss Health checks, hosted by the z/OS Health Checker

32

32

IBM Health Checker for z/OS
Soft Failure Avoidance

• Health checker’s role is to keep subtle configuration errors from resulting in Soft
Failures

• Performance
• System effects
• Check configuration for best practices
• Single points of failure for log structures, data sets, CDS
• Storage utilization, running out of resources
• How many ASIDs do I have left? LXs? When will I run out?
• Whether DAE is inactive
• VSAM RLS latch contention, CF Cache size, CDS SPOF, etc.
• System Logger structure usage
• I/O timing, protection
• …

• Also used to emit PFA alerts
• Warnings of detected soft failures

• 187 z/OS Health Checks in z/OS R13

Role of health checker is to avoid subtle configuration error from resulting in
Soft Failures

33

33

Health Checker: Soft Failure avoidance
Important examples

Threshold for loss of connectivityXCF_SFM_CONNFAIL

Verifies CFSTRUCTURE hang timeXCF_SFM_CFSTRHANGTIME

Verifies SFM active, policy valuesXCF_SFM_ACTIVE

Checks status update missing
(SUMLIMIT) value

XCF_SFM_SUMLIMIT

Checks ISOLATETIME value, to allow
SFM to fence and partition a system
without operator intervention and without
undue delay.

XCF_SFM_SUM_ACTION

Evaluates primary & secondary CDS
configuration to determine if Sysprog
inadvertently created a single point of
failure

XCF_CDS_SPOFXCF

Evaluates whether the RACF ENQ names
are in a GRSRNL list: system exclusion
resource name list (SERNL) or the system
inclusion resource name list (SIRNL)

RACF_GRS_RNLRACF

FunctionsHealth CheckComponent

Details in backup section

34

34

Health Checker: Soft Failure avoidance examples

Validate current system against parmlib
IPL’d with

Remind you to update parmlib (due to
dynamic changes)

USS_PARMLIBUNIX System
Services

With Sysplex, some file systems
accessed locally, some of function
shipped to the File system owner. Some
are accessed locally, but are configured to
function ship

USS_CLIENT_MOUNTS

Checks if mount attribute access is read
only; whether HFS’s in Sysplex root

USS_FILESYS_CONFIG

Validates SADMP, MVS IPL devicesSVA_AUTOIPL_DEV_VALIDATION

Check whether Program-Directed IPL and
not GDPS, and whether AUTOIPL policy
is active

SVA_AUTOIPL_DEFINED

DAE suppresses duplicate SVC dumps so
that system resources (processor cycles
and dump space) are not used for a dump
which provides little or no additional
diagnostic value

DAE_SUPPRESSINGServiceability

FunctionsHealth CheckComponent

Details in backup section

35

35

Health Checker: Soft Failure avoidance examples

Primary structure full; need to offloadIXGLOGR_STRUCTUREFULLSystem Logger

High number of entries in element poolsIXGLOGR_ENTRYTHRESHOLD

Full staging data spaceIXGLOGR_STAGINGDSFULL

Detects if any control units in the system
are reporting inconsistent average initial
command response (CMR) time (round
trip delay) for their attached channel
paths. Exception issued when a CU has
a path with highest avg CMR time greater
than a threshold/ratio

IOS_CMRTIME_MONITOR

UCB capture protection is enabled,
allowing UCBs to be temporarily copied to
24-bit storage for legacy software access

IOS_CAPTUCB_PROTECTIOS

FunctionsHealth CheckComponent

Details in backup section

36

36

z/OS Health Check: Example Categories

ExamplesCategory

IOS_CAPTUCB_PROTECT

IOS_CMRTIME_MONITOR (Check for inconsistent average
initial command response (CMR))

IOS_MIDAW (MIDAW enabled)

I/O

GRS_MODE (system configured in STAR mode)

GRS_SYNCHRES (GRS synchronous reserve processing
enabled)

GRS_CONVERT_RESERVES (reserves converted to ENQs)

GRS

IEA_ASIDS (number of ASIDs remaining)

IEA_LXS (number of LX’s remaining)

SUP_LCCA_ABOVE_16M

Address space checks

RACF_GRS_RNL (for RACF datasets)

SDSF_CLASS_SDSF_ACTIVE (SDSF settings)

Security

VSAMRLS_SINGLE_POINT_FAILURE (SHCDS data sets)

XCF_CDS_SPOF (XCF Couple Data Sets)

XCF_CF_CONNECTIVITY (CF links, SPOF)

Detect Single points of failure

z/OS Health Checks categorized by types of areas they examine

37

37

z/OS Health Check: Example Categories

ExamplesCategory

XCF_*

XCF_CF_*

CSTCB_*

RRS_*

IXGLOGR_*

VSAMRLS_*

XCF_SFM_*

CNZ_*

Etc.

Sysplex configuration

ALLOC_* (Allocation)

CNZ_* (Consoles)

CSRES (Comm Server), CSTCP_* (TCP/IP)

SDSF_*, …

Optimal component settings

z/OS Health Checks categorized by types of areas they examine

38

38

z/OS Health Check: Example Categories

CSTCP_TCPMAXRCVBUFRSIZE

CSVTAM_CSM_STG_LIMIT

VSAMRLS_CFCACHE_MINIMUM_SIZE

XCF_MAXMSG_NUMBUF_RATIO

RSM_MEMLIMIT

RSM_MAXCADS

RSM_AFQ

RSM_REAL

RSM_RSU

VSM_*

Buffer sizes, storage limits

ExamplesCategory

SDUMP_AVAILABLE

SDUMP_AUTO_ALLOCATION (auto-alloc SDUMP data sets)

CSTCP_SYSTCPIP_CTRACE (CTRACE active, options)

CSVTAM_VIT_SIZE (VTAM Internal Trace table size)

CSVTAM_VIT_DSPSIZE (VTAM Internal Trace)

SVA_AUTOIPL_DEFINED

SVA_AUTOIPL_DEV_VALIDATION

DAE_SHAREDSN

DAE_SUPPESSING

Serviceability (Dump, Trace
options)

z/OS Health Checks categorized by types of areas they examine

39

39

z/OS Health Check: Example Categories

Migration checks

Console configuration
HSM control data set backups
JES2 ready to upgrade
Reconfiguration
SMS CDS configuration
System logger
Staging data sets full, entry thresholds, structure full
USS/ zFS: File system issues
VSAM RLS: false contention, monitor contention, monitor
unresponsive CICS regions, TVS enabled

Other component specifics

ExamplesCategory

SUP_HIPERDISPATCH (Verify Hiperdispatch enabled)
SUP_HiperdispatchCPUConfig (monitors the number of CPUs
installed and Hiperdispatch state of the system)

Hardware

z/OS Health Checks categorized by types of areas they examine

40

40

Important considerations when enabling
z/OS Health Checks

1. Don't just change the configuration … investigate the exception and then
take appropriate action

2. There are 187 Health Checks in z/OS R13
a. Start Health Checker and try to resolve all exceptions
b. Activate all health checks, resolve all exceptions
c. Don’t think that you must activate all health checks at once to get benefit
d. Goal should be to remove all exceptions

• by fixing the condition
• by tuning the check so that it looks for what you need it to look for
• (as a last resort) by deactivating the check

e. Once you can run cleanly, you will be in the ideal position to know that an
exception indicates something has changed

f. Consider categorizing health checks by
1) Checks I expect no exceptions from
2) Checks not turned on because exceptions not cleaned up yet
3) Plan to move checks to group 1 as you clean up exceptions

3. GDPS recommendations for changing z/OS checks trump z/OS in a GDPS
environment
a. Some z/OS Health Check recommendations conflict with GDPS function,

so follow GDPS guidelines

Turn it on. You might find so many exceptions that you feel overwhelmed.
But they're all probably things you ought to check out. Since you've been
running this way for some time, they're not likely things that you absolutely
need to deal with immediately. Your goal should be to get rid of all the
exceptions, whether by fixing the condition, or by tuning the check so that it
looks for what you need it to look for, or as a last resort by deactivating or
even deleting the check. Once you can run cleanly, you will be in the ideal
position of knowing that when an exception shows up it is definitely
something you want to look at, as something has changed.

41

41

Multi-domain consolidation
Networks

Business applications
Security

Integrated z/OS Soft Failure Detection & Prevention

Health

Checker

Console / Operlog

Performance analysis

Resource management
Automation

z/OS 1.13

z/OS Components

(System resources & structures … Single system, Sysplex)

RuntimeRuntime

DiagnosticsDiagnostics

Predictive Failure Analysis (PFA)Predictive Failure Analysis (PFA)
Soft Failure
Avoidance

Soft Failure
Detection

Soft Failure
Problem
Determination

Soft Failure Detection
- Performance
- Events
- Take corrective actions

Operating System

Systems Management
Products

Next, let’s transition to the Soft Failure detection & PD segment … Predictive
Failure Analysis (PFA) and Runtime Diagnostics (RTD)

42

42

Soft Failure Detection: Predictive Failure Analysis

• Monitors trends in certain z/OS system resources & metrics

• Predicts expected, normal behavior as well as future behavior; identifies
exceptions as Soft Failures

• … when the resources will run out, or when metrics become abnormal
when compared to expected prediction

• Machine-learning technology used to determine what’s normal

• Statistical analysis used to identify exceptions

• Focuses on metrics affecting different layers of the software stack

• Exceptions alerted and reports written using Health Checker for z/OS

• Identifies areas related to
• resource exhaustion
• damaged address spaces and damaged systems

• Tune comparison algorithms using configurable parameters such as
STDDEV; defaults selected based on IBM test systems

• Tunable configuration parameters per check

• Invokes Runtime Diagnostics to check for hung address spaces (R13); RTD
validates and suggests next steps

Predict expected, normal behavior based on modeling of past behavior over
the past 24 hours, week, month and statistical analysis of current activity.

Tunable algorithms, other parameters

Invokes RTD to check for hung address spaces when PFA considers
address space when detection rates are “too low”

43

43

Example Report: Logrec Arrival Rate Prediction Report

�Available in SDSF (s.ck)

�Heading information
�Configuration and status

�Current and predicted
information for metric

�Top predicted users
�Tries to pinpoint potential

villains

� IBM Health Checker for z/OS
message in its entirety

LOGREC Arrival Rate Prediction Report

(heading information intentionally omitted)

Key 0 Key 1-7 Key 8-15

__________ __________ __________

Arrivals in last

collection interval: 1 0 2

Predicted rates based on...

1 hour of data: 1 0 1

24 hours of data: 0 0 1

7 days of data: 0 0 1

30 days of data: 0 0 1

Jobs having LOGREC arrivals in last collection interval:

Job Name ASID Arrivals

________ ____ ________

LOGREC08 0029 2

LOGREC00 0027 1

When PFA detects there is no problem, a prediction is produced in the health check option of SDSF.
When PFA detects there is a problem, an exception report is printed. All PFA reports are available in
SDSF. There is heading information which contains configuration and status for the collections and
models.

Each check has its own check-specific information. All checks will display potential villains when an
exception occurs. Most of the checks will also list the top address spaces or other important
information even when there isn’t an exception.

The exception message is configured by default to be issued as a WTO. That message is also
included in the exception report along with its detailed response information.

The numbers are in this example are not from a real exception.

44

44

The PFA Health Checks

� z/OS 1.10 SPE

– Common storage exhaustion check
• CSA + SQA below the line
• ECSA + ESQA above the line

– LOGREC arrival rate check
• Groups arrivals by key
• Four time ranges

� z/OS 1.11

– Frames and slots usage check

• Tracks all address spaces that start
within an hour after IPL (persistent)

– Message arrival rate (WTO/WTOR)
check
• Chatty, persistent address spaces
• Non-chatty, persistent address

spaces
• Non-persistent address spaces
• Total system

� z/OS 1.12

– SMF arrival rate check
• Same categories as message arrival

rate check

– Modeling improvements
• More granular common storage check
• Supervised learning (exclude jobs)
• Dynamic modeling

– Performance and serviceability

� z/OS 1.13
– JES spool usage check

• Tracks all persistent address spaces
• JES2 only

– Enqueue request rate check
• Chatty, persistent address spaces
• Total system

– Integration with Runtime Diagnostics
to detect rates that are “too low”

How often do you see soft failures on your systems?

45

45

Runtime Diagnostics

• Analyzes a “sick, but not dead” system in a timely manner

• Performs analysis similar to a very experienced system programmer

• But faster – goal of 60 seconds or less

• More comprehensive

• Looks for specific evidence of “soft failures”

• Provides suggested next steps

• Runtime Diagnostics

• Is not automation or a monitor

• Takes no corrective action, but recommends next steps

• Has no background processing and minimal dependencies on system services

Component Analysis

Address Space Execution

Global Resource Contention

Analyzes Operlog for specific component msgs

Detects contention in ENQs in system address
spaces, GRS latches, and the z/OS UNIX file
system

Detects important execution information: CPU
usage, local lock usage, and TCB loops

Looking at the operating system only!

Diagnose sick system by identifying symptoms that could lead to identifying the
culprit, and offering next steps to take.

3 areas:

•Component analysis (messages)

•Global resources (ENQs)

•Local address space characteristics

46

46

Runtime Diagnostics Invocation and Output

� z/OS 1.12 → Started task -- “Run” the analysis via a START command

– START HZR,SUB=MSTR

� z/OS 1.13 → Address space – Start with command above and Run with modify command

– f hzr,analyze

f hzr,analyze

HZR0200I RUNTIME DIAGNOSTICS RESULT 581

SUMMARY: SUCCESS

 REQ: 004 TARGET SYSTEM: SY1 HOME: SY1 2010/12/21
- 13:51:32

 INTERVAL: 60 MINUTES

 EVENTS:

 FOUND: 04 - PRIORITIES: HIGH:04 MED:00 LOW:00

 TYPES: HIGHCPU:01

 TYPES: LOOP:01 ENQ:01 LOCK:01

--

EVENT 02: HIGH - HIGHCPU - SYSTEM: SY1 2010/12/21
- 13:51:33

ASID CPU RATE:99% ASID:002E JOBNAME:IBMUSERX

STEPNAME:STEP1 PROCSTEP: JOBID:JOB00045
USERID:IBMUSER

JOBSTART:2010/12/21 - 11:22:51

 ERROR: ADDRESS SPACE USING EXCESSIVE CPU TIME. IT MIGHT BE LOOPING.

 ACTION: USE YOUR SOFTWARE MONITORS TO INVESTIGATE THE ASID.

--

EVENT 03: HIGH - LOOP - SYSTEM: SY1 2010/12/21
- 13:51:14

ASID:002E JOBNAME:IBMUSERX TCB:004FF1C0

STEPNAME:STEP1 PROCSTEP: JOBID:JOB00045
USERID:IBMUSER

JOBSTART:2010/12/21 - 11:22:51

 ERROR: ADDRESS SPACE MIGHT BE IN A LOOP.

 ACTION: USE YOUR SOFTWARE MONITORS TO INVESTIGATE THE ASID.

F HZR,ANALYZE

HZR0200I RUNTIME DIAGNOSTICS RESULT 692

SUMMARY: SUCCESS

 REQ: 002 TARGET SYSTEM: SY1 HOME: SY1 2010/12/21 - 14:32:01

 INTERVAL: 60 MINUTES

 EVENTS:

 FOUND: 02 - PRIORITIES: HIGH:02 MED:00 LOW:00

 TYPES: LATCH:02

--

EVENT 01: HIGH - LATCH - SYSTEM: SY1 2010/12/21 - 14:32:01

LATCH SET NAME: SYSTEST.LATCH_TESTSET

LATCH NUMBER:3 CASID:0039 CJOBNAME:TSTLATCH

TOP WAITER - ASID:0039 - JOBNAME:TSTLATCH - TCB/WEB:004E2A70

TOP BLOCKER- ASID:0039 - JOBNAME:TSTLATCH - TCB/WEB:004FF028

 ERROR: ADDRESS SPACES MIGHT BE IN LATCH CONTENTION.

 ACTION: D GRS,AN,LATCH,DEP,CASID=0039,LAT=(SYSTEST.L*,3),DET

 ACTION: TO ANALYZE THE LATCH DEPENDENCIES. USE YOUR SOFTWARE

 ACTION: MONITORS TO INVESTIGATE BLOCKING JOBS AND ASIDS.

Example output
� Left → HIGHCPU and LOOP
� Below → GRS Latch Contention

Loop detection: Runtime Diagnostics looks through all tasks in all address spaces
to determine if a task appears to be looping. Runtime Diagnostics does this by
examining various system information for indicators of consistent repetitive activity
that typically appears when a task is in a loop. When both a HIGHCPU event and a
LOOP event (shown in the example) list the job name, there is a high probability
that a task in the job is in a loop. The normal corrective action is to cancel the job
name listed.

47

47

Runtime Diagnostics Symptoms Detected

� z/OS 1.12

� Component-specific, critical
messages in OPERLOG

� Looks one hour back, if available
� Additional analysis for some msgs
� Message summary found in output
� Can analyze messages in other

system in sysplex

� Enqueue Contention Checking

� Looks for system address space
waiting > 5 seconds

� Lists both waiter and blocker
� Can detect contention in other system

in sysplex

� Local Lock Suspension

� Any address space whose local lock
suspension time is > 50%

� z/OS 1.12 (continued)

� CPU Analysis

� Takes 2 samples over 1 sec. interval
� Any task using > 95% is considered a

potential problem

� Loop Detection

� Investigates all tasks in all address spaces
looking for TCP loops

� z/OS 1.13

� z/OS UNIX Latch Contention

� Looks for z/OS UNIX latch contention or
waiting threads that exit for > 5 minutes.

� GRS Latch Contention

� Obtains latch contention info from GRS
� Omits z/OS UNIX file system latch

contention
� Returns longest waiter for each latch set

Use it when getting ready for a bridge call.

Discreet symptoms

48

48

z/OS 1.13 PFA Integration with Runtime Diagnostics

� Detects damaged or hung system
or address space based on rates
being “too low”

� When PFA detects too low, Runtime
Diagnostics is executed

� Output
� “Too low” exception message sent

as WTO by default

� Runtime Diagnostics output
included in PFA report

� Prediction report and result message
available in SDSF (sdsf.ck)

� PFA current rates and predictions
relevant to category causing exception

� Supported for Message Arrival Rate,
SMF Arrival Rate, Enqueue Request
Rate

 Message Arrival Rate Prediction Report

(Heading information intentionally omitted.)

Persistent address spaces with low rates:

 Predicted Message

 Message Arrival Rate

Job Arrival

Name ASID Rate 1 Hour 24 Hour 7 Day

________ ____ ____________ ____________ ____________ ____________

JOBS4 001F 1.17 23.88 22.82 15.82

JOBS5 002D 2.01 8.34 11.11 12.11

Runtime Diagnostics Output:

Runtime Diagnostics detected a problem in job: JOBS4

 EVENT 06: HIGH - HIGHCPU - SYSTEM: SY1 2009/06/12 - 13:28:46

 ASID CPU RATE: 96% ASID: 001F JOBNAME: JOBS4

 STEPNAME: PFATEST PROCSTEP: PFATEST JOBID: STC00042 USERID:

++++++++

 JOBSTART: 2009/06/12 - 13:28:35

Error:

 ADDRESS SPACE USING EXCESSIVE CPU TIME. IT MAY BE LOOPING.

Action:

 USE YOUR SOFTWARE MONITORS TO INVESTIGATE THE ASID.

 EVENT 07: HIGH - LOOP - SYSTEM: SY1 2009/06/12 - 13:28:46

 ASID: 001F JOBNAME: JOBS4 TCB: 004E6850

 STEPNAME: PFATEST PROCSTEP: PFATEST JOBID: STC00042 USERID:

++++++++

 JOBSTART: 2009/06/12 - 13:28:35

Error:

 ADDRESS SPACE APPEARS TO BE IN A LOOP.

Action:

 USE YOUR SOFTWARE MONITORS TO INVESTIGATE THE ASID.

 (Additional output intentionally omitted.)

When an exception for an abnormally low condition is found, a health check
exception will be issued explaining the problem. The PFA report will include the
current rates and predicted rates for the category that was failing. In addition it will
include the Runtime Diagnostics output received when PFA called Runtime
Diagnostics to verify the problem.

Note that in this example, PFA indicated that jobs JOBS4 and JOBS5 had a
Message Arrival Rate that was too low when compared to their expected rates for
any of the time ranges. Runtime Diagnostics verified that there could be a problem
by detecting both a HIGHCPU and a LOOP event for JOBS4. Therefore, the
abnormally low message arrival rate coupled with the results of Runtime
Diagnostics show that JOBS4 is very likely looping. The Runtime Diagnostics
output for JOBS5 were similar, but were purposely omitted from this display due to
lack of space.

Just like the other PFA prediction reports, the PFA prediction reports for abnormally
low conditions are available in SDSF.

49

49

Extending to Systems Management Products

• Many (ISV) Systems Management products support

• Actions based on WTO message events

• Automation of Health Check events
• PFA Health Check events = soft failures

• Performance analysis

• Integration of Alert displays, performance exceptions, event based
actions

Thus far we have discussed functions in the z/OS stack that perform
detection, avoidance and PD for Soft Failures, and exceptions are emitted
via WTO messages.

Let’s now turn to the Systems Management stack.

Most management stacks provide performance analysis and Resource
management, and offer automation of WTO message events to translate the
base event to a business action.

In addition, some systems management vendors offer consolidation points
for handling OS events, network issues, security, etc.

Tivoli products can integrate a variety of soft failure alert types

•PFA alerts

•Performance issues

•Other message automation

•Policy to control corrective actions

50

50

Integrated z/OS Soft Failure Detection & Prevention

Health

Checker

Console / Operlog

MultiMulti--domain consolidationdomain consolidation

NetworksNetworks

Business applicationsBusiness applications

SecuritySecurity

Performance analysisPerformance analysis

Resource managementResource management
AutomationAutomation

Runtime

Diagnostics

z/OS 1.13

z/OS Components

(System resources & structures … Single system, Sysplex)

Predictive Failure Analysis (PFA)
Soft Failure
Avoidance

Soft Failure
Detection

Soft Failure
Problem
Determination

Soft Failure Detection
- Performance
- Events
- Take corrective actions

Operating System

Systems Management
Products

Thus far we have discussed functions in the z/OS stack that perform detection,
avoidance and PD for Soft Failures, and exceptions are emitted via WTO
messages.

Let’s now turn to the Systems Management stack.

Most management stacks provide performance analysis and Resource
management, and offer automation of WTO message events to translate the base
event to a business action.

In addition, some systems management vendors offer consolidation points for
handling OS events, network issues, security, etc.

Transition to next chart … Systems Management Product box becomes Tivoli
products example

51

51

Integrated z/OS Soft Failure Detection & Prevention

Health

Checker

Console / Operlog

OMEGAMON XE on z/OS

OMEGAMON zMC

AGENTS

AGENTS

Tivoli SA

Netcool/OMNIbus

Runtime

Diagnostics

z/OS 1.13

z/OS Components

(System resources & structures … Single system, Sysplex)

Tivoli Event Pump

Predictive Failure Analysis (PFA)
Soft Failure
Avoidance

Soft Failure
Detection

Soft Falure
Problem
Determination

Soft Failure Detection
- Performance
- Events
- Take corrective actions

Operating System

TIVOLI Management
Products

Messages provided by PFA via the health checker support, as well as outputs from
other health checks and z/OS components, can be used to further analyze the
situation.

The OMEGAMON XE for Management Console will see all health check alerts
including the PFA ones. You can build a situation that will alert you if a PFA check
is raised and forward that event to other Tivoli event management products (like
OMNIBUS or Tivoli Event Console). You can also use Runtime Diagnostics to
further analyze PFA results. Runtime Diagnostics provides detailed analysis either
of either the entire system or address space looking for soft failures. It uses lists of
messages identified by specific components to review critical messages in the
joblog. It also stores information about enqueues to analyze contention, evaluates
local lock conditions, and queries a job that has a task in a TCB loop.

Using customer policy, TSA (via Netview) can detect that a health checker message
for PFA exceptions were issued and drive actions.

52

52

zMC Health Check display

Example of Health Check display on the zManagement Console (z/MC)

Exception check counts and counts of how often checks are run are shown
in the top half of the screen.

Health check status is shown in the bottom half of the screen image

53

53

Overall: Reducing Impact of Soft Failures
• Automation of alerts is key

• Display, take action

• z/OS can survive / recover from most soft failures

• But, take advantage of what the base operating system has to offer
• Soft failure detection across many z/OS components

• Start Health Checker, PFA, RTD (R13) at IPL (e.g., COMMNDxx)

• Most metrics are very time sensitive

• Defaults selected based on z/OS test environments; should be good for most

• Predictive trend analysis typically not done on a Machine-time scale

• PFA not designed to detect anomalies that could terminate a system on machine-time
scale

• Shortest data comparison is once a minute; identification of a program consuming CSA
make take a couple minutes

• PFA has tuned comparison algorithms using what is learned from your system
• Configuration parameters are tunable to make the algorithms more accurate for your workloads

• All checks have configurable parameters, e.g. STDDEV (Lower � more sensitive)

The key to reducing the impact of soft failures is

•Avoid them using health checker

•Enable system checking where possible

•Alerts can be acted upon. You can display them, automate on them and
take action to address the detected problem(s)

It is true that z/OS can survive or recover from many forms of soft failures,
as demonstrated by the different types of component checking.

•But you need to take advantage of what the base operating system has to
offer; this requires enabling some function parameters, and starting health
checker, PFA and RTD during the IPL, such as in the COMMNDxx parmlib
member

Most metrics that are used to detect soft failures are very time sensitive,
especially when predicting activity based on averages sampled over time.

Predictive trend analysis is not intended to find immediate problems that will
bring down a system on a machine-time scale, as the sampling minimum is 1
minute … 15 minutes for some checks. With some checks (like the ENQ
request rate), default collection and comparison every minute; so we could
detect something within 2 minutes.

54

54

Summary

IBM provides an integrated solution approach to

Avoiding, Detection, Diagnosing Soft Failures

Business Application View

Performance, Automation

Analysis / Diagnosis

Avoidance

First point of defense z/OS Components

Health Checker

Predictive Failure Analysis
Runtime Diagnostics

All elements work together for an integrated All elements work together for an integrated

IBM soft failure solution IBM soft failure solution …… Set Them Up!Set Them Up!

All of the elements work together for an integrated IBM soft faiAll of the elements work together for an integrated IBM soft failure lure

solution solution …… Set Them Up!Set Them Up!

z/OS componentsz/OS components

Health checksHealth checks

PFA, RTDPFA, RTD

Systems Management Systems Management …… Tivoli productsTivoli products

55

55

Acknowledgements

• Thank you to all who contributed information for this
presentation

JES2Tom Wasik

OmegamonBrian Kealy

USS File SystemJohn Case

DFSMS - RLSTerri Menendez

Health CheckerPeter Relson

USS KernelScott Bender

DFSMS - Media ManagerRon Bretschneider

System LoggerDoug Zobre

z/OS ArchitectDave Surman

DFSMSWayne Rhoten

IOSDale Riedy

GRS, AvailabilityNick Matsakis

XCF, XES, CFMark Brooks

PFA / RTDKarla Arndt

z/OS Predictive TechnologiesJim Caffrey

56

56

Backup Reference –
Component Soft Failure detection

57

57

Detection of Soft Failures on a z/OS image:
GRS serialization

• Enhanced contention analysis for ENQ / Latch
• D GRS,ANALYZE,BLOCKER / WAITER / DEPENDENCY
• D GRS,ANALYZE,LATCH,BLOCKER / WAITER / DEPENDENCY

• Blocker/Waiter, Deadly embraces, Job name, Creator ASID, etc.

• GRS Latch identity string
• Associate name with latch number
• Included in D GRS latch analysis responses
• Exploited by USS, RRS, Logger, RACF

• GRS interacts with WLM to manage priority of blocking units of work
• Prevent deadlocks causing starvation
• WLM’s “trickle” support ensures that critical work is given cycles gradually to resolve

any deadlocks

• GRS monitor
• ENF 51 generates blocks in common storage (SQA)
• SRBs suspended due to stuck receiver (e.g., RMF)

• Therefore too many requests can cause common storage outage

• GRS piped the requests elsewhere to avoid exhausting common storage

• Exploits XCF Critical member support (see XCF critical member support)

GRS provided enhanced contention analysis to identify ENQ blockers and waiters a number of
releases ago,

And recently implemented similar support for latches, also displayed using the D GRS,ANALYZE
command.

In R11, GRS delivered the ability to identify latch usage, which is included in the D GRS response.
The Latch Identity string is exploited by USS, RRS, Logger and RACF for their latches.

GRS encountered a situation where its ENF 51 events schedule an SRB, which gets suspended due
to contention events, keeping its control blocks in common storage. If there are too many requests,
SRBs exhaust common storage, causing a system outage..

•The 64 bit SSRBs support helped with the ENF 51 case where the consumer could not keep up with
spikes. The suspended SRBs (SSRBs) which were in common could previously exhaust common
storage. GRS didn't change to use Pause/Release for this in any way.

•GRS QSCAN/ISGQUERY did change to use Pause/Release rather than schedule a "resume" SRB
for its requests as there were cases where the requester space had storage issues which prevented
the "resume" SRB from getting it dynamic area in the target address space. This in turn resulted in the
QSCAN/ISGQUERY invoker never getting resumed even after the storage issue cleared up. By using
Pause/Release, the possibly temporary storage problem was circumvented such that the
QSCAN/ISGQUERY invoker was not left hung out to dry.

GRS/WLM support to identify ENQs being held by units of work with lower priorities, thus possibly
causing deadlocks. Priority is improved to complete processing and release the serialization.

•WLM/SRM added support to identify critical resources, which allows a resource owner to identify a
case where a critical resource is blocked by a holder/holders and as such it should take more action to
get the holder moving, above and beyond the ENQHOLD/ENQRelease sysevent services that are
used. Only DB2 uses this interface.

•WLM introduced the "trickle" support which insures that all dispatchable work, including discretionary,
gets some cycles every so often in order to help alleviate serialization bottle necks that were not
resolved by ENQHOLD/ENQRELEASE or "critical“, or the resource serialization provider did not use
the "promotion" services. This is believed to have helped in these types of cases.

Too many XMPOSTs for same ECB

Looks @ ECB to see if already posted & ensure that the post is not done

58

58

Detection of Soft Failures on a z/OS image:
UNIX System Services serialization

• Latch identity explanations for the latches used by USS (R13)
• FS: <fs name> … MOUNT … MessageQ ID=<msg-ID in decimal>

• System traversing or modifying structures related to the message queue

• XCF communication improvements
• Lost XCF message detection (R13)

• Utilizes XCF message ordering to detect lost messages
• Activate with parmlib option, SETOMVS LOSTMSG=ON/OFF

• Member Gone detects stall, attempts fix; if takeover fails, initiates sysplex-wide dump

• USS System Limits (R10)
• Checks for buildup of processes, pages of shared storage (process & system level)
• When 85% process utilization is reached, WTO messages are issued
• For example: MAXASSIZE, MAXCPUTIME, MAXFILEPROC, MAXPROCUSER,

MAXQUEDSIGS, MAXTHREADS
• Displayed via D OMVS,LIMITS

• DISPLAY OMVS,WAITERS to diagnose file system latch contention problems
• Enhanced in R13 to show a table for file latch activity
• Holders, waiters, latches, file device numbers, file inode numbers, latch set identifiers,

file names, and owning file systems

USS examples

GRS Latch identity service is exploited to identify latch usage for file systems and other latch
usage.

Example:

SY2 D GRS,ANALYZE,LATCH,WAITER

SY2 ISG374I 16.15.24 GRS ANALYSIS 734

LONG WAITER ANALYSIS: ENTIRE SYSTEM

----- LONG WAITER #1

WAITTIME JOBNAME E/S CASID LSETNAME/LATCHID

00:01:01 TC0 *E* 000E SYS.BPX.A000.FSLIT.FILESYS.LSN

20:FS: HOST12.AJAX.DIRECTORY

FS: <fs name>: If the LSETNAME is SYS.BPX.A000.FSLIT.FILESYS.LSN, the latch

is used to serialize operations on the file system named in the latch identity string.

● MOUNT: This latch is used by the file system to serialize operations such as file system
mount, unmount, move, and automount and others.

● MessageQ ID=<msg-ID in decimal>: This latch is used when the system is traversing or
modifying structures related to the message queue whose identifier is shown in

the latch identity string.

Lost XCF message detection … incurs a performance penalty in high UNIX traffic
environments; better reliability

USS built a set of System Limits to identify storage creep

Dynamic socket limit

59

59

Detection of Soft Failures on a z/OS image:
IOS examples

Missing Interrupt Handler
• Incomplete I/O: Prevents an application or system outage due to an error in any one of

the following places:
► Device

► Control Unit

► Fabric

► Operator/CE error (IML, cable pulls, etc…)

• Outage is prevented by:
► Detecting when an I/O operation has not completed within a policy driven time period

► Invoking system diagnostic routines to understand the scope of the error

► Driving hardware and software recovery mechanisms

► First Failure Data Capture

Identify sharing systems holding a reserve
• Start-pending MIH condition � D U,VOL= to identify device number
• D GRS,DEV=dddd to determine reserve status
• Identify other system with reserve, in message (IOS431I device reserve to CPU …)

Captured UCB protection
• Creates a temporary copy of UCBs for Legacy applications
• Prevents accidental overlays of real UCBs in SQA

MIH intercepts incomplete I/O operations to prevent an application or system outage due to a device,
control unit, fabric or hardware (cabling) error.
Once the scope of the problem is understood, hardware & software recovery mechanisms are
invoked and diagnostic data is captured.

Identify sharing systems holding a reserve:
IOS071I dddd,**,jobname, START PENDING

Normally, due to a reserve being held on another system

On Sharing systems

Use D U,VOL=volser to identify device number

Use D GRS,DEV=dddd to identify reserve status

IOS431I will identify systems holding reserves

IOS431I DEVICE dddd RESERVED TO CPU=serialmodn,LPAR ID=ii
SYSTEM=sysname

Captured UCB protection … prevent Legacy components from impacting IOS by modifying the UCB;
Solution for 24-bit programs

60

60

I/O Timing Facility – Identify slow I/O response time

• Times the entire I/O request
• If exceeds timing limit …
• Abnormally ends I/O

requests exceeding I/O
timing limits for device

• Application posted with
permanent error, error
logged to Logrec

• Facility can trigger a
Hyperswap when I/O
timeout occurs for a device
monitored
• Whether I/O operation

should be terminated or
started on the “swap TO”
device

Figure 1 - MIH vs. I/O Timing

Application
Issues I/O

Application
Posted

IOS issues
SSCH

I/O
Interrupt

ERP
Retries

I/O Queue
Time

MIH Time

I/O Timing Time

Figure 1 - MIH vs. I/O Timing

Application
Issues I/O

Application
Posted

IOS issues
SSCH

I/O
Interrupt

ERP
Retries

I/O Queue
Time

MIH Time

I/O Timing Time

The system invokes the I/O timing facility to monitor I/O requests. If an active I/O request has exceeded the I/O
timing limit, the system abnormally ends the request and does the following:

•Clears the subchannel of all active, start pending, or halt pending I/O requests.

•Issues a message to the system operator.

•Obtains information about the terminated request (such as whether the request was queued or started) to build
an MIH record.

If a queued I/O request has exceeded the I/O timing limit, the system abnormally ends the request and does the
following:

•Issues a message to the system hardcopy log

•Obtains information about the terminated request (such as whether the request was queued or started) to build
an MIH record.

The I/O timing facility can be enabled to trigger a HyperSwap when an I/O timeout occurs for a device that is
monitored for HyperSwap. Optionally, the user can specify whether a timed-out I/O operation that initiates a
HyperSwap is to be terminated or allowed to be started on the swap 'TO' device.

For any I/O requests that exceeds the I/O timing limit, the system performs the following actions:

When the I/O timing trigger is not enabled for HyperSwap, or is enabled and the IOTTERM option is also
enabled:

•Abnormally ends the I/O request that has exceeded the time limit, and does not requeue the request
for execution.

•Issues a message.

•Writes an entry in the SYS1.LOGREC data set for the abnormally ended I/O request.

When the I/O timing trigger is enabled for HyperSwap and the IOTTERM option is disabled:

•Abnormally ends the I/O request that has exceeded the time limit, and requeues the request for later
execution on the swap 'TO' device at the completion of the HyperSwap.

•Issues a message for the first timeout condition that triggers a HyperSwap on the associated DASD
subsystem.

•Writes an entry in the SYS1.LOGREC data set for the abnormally ended I/O request.

61

61

Improved Channel Recovery

• For frequently-occurring path errors, better to have hardware problem cause path taken
offline than continue to cause problems

• IOS recovery delays application I/O even when there are other paths

Proactively Removing Paths – Flapping Links
• Logic path between channel & control unit becomes available, unavailable multiple times

over a short period
• Drives IOS recovery for all devices on the affected link
• May cause application I/O delays
• When channel detects that link has “flapped” 5-9 times in 5 minutes, it stops attempting

to establish a logical path

Dynamic Channel Path Management
• Simplify I/O configuration definition task
• Static channel path definitions needed to be re-evaluated when workloads shift
• DCM lets WLM dynamically move channel paths from 1 CU to another, in response to

workload changes
• Improve workload management
• DASD I/O resources are used more efficiently
• Improves Availability
• Foundation for auto-configuration
• Balance mode, Goal mode

Customers have said that when errors occur frequently enough on a path that they would rather see the path
taken offline rather than having the hardware or z/OS repeatedly try to recovery the path. An example where
support was added is the flapping links support that was introduced in the z9 processor. Flapping links is a
condition where the logical path between the channel and control unit becomes available and unavailable (e.g.,
loss of light) multiple times within a short period of time. This causes IOS recovery processing to be initiated
multiple times for all devices on the affected link, which may delay application I/O for long periods of time, even
though there are other paths available. When the channel detects that the link has “flapped” 5-9 times in 5
minutes, it stops attempting to establish a logical path.

In addition, customers have also said that they’d like to see z/OS be more proactive about removing failing
paths from devices. That is, instead of waiting for each device to trip over the error and take the required
recovery action, they’d like to see z/OS remove the path from all devices in an LCU when an error causes the
path to be removed from the first device. This will significantly reduce recovery time and improve application
performance when an error occurs.

Dynamic Channel Path management

Prior to Dynamic Channel Path Management, all channel paths to I/O control units had to be statically defined.
In the event of a significant shift in workload, the channel path definitions would have to be reevaluated,
manually updated via HCD, and activated or POR'ed into the configuration. Dynamic Channel Path
Management lets Workload Management dynamically move channel paths through the ESCON Director from
one I/O control unit to another, in response to changes in the workload requirements. By defining a number of
channel paths as "managed," they become eligible for this dynamic assignment. By moving more bandwidth to
the important work that needs it, your DASD I/O resources are used more efficiently. This may decrease the
number of channel paths you need in the first place, and could improve availability -- in the event of a hardware
failure, another channel could be dynamically moved over to handle the work requests.

Dynamic Channel Path Management operates in two modes: balance mode and goal mode. In balance mode,
Dynamic Channel Path Management will attempt to equalize performance across all of the managed control
units. In goal mode, which is available only when WLM is operating in goal mode on all systems in an LPAR
cluster, WLM will still attempt to equalize performance, as in balance mode. In addition, when work is failing to
meet its performance goals due to I/O delays, WLM will take additional steps to manage the channel bandwidth
accordingly, so that important work meets its goals.

62

62

Detection of Soft Failures on a z/OS image:
DFSMS examples

• CAS Contention Detection
• Runs as part of the CAS analysis task
• Periodically checks the Catalog Address Space (CAS) service tasks list

(every 30 seconds or upon request)
• Based on a set wait time and reason class, determines those tasks which are

beyond the wait time.
• Checks for service tasks that are active and waiting on the SYSZTIOT enqueue. It sets

timer for each waiting task (10 min)
• Creates a symptom record for each task past the limit
• Terminates some of the violating tasks, which were considered safe to

terminate

• VSAM RLS index traps
• Set the trap using a V SMS,MONDS command
• Checks the structure of all index CIs before writing them to DASD.

• If problem, abend is issued and write is avoided

• Media Manager
• Channel program error retry from I/O errors, using a lower level protocol

supported by the device
• zHPF transport mode channel program
• Command mode channel program with MIDAWs
• Command mode channel program with IDAWs

• Media Manager will retry the I/O with one of the lower level protocols

Catalog contention detection

•The possibility exists that while catalog service tasks are waiting on an event, the event
may not finish or complete. It could take the event an unreasonably long time to return,
leaving the Catalog Address Space (CAS) service task waiting, possibly indefinitely.
Contention support identifies those CAS tasks which appear to be stuck while waiting on an
event. When these tasks are identified as having passed a threshold, in all cases, a
symptom record will be created. Some CAS tasks past the threshold, which are identified as
reasonably safe to terminate, are terminated, freeing the available CAS service task for
additional work. The wait threshold is initially based on a time defaulted by the system (30
minutes). The wait threshold is also user selectable with a minimal wait-time of 30 minutes.

VSAM RLS index traps

•Set the trap via a VARY SMS “monitor data set” command (V
SMS,MONDS(IGWVSAM.BASE.INDEX.TRAP),ON)

•VSAM checks index Control Intervals for problems

Media Manager

• Channel program error retry from I/O errors, using a lower level protocol supported by the
device

•zHPF transport mode channel program

•Command mode channel program with MIDAWs

•Command mode channel program with IDAWs

•Media Manager will retry the I/O with one of the lower level protocols

63

63

Detection of Soft Failures on a z/OS image:
JES2 Monitor

• Assists in determining why JES2 is not responding to requests (single system)

• “Monitor” messages issued when conditions exist that can seriously impact JES2
performance (z/OS or JES2 issues)

• Automatically started when JES2 is started

• Results displayed via $JD STATUS command

• Any conditions the monitor detected that could impact JES2

• Corresponding monitor address space for each JES2 address space

• $JD MONITOR displays status info for each monitor task

• Samples values at regular intervals

• Incident categories:

• Normal processing

• Tracking: processing time exceeds threshold

• Alerts: Incident being tracked crosses a second (sampling) threshold
• Exclusive incidents focus attention on primary incident

• Resource utilization

• Low, high, average, current utilization

• $JD HISTORY displays up to 72 hours of resource utilization & CPU sample
statistics

For more information, see JES2 Diagnosis book, GA22-7531

64

64

Detection of Soft Failures in a Sysplex:
XCF stalled member support

• A system may appear to be healthy with respect to XCF system status
monitoring:

• Updating status in the sysplex CDS
• Sending signals

• But is the system actually performing useful work?
• There may be critical functions that are non-operational, making the system

unusable
• Could induce sympathy sickness elsewhere in the sysplex
• Waiting for a response; waiting to get an ENQ, latch, lock

• Causes include
• Dead system
• Loops (spin, SRB)
• Low weighted LPAR
• Loss of a Coupling Facility

• Long periods of sympathy sickness may have a greater negative impact on the
sysplex than termination of an XCF group member, address space, structure
connector, or even a system

• Action should be taken to restore the system to normal operation OR remove it
to avoid sympathy sickness

• Helps reduce the incidence of sysplex-wide problems that can result from
unresponsive critical components

XCF and Sysplex sympathy sickness

Intro to XCF/SFM support for termination of stalled XCF group members,
related to avoiding sympathy sickness.

Many of the issues detected by XCF & SFM are causes of soft fialures …
stalled members, underlying system issues. The stall of an XCF group
member is often the result of some single or cascaded set of problems that
will ultimately affect the ability of the sysplex to service business
applications.

To present these types of soft failures, action should be taken to restore the
impacted system to normal operation OR remove it to avoid sympathy
sickness.

65

65

Detection of Soft Failures in a Sysplex:
Sysplex Failure Management (SFM)

• Single system “Sick but not dead” issues can escalate to cause
sysplex-wide problems

• Typically holds resources needed by other systems in the sysplex

• Implements best practices of a resilient sysplex

• Enables automatic, timely, corrective action to be taken when
applications or systems appear to be causing sympathy sickness

• Protects your sysplex when your operators and/or your automation
are inattentive, unable, or incapable of resolving the problem

• Define an SFM policy to help meet availability and recovery objectives

• Applications or systems are not permitted to linger in an extremely sick state
such that they adversely impact other systems in the sysplex

• Applications or systems are not terminated prematurely

• Failure Detection Interval (FDI): amount of time a system is permitted to
appear unresponsive (Not updating heartbeat, Not sending signals)

• Use of BCPii to determine a system is down dramatically improves this
detection (over use of heartbeat) (see BCPii topic)

SFM deals with the detection and resolution of soft failures that could cause sympathy sickness conditions
when a system or sysplex application is unresponsive.

Single-system “sick but not dead” issues can and do escalate to cause sysplex-wide problems.

A sick system typically holds resources needed by other systems a unable to participate in
sysplex wide processes

Thus other systems become impacted.

Root cause of the sickness is a single system problem … contention, dispatching delays,
spin loops, overlays, queue/data corruption, etc.

(These are soft failure symptoms as well.)

Routing work away from the troubled system does not necessarily guarantee that other systems will not be
impacted.

However, allowing non-terminating problems, where something simply becomes unresponsive, to
persist typically compounds the problem.

By the time manual intervention is attempted, it is often very difficult to identify the appropriate
corrective action.

Appropriate SFM specifications enable systems in the sysplex to take corrective action automatically.

In general, each parameter arises out of real world situation that led to some sort of (usually quite ugly)
outage.

The next few charts outline features that are important to detecting soft failure situations related to cluster
processing.

XCF_SFM_ACTIVE health check

66

66

Detection of Soft Failures in a Sysplex: SFM

• System Not Updating Status, Not Sending Signals
• ISOLATETIME(0)

• n seconds after the FDI exceeded fencing is initiated by all systems
• Commands are sent across the coupling facility to the target system and I/O is isolated
• After fencing completes successfully, sysplex partitioning continues

• System updating status, not sending signals
• Loss of connectivity: CONNFAIL(YES)

• SFM determines sets of systems that do have full signal connectivity
• Selects a set with largest combined system weights
• Systems in that set survive, others are removed
• Ensure the weights assigned to each z/OS system adequately reflect the relative

importance of the system

• System Not Updating Status, But IS Sending Signals
• SSUMLIMIT(900)

• Indicates the length of time a system can remain in the state of not updating the
heartbeat and sending signals

• This is the amount of time a system will remain in a “semi-sick” state.
• Once the SSUMLIMIT has been reached the specified action will be initiated against the

system

• Sysplex Member Stalled
• MEMSTALLTIME (600-900)

• Enable XCF to break out of an XCF signaling traffic jam
• SFM automatically starts removing the largest build-up, adversely impacting other

systems in the sysplex
• Action XCF will take: terminate the stalled member with the highest quantity of signals

backed up

XCF_FDI health check

XCF_SFM_SUM_ACTION health check

XCF_SFM_SSUMLIMIT health check

FDI = Failure Detection Interval (XCF)

•Amount of time a system is permitted to appear unresponsive (not updating heartbeat, not sending signals)

•If the specified FDI value is too short, it might trigger unnecessary actions by SFM;

•If FDI is set too long, it could elongate the detection window for soft failures related to sympathy sickness

•It’s best to let FDI default to being based on internal “spin time” (rather than specifying it as a “user FDI” value)

This chart outlines a number of common sysplex customer situations detected by SFM.

MEMSTALLTIME enables system to break out of an XCF signaling traffic jam. SFM will automatically start
removing the largest build up. In the picture above, imagine all the blue cars were instantly removed.

(SSUM = Status Update Missing condition) … SSUMLIMIT(#seconds)

When you have specified or defaulted to SSUMLIMIT(NONE), and a system has not updated its status within
the failure detection interval but continues to produce XCF signaling traffic, SFM prompts the operator to
optionally force the removal of the system. The fact that XCF signalling continues indicates that the system is
functional but may be experiencing a temporary condition that does not allow the system to update its status. If
the operator decides that removal of the system is necessary, message IXC426D provides the prompt to isolate
the system and remove it from the sysplex. In this case, the ISOLATETIME interval specified in the SFM policy
is ignored.

If XCF signaling also stops, SFM will start to isolate the failing system at the expiration of the ISOLATETIME
interval. With a value other than none specified for the SSUMLIMIT SFM administrative data utility parameter,
SFM will start to isolate the system when the time specified for the SSUMLIMIT parameter has expired for a
system that is in status update missing condition but still producing XCF signalling traffic.

If the system stops producing XCF signalling traffic, SFM may start to isolate the failing system before the
SSUMLIMIT time expires, at the expiration of the ISOLATETIME interval.

67

67

Taking Action When a Connector Does Not Respond

• Connectors to CF structures participate in processes, respond to
relevant events

• XES monitors the connectors, reports unresponsive connectors

• Users of the structure may hang until offending connector responds or is
terminated

• CFSTRHANGTIME (z/OS R12)
• How long the system should allow a structure hang condition to persist

before taking action

• Enables XES to automatically take action if a connector does not respond
to a structure event in a timely fashion

• XES corrective actions:
• Stop rebuild

• Force user to disconnect

• Terminate connector task, address space or system

• RAS: ABEND026 dumps collected

• CFSTRHANGTIME(900-1200)

Detection of Soft Failures in a Sysplex: SFM

Connectors to CF structures need to participate in various processes and respond to relevant events

XES monitors the connectors to ensure that they are responding in a timely fashion

If not, XES issues messages (IXL040E or IXL041E) to report the unresponsive connector (outstanding
responses)

Users of the structure may hang until the offending connector responds or is terminated

Installations often fail to react to these messages, or worse, react by terminating the wrong connector

CFSTRHANGTIME indicates how long the system should allow a structure hang condition to persist before
taking corrective action(s) to remedy the situation

Corrective actions may include:

Stopping rebuild

Forcing the user to disconnect

Terminating the connector task, address space, or system

Each system acts upon its own connectors

IXL040E CONNECTOR NAME: connector-name, JOBNAME: jobname, ASID: asid HAS text. process FOR
STRUCTURE structure-name CANNOT CONTINUE. | MONITORING FOR RESPONSE STARTED: mondate
montime. DIAG: x

IXL049E HANG RESOLUTION ACTION FOR CONNECTOR NAME: conname TO STRUCTURE | strname,
JOBNAME: jobname, ASID: asid: actiontext

IXL041E CONNECTOR NAME: connector-name, JOBNAME: jobname, ASID: asid HAS NOT RESPONDED
TO THE event FOR SUBJECT CONNECTION: subject-connector-name. process FOR STRUCTURE structure-
name | CANNOT CONTINUE. MONITORING FOR RESPONSE STARTED: mondate | montime. DIAG: x

IXL050I CONNECTOR NAME: conname TO STRUCTURE strname, JOBNAME: jobname, | ASID: asid HAS
NOT PROVIDED A REQUIRED RESPONSE AFTER | noresponsetime SECONDS. TERMINATING termtarget
TO RELIEVE THE | HANG.

68

68

Detection of Soft Failures in a Sysplex: SFM

BCPii: Avoid waiting the FDI+ if the system is truly dead !

• BCPii allows XCF to query the state of other systems via authorized
interfaces through the support element and HMC network

• Benefits:
• XCF can detect and/or reset failed systems more quickly
• Works in scenarios where fencing cannot work

• CEC checkstop or powered down
• Image reset, deactivated, or re-IPLed
• No CF

• Eliminates the need for manual intervention, which may lead to data
corruption problems

• Reduction in sympathy sickness time

• Set this up. It is a critical component of Resiliency AND
Soft Failure Avoidance

SFM will automatically exploit BCPii and as soon as the required configuration is
established. (a) Pairs of systems running z/OS 1.11 or higher (b) BCPii configured,
installed, and available (c) XCF has security authorization to access BCPii defined
FACILITY class resources (d) z10 GA2 with appropriate MCL’s, or z196 (e) New
version of the sypslex CDS is primary in the sysplex (f) toleration APAR OA26037
for z/OS 1.9 & 1.10 (g) SYSSTATE DETECT function is not enabled.

69

69

Detection & Prevention of Soft Failures in a Sysplex:
Critical Member support

• A Critical Member is a member of an XCF group that identifies itself as
“critical” when joining its group

• If a critical member is “impaired” for long enough, XCF will eventually
terminate the member

• Per the member’s specification: task, space, or system

• SFM parameter MEMSTALLTIME determines “long enough”
before terminating the stalled member with the highest quantity of backed
up signals

• GRS declares itself a “critical member”

• If GRS cannot perform work for as long as the FDI, GRS is said to be
“impaired”

• XCF will remove a system from the sysplex if GRS on that system
becomes “impaired” (key tasks not operating) to avoid sympathy sickness

• Based on SFM MEMSTALLTIME(n)

• For MEMSTALLTIME(NO), N=MAX(FDI, 120 seconds)

Critical member is a member (component) of an XCF group identified to be
“critical”

If GRS cannot perform its work for as long as the failure interval, it is marked
“impaired”; GRS indicated that it is to be removed from the sysplex to avoid
sympathy sickness. The monitoring includes work queues, units of working
being able to be dispatched, and XCF messages that appears hung due to
GRS not processing messages. The messaging support also include GRS
STAR lock structure signal required for contention management.

SFM MEMSTALLTIME

MEMSTALLTIME enables the system to break out of an XCF signalling jam;
specifies action XCF will take: terminate the stalled member with the highest
quantity of signals backed up

“Back stop” to allow the system to take automatic action to alleviate a
problem if it cannot be resolved in a timely manner

70

70

Health Check details

71

71

Health Checker: Soft Failure avoidance examples

• DAE_SUPPRESSING
• DAE suppresses duplicate SVC dumps so that system resources

(processor cycles and dump space) are not used for a dump which
provides little or no additional diagnostic value

• IBM recommendation is to activate this function.
• If turned off, then health checker will issue an exception to alert the team to this

sub optimal configuration.

• XCF_CDS_SPOF
• z/OS uses two coupling data sets (CDS) to manage a parallel sysplex,

primary and alternative.
• This check evaluates the I/O configuration to determine if the I/O

configuration has inadvertently created a single point of failure (SPOF)
when accessing the data on the primary and alternative CDS.

• Alternative CDS created to handle a problem with a switch or a storage
device.

• SVA_AUTOIPL_DEFINED, SVA_AUTOIPL_DEV_VALIDATION
• Check whether environment can support AUTOIPL, whether active
• Validates SADMP, MVS IPL devices

Examples of Soft Failure avoidance

•DAE

•CDS Single points of failure

•AutoIPL defined and valid DASD devices specified for Stand Alone Dump &
MVS IPLs

72

72

Health Checker: Soft Failure avoidance examples

• System Logger
• IXGLOGR_STRUCTUREFULL

• Primary structure full; need to offload

• IXGLOGR_ENTRYTHRESHOLD
• High number of entries in element pools

• IXGLOGR_STAGINGDSFULL
• Full staging data space

• UNIX System Services

• USS_PARMLIB
• Validate current system against parmlib IPL’d with
• Remind you to update parmlib (due to dynamic changes)

• USS_CLIENT_MOUNTS
• With Sysplex, some file systems accessed locally, some of function shipped to the File

system owner. Some are accessed locally, but are configured to function ship
• Check if function ship but could be done locally (performance awareness)

• USS_FILESYS_CONFIG
• Checks if mount attribute access is read only
• HFS’s in Sysplex root

• Sysplex Failure management
• Examines / validates SFM values

• XCF_SFM_ACTIVE
• XCF_SFM_CFSTRHANGTIME
• XCF_SFM_CONNFAIL
• XCF_SFM_SSUMLIMIT
• XCF_SFM_SUM_ACTION

Examples of Soft Failure avoidance

73

73

Health Checker: Soft Failure avoidance examples

• IOS_CAPTUCB_PROTECT

• UCB capture protection is enabled, allowing UCBs to be temporarily copied to
24-bit storage for legacy software access

• IOS_CMRTIME_MONITOR

• Fabric issues have resulted in unacceptable I/O service times
• RMF device activity reports show average service times to be higher than normal

• I/O queuing reports show abnormally high “initial command response” times on a
subset of the paths to a device (5x)

Host
Cage

4Cage
3

Switch

Switch
Control

Unit

Encl
2 Encl

1

Cage
2Cage

1
FC

FC

Initial Command Response (CMR) Time isolates
the round trip fabric delay portion of the command

Execution. This allows host to identify where
congestion is occurring.

Examples of Soft Failure avoidance

IOS Captured UCB protection verifies that Captured UCB protection is enabled on
this system. This allows UCBs to be temporarily copied to 24-bit addressable
storage to allow access by Legacy software in the first 16 Mb of storage. This
ensures that legacy software cannot interfere with the state of the devices

CMR time monitor detects if any control units in the system are reporting
inconsistent average initial “command response” (CMR) time for their attached
channel paths. An exception is raised if at least one control unit in the system has a
path with an average CMR time that is highest among the other paths to the control
unit, greater than a specified thresholds.

74

74

Tivoli Management Products

• Tivoli Management Products integrate

• Soft Failures detected by PFA
• Health Check exceptions surfaced by zMC (to be supported on

Omegamon XE)

• Tivoli System Automation policy to control of corrective actions

• Performance issues detected by Omegamon

• Evaluate entire software stack

• Customer-defined model, selection of critical events

• Netcool/OMNIbus provide centralized monitoring of Health Check
Alerts, Performance, Situations, Network activity, etc.

75

75

Event Pump for z/OS

Each subsystem writes messages to z/OS
• These messages may contain state and status information
• The Event Pump parses the message, interprets the resource information, and
converts the message to an EIF event

Event Pump

LPAR

CICS

DB2

IMS

z
/O

S
 m

e
s

s
a

g
e

s

EIF events

CICS

EIF Probe

DB2

IMS

S
e

v
e

rity
 m

a
p

p
in

g

OMNIbus
TBSM
TIP

Event Pump is a fairly new z/OS agent that extracts information based on
messages, System Automation events, Netview PPI, Health Checker … and
represents the events in terms of state & status, via EIF (event information
FW).

EIF (Event Integration Facility) communicates with other (distributed) Tivoli
products, as well as other vendor products.

