
Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 1 of 23

Configuring OpenSSH on z/OS
Hands-on-Lab

SHARE in Orlando
August 9, 2011

Richard Theis
IBM Rochester, MN
rtheis@us.ibm.com

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 2 of 23

Trademarks and Disclaimers

See http://www.ibm.com/legal/copytrade.shtml for a list of IBM trademarks.
The following are trademarks or registered trademarks of other companies:

� UNIX is a registered trademark of The Open Group in the United States and other countries
� CERT® is a registered trademark and service mark of Carnegie Mellon University.
� ssh® is a registered trademark of SSH Communications Security Corp
� X Window System is a trademark of X Consortium, Inc

All other products may be trademarks or registered trademarks of their respective companies

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using
standard IBM benchmarks in a controlled environment. The actual throughput that any user will
experience will vary depending upon considerations such as the amount of multiprogramming in the user's
job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no
assurance can be given that an individual user will achieve throughput improvements equivalent to the
performance ratios stated here.

IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless,
our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in
which some customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics will vary depending on individual customer
configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features
discussed in this document in other countries, and the information may be subject to change without notice.
Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their
published announcements. IBM has not tested those products and cannot confirm the performance,
compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM
products should be addressed to the suppliers of those products.

Prices are subject to change without notice. Contact your IBM representative or Business Partner for the
most current pricing in your geography.

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 3 of 23

Lab Overview

Objectives of this lab

At the end of this lab, you will be able to do the following:
� Configure and start the OpenSSH server (sshd).
� Log into an OpenSSH server (sshd) using the OpenSSH client (ssh) with public-key

user authentication.
� Run both sshd and ssh in debug mode.
� Work with other sshd and ssh options.

This lab is written for IBM Ported Tools for z/OS: OpenSSH V1R2. As a result, some of
the lab steps and exercises don’t work or need to be modified for use with V1R1. The
“New in V1R2” phrase will be used to identify such lab steps and exercises. Refer to the
“IBM Ported Tools for z/OS: OpenSSH User's Guide" for more information on the new
release (V1R2) and for differences between the new and old release (V1R1).

Note: The ssh –V option can be used to verify the OpenSSH release in use. V1R2 will
output “OpenSSH_5.0p1, OpenSSL 0.9.8k 25 Mar 2009 ” and V1R1 (with recent PTFs
applied) will output “OpenSSH_3.8.1p1, OpenSSL 0.9.7d 17 Mar 2004 ”.

How is this lab different than the real world?

1. You do not have system administrator privileges. So...

� When you start the OpenSSH server (sshd) it will be as a regular user on an
unprivileged port.

� Some of the system-wide configuration files will be kept in the home
directory of your SHARE user ID.

2. The local and remote hosts are the same system.

The following example information box will help identify when this lab is different than
the real world.

Information for the real world…

� This is the information for the real world…

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 4 of 23

Typing suggestions to get through this lab

If you prefer to copy/paste commands, a text file in your $HOME/sshlab directory
contains the commands for this lab. You can view it using "more" or "cat". For
example:

prompt=> cat $HOME/sshlab/labcommands

Note: This file is personalized for your SHARE user ID. You may want to login
twice (opening 2 PuTTY sessions) if using this file so you can copy the lab
commands from one session while doing the lab exercises in another session. By
default, the right mouse button can be used to copy highlighted text in a PuTTY
session and the left mouse button can be used to paste that text.

Another alternative is to use the /bin/tcsh shell to take advantage of the up and down
arrows for retrieving previous commands. However, this lab is designed for use with the
/bin/sh shell. It is recommended that you don’t use the /bin/tcsh shell unless you are
familiar with the /bin/tcsh versus /bin/sh shell differences (e.g. syntax for command
substitution, environment variable specification, etc.).

Options for editing configuration files

By default, this lab edits configuration files by echoing data into them. If you prefer to
edit the configuration files manually, you can use vi or oedit. However, note that the
OpenSSH client (ssh) cannot be run from a 3270 PCOMM session. So if you prefer to
use oedit, then you can log in twice: once with PuTTY and once with PCOMM. You can
then do your editing from the PCOMM session, and everything else from the PuTTY
session. See the Appendix for instructions on logging in through TSO (3270 interface).

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 5 of 23

Other important lab information

This SHARE lab is self-paced and self-contained. However, you need to go in order;
don’t do the lab exercises out-of-order. Also be sure to substitute your SHARE user ID
when the lab shows shar___ or SHAR___ from now on (e.g. sharb04 where 'b' is the lab
letter and '04' is your lab number).

Your SHARE user ID went through some basic configuration in preparation for this lab.
The configuration consisted of miscellaneous file (e.g. $HOME/sshlab/labcommands),
directory (e.g. $HOME/sshlab and $HOME/.ssh) and authority setup. If you would like
more information on this configuration or on the general setup for this lab, please contact
the lab presenter.

This document shows the /bin/sh shell prompt like the following. Note that that actual
text of your shell prompt will vary.

prompt=>

This document shows the commands to be run after the shell/command prompt like the
following:

prompt=> cat $HOME/sshlab/labcommands

Some of the commands run are very long and may get truncated on the display like the
following:

prompt=> abcommands <

If this occurs, do the following to increase the number of columns displayed:

prompt=> stty columns [number of columns]

This should already be configured for you, but if while in your PuTTY session, you press
the backspace key and control characters are displayed (i.e. it doesn't actually delete the
previous character), for example:

prompt=> ^H ^H

Do the following to map your backspace key:

prompt=> stty erase [press Backspace key]

In the real world, this command can be added to a shell profile (/etc/profile or user-
specific $HOME/.profile), or your PuTTY configuration can be updated to pass the
proper backspace key

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 6 of 23

Lab Exercises

Where do I start?

� Start a PuTTY session. Double-click on PuTTY.

The following configuration window will appear:

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 7 of 23

� Load the "mvs1_sshlab" saved session. If the session does not exist, enter the

following fields:
Host Name: mvs1.centers.ihost.com
Port: 22
Connection Type: SSH

Note: If you don't have PuTTY on your workstation, refer to the Appendix on where
to download it. You can also telnet into mvs1.centers.ihost.com using port 623 .
However, do not use OMVS to access the z/OS UNIX shell environment for this lab,
because the OpenSSH client (ssh) cannot be run under OMVS (i.e. 3270 PCOMM
session) due to password visibility issues.

� Click “Open”.

Note: If you are using SSH to connect to an sshd daemon/server for the first time,
you may see a message looking something like the following:

The server's host key is not cached in the registry. You have no
guarantee that the server is the computer you think it is. The
server's key fingerprint is:
ssh-rsa 1024 7b:e5:6f:a7:f4:f9:81:62:5c:e3:1f:bf:8b:57:6c:5a
If you trust this host, hit Yes to add the key to PuTTY's cache and
carry on connecting. If you want to carry on connecting just once,
without adding the key to the cache, hit No. If you do not trust
this host, hit Cancel to abandon the connection.

This is a feature of the SSH protocol. It is designed to protect you against a network
attack known as spoofing: secretly redirecting your connection to a different
computer, so that you send your password to the wrong system. Using this technique,
an attacker would be able to learn the password that guards your login account, and
could then log in as if they were you and use the account for their own purposes.

For now, hit yes to add the key.

� Enter your SHARE user ID and password. Remember to substitute your SHARE

user ID when the lab shows shar___ or SHAR___ from now on (e.g. sharb04 where
'b' is the lab letter and '04' is your lab number).
� User ID: shar___
� Password: [The lab presenter will provide the password.]

Information for the real world…

You should verify public keys obtained from an sshd daemon either visually,
or via the key's fingerprint to ensure that you aren’t being spoofed.

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 8 of 23

How do I configure the OpenSSH server (sshd)?

� Setup for server authentication when keys are stored in key rings. New in V1R2,

OpenSSH keys can now be stored in key rings or z/OS UNIX files. In V1R1,
OpenSSH keys could only be stored in z/OS UNIX files. For more information on
this new V1R2 support, refer to the “Steps for setting up server authentication when
keys are stored in key rings” section in the "IBM Ported Tools for z/OS: OpenSSH
User's Guide".

� Create the server's key ring (1), generate the server's public and private key pair

(2), connect the key pair to the key ring (3) and secure the key ring (4, 5 and 6).

Information for the real world… Skip these steps in this SHARE lab.

The following commands for the server’s key ring setup were completed for
you by the digital certificate administrator. In the real world, this may not be
the same user that configures OpenSSH. Also, your SHARE user ID doesn’t
have the necessary authority to do this setup.

1. RACDCERT ADDRING(SSHDring) ID(SHAR___)
2. RACDCERT GENCERT ID(SHAR___) SUBJECTSDN(CN('shar___-sshd-

rsa-cn')) SIZE(2048) WITHLABEL('shar___-sshd-rsa')
3. RACDCERT CONNECT(ID(SHAR___) LABEL('shar___-sshd-rsa')

RING(SSHDring) USAGE(PERSONAL)) ID(SHAR___)
4. RDEFINE RDATALIB SHAR___.SSHDring.LST UACC(NONE)
5. PERMIT SHAR___.SSHDring.LST CLASS(RDATALIB) ID(SHAR___)

ACCESS(READ)
6. SETROPTS RACLIST(RDATALIB) REFRESH

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 9 of 23

� Verify that you have access to the server’s key ring. This step serves as a sanity
test of the setup performed by the digital certificate administrator. If set up
properly, the ssh-keygen –e command will display the public key in RFC 4716
SSH Public Key File Format. Enter the following command on one line.

prompt=> _ZOS_SSH_KEY_RING_LABEL="SHAR___/SSHDring shar___-sshd-rsa"
ssh-keygen -e

� Create and modify the sshd daemon configuration files (sshd_config and

zos_sshd_config).

Information for the real world… Skip these steps in this SHARE lab.

� The sshd_config and zos_sshd_config files are normally stored in

/etc/ssh/.
� As part of this setup…

o You would normally create the system-wide OpenSSH client (ssh)
configuration file (/etc/ssh/ssh_config). However, for purpose of this
lab, you will instead (later) set up a user-specific ssh configuration
file.

o You would also copy other files (see below) that OpenSSH needs to
run. However, this was already done for you, since your SHARE user
ID doesn't have write access to the /etc/ssh directory.

prompt=> cp -p /samples/moduli /etc/ssh/moduli
prompt=> cp -p /samples/ssh_prng_cmds /etc/ssh/ssh_prng_cmds

Information for the real world…
� To allow remote users to ssh into this local host, you need to "publish"

your public host keys. To do this, you would send the local host's public
keys to the remote host and then configure the remote host's system-wide
resources accordingly. However, in this SHARE lab, you don't have
access to the system-wide resources (e.g. the /etc/ssh/ssh_known_hosts
file), so you will instead configure this later, at a user-level.

� To allow users on this local host to ssh to remote hosts, you would get the
public host key files from the remote hosts, and then configure the local
host's system-wide resources accordingly. However, for this SHARE lab,
this is the same as the above bullet (since the local and remote hosts are
the same system).

� You need to create the SSHD privilege separation user. However, for this
SHARE lab, this was already done for you.

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 10 of 23

� Copy the sample zos_sshd_config file and set the proper permissions.

prompt=> cp /samples/zos_sshd_config $HOME/sshlab/zos_sshd_config
prompt=> chmod 600 $HOME/sshlab/zos_sshd_config

� Change the zos_sshd_config file to use the server key ring that was setup earlier.

Enter the following command on one line.

prompt=> echo "HostKeyRingLabel \"SHAR___/SSHDring shar___-sshd-rsa\""
>> $HOME/sshlab/zos_sshd_config

� Copy the sample sshd_config file and set the proper permissions.

prompt=> cp /samples/sshd_config $HOME/sshlab/sshd_config
prompt=> chmod 600 $HOME/sshlab/sshd_config

� Change the sshd_config file to use your assigned Port number. Use 7000 + the
last 2 digits of your SHARE user ID. For example, user sharb30 should use port
7030.

prompt=> echo "Port 70xx" >> $HOME/sshlab/sshd_config

� Change the sshd_config file to update the location of the sshd process ID (PID)
file. The sshd PID file holds the PID of your sshd process. Enter the following
command on one line.

prompt=> echo "PidFile $HOME/sshlab/sshd.pid" >>
$HOME/sshlab/sshd_config

� Verify that your sshd daemon configuration file modifications were made by

issuing the following commands. Your modifications to the sshd_config and
zos_sshd_config files should be listed.

prompt=> tail -1 $HOME/sshlab/zos_sshd_config
prompt=> tail -2 $HOME/sshlab/sshd_config

� Start the sshd daemon using your sshd_config and zos_sshd_config configuration

files. The sshd daemon should fork itself into the background and return you to the
command prompt once it's started.

prompt=> export _ZOS_SSHD_CONFIG=$HOME/sshlab/zos_sshd_config
prompt=> /usr/sbin/sshd -f $HOME/sshlab/sshd_config

� Verify that your sshd daemon is running by issuing the following ps command. Your

sshd daemon process should have a parent PID (PPID) of 1 and a TTY of "?".

prompt=> ps -f -p $(cat $HOME/sshlab/sshd.pid)
 UID PID PPID C STIME TTY TIME CMD
 SHAR___ 67109011 1 - 12:27:50 ? 0:00
/usr/sbin/sshd -f /sharelab/shar___/sshlab/sshd_config

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 11 of 23

� Verify that your sshd daemon is running on your port. Substitute "xx" below with the

last 2 digits of your SHARE user ID.

prompt=> netstat -P 70xx
MVS TCP/IP NETSTAT CS V1R11 TCPIP Name: TCPIP 14:35:28
User Id Conn Local Socket Foreign Socket State
------- ---- ------------ -------------- -----
SHAR___n 00002302 0.0.0.0..70xx 0.0.0.0..0 Listen

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 12 of 23

How do I configure a user to use the OpenSSH client (ssh)?

� Complete the setup for server authentication when keys are stored in key rings.

Recall that in this SHARE lab, you don't have access to the system-wide resources
and that the local and remote hosts are the same. As a result, this needs to be
configured at a user-level and on the same system. Also remember that New in
V1R2, OpenSSH keys can now be stored in key rings or z/OS UNIX files.

� Create your known hosts key ring (1), connect the server key pair to the key ring

(2) and secure the key ring (3, 4 and 5).

� Verify that you have access to your known hosts key ring. This step serves as a

sanity test of the setup performed by the digital certificate administrator. If set up
properly, the ssh-keygen –e command will display the public key in RFC 4716
SSH Public Key File Format. Enter the following command on one line.

prompt=> _ZOS_SSH_KEY_RING_LABEL="SHAR___/SSHKnownHostsRing
shar___-sshd-rsa" ssh-keygen -e

� Create the known hosts file to use the known hosts key ring that was setup earlier.
The OpenSSH client uses this file when verifying the authenticity of the server
that is being logged into. Be sure to enter the first command on one line.

prompt=> echo "localhost zos-key-ring-label=\"SHAR___/SSHKnownHostsRing
shar___-sshd-rsa\"" > $HOME/.ssh/known_hosts
prompt=> chmod 600 $HOME/.ssh/known_hosts

Information for the real world… Skip these steps in this SHARE lab.

The following commands for the known hosts key ring setup were completed
for you by the digital certificate administrator. In the real world, this may not
be the same user that configures OpenSSH. Also, your SHARE user ID
doesn’t have the necessary authority to do this setup.

1. RACDCERT ADDRING(SSHKnownHostsRing) ID(SHAR___)
2. RACDCERT CONNECT(ID(SHAR___) LABEL('shar___-sshd-rsa')

RING(SSHKnownHostsRing) USAGE(PERSONAL)) ID(SHAR___)
3. RDEFINE RDATALIB SHAR___.SSHKnownHostsRing.LST UACC(NONE)
4. PERMIT SHAR___.SSHKnownHostsRing.LST CLASS(RDATALIB)

ID(SHAR___) ACCESS(READ)
5. SETROPTS RACLIST(RDATALIB) REFRESH

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 13 of 23

� Setup your SHARE user ID to use public key user authentication when keys are
stored in key rings. New in V1R2, OpenSSH keys can now be stored in key rings or
z/OS UNIX files. In V1R1, OpenSSH keys could only be stored in z/OS UNIX files.
For more information on this new V1R2 support, refer to the “Steps for setting up
user authentication when keys are stored in key rings” section in the "IBM Ported
Tools for z/OS: OpenSSH User's Guide".

� Create your user key ring (1), generate your user public and private key pair (2),

connect the key pair to the key ring (3) and secure the key ring (4, 5 and 6).

� Verify that you have access to your user key ring. This step serves as a sanity test
of the setup performed by the digital certificate administrator. If set up properly,
the ssh-keygen –e command will display the public key in RFC 4716 SSH Public
Key File Format. Enter the following command on one line.

prompt=> _ZOS_SSH_KEY_RING_LABEL="SHAR___/SSHring shar___-ssh-dsa"
ssh-keygen -e

Information for the real world… Skip these steps in this SHARE lab.

The following commands for the user key ring setup were completed for you
by the digital certificate administrator. In the real world, this may not be the
same user that configures OpenSSH. Also, your SHARE user ID doesn’t
have the necessary authority to do this setup.

1. RACDCERT ADDRING(SSHring) ID(SHAR___)
2. RACDCERT GENCERT SUBJECTSDN(CN('shar___-ssh-dsa-cn'))

SIZE(1024) DSA WITHLABEL('shar___-ssh-dsa') ID(SHAR___)
3. RACDCERT CONNECT(ID(SHAR___) LABEL('shar___-ssh-dsa')

RING(SSHring) USAGE(PERSONAL)) ID(SHAR___)
4. RDEFINE RDATALIB SHAR___.SSHring.LST UACC(NONE)
5. PERMIT SHAR___.SSHring.LST CLASS(RDATALIB) ID(SHAR___)

ACCESS(READ)
6. SETROPTS RACLIST(RDATALIB) REFRESH

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 14 of 23

� Create your authorized keys key ring (1), connect your user key pair to the key
ring (2) and secure the key ring (3, 4 and 5).

� Verify that you have access to your authorized keys key ring. This step serves as
a sanity test of the setup performed by the digital certificate administrator. If set
up properly, the ssh-keygen –e command will display the public key in RFC 4716
SSH Public Key File Format. Enter the following command on one line.

prompt=> _ZOS_SSH_KEY_RING_LABEL="SHAR___/SSHAuthKeysRing
shar___-ssh-dsa" ssh-keygen -e

� Create and modify the ssh configuration files ($HOME/.ssh/config and
$HOME/.ssh/zos_user_ssh_config) and the authorized keys file
($HOME/.ssh/authorized_keys).

� Copy the sample zos_user_ssh_config file and set the proper permissions.

prompt=> cp /samples/zos_user_ssh_config $HOME/.ssh/zos_user_ssh_config
prompt=> chmod 600 $HOME/.ssh/zos_user_ssh_config

Information for the real world… Skip these steps in this SHARE lab.

The following commands for the authorized keys key ring setup were
completed for you by the digital certificate administrator. In the real world,
this may not be the same user that configures OpenSSH. Also, your SHARE
user ID doesn’t have the necessary authority to do this setup.

1. RACDCERT ADDRING(SSHAuthKeysRing) ID(SHAR___)
2. RACDCERT CONNECT(ID(SHAR___) LABEL('shar___-ssh-dsa')

RING(SSHAuthKeysRing) USAGE(PERSONAL)) ID(SHAR___)
3. RDEFINE RDATALIB SHAR___.SSHAuthKeysRing.LST UACC(NONE)
4. PERMIT SHAR___.SSHAuthKeysRing.LST CLASS(RDATALIB)

ID(SHAR___) ACCESS(READ)
5. SETROPTS RACLIST(RDATALIB) REFRESH

Information for the real world…

If locally you are USER1 on LOCALHOST, and you want to log into
REMOTEHOST as USER2, then you would normally export USER1’s public
key for use by USER2’s authorized keys key ring on the REMOTEHOST.
However for this SHARE lab, since both the local and remote users and the
local and remote hosts are the same, there is no need to export the public key.

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 15 of 23

� Change the zos_user_ssh_config file to use the user key ring that was setup
earlier. Enter the following command on one line.

prompt=> echo "IdentityKeyRingLabel \"SHAR___/SSHring
shar___-ssh-dsa\"" >> $HOME/.ssh/zos_user_ssh_config

� Create the authorized keys file to use the authorized keys key ring that was setup
earlier. The OpenSSH server uses this file when verifying the authenticity of the
user that is logging in during public key authentication. Be sure to enter the first
command on one line.

prompt=> echo "zos-key-ring-label=\"SHAR___/SSHAuthKeysRing
shar___-ssh-dsa\"" > $HOME/.ssh/authorized_keys
prompt=> chmod 600 $HOME/.ssh/authorized_keys

� Copy the sample ssh_config file and set the proper permissions.

prompt=> cp /samples/ssh_config $HOME/.ssh/config
prompt=> chmod 600 $HOME/.ssh/config

� Change the ssh_config file to use your sshd daemon's port number. Substitute
"xx" below with the last 2 digits of your SHARE user ID.

prompt=> echo "Port 70xx" >> $HOME/.ssh/config

� Log in using ssh. Your should be allowed to login without entering a password. If
you see “shar___@localhost's password: ” then public key user authentication
isn’t configured properly, so ssh continued onto password authentication. If this
occurs, review that you’ve correctly completed all the above steps.

prompt=> ssh shar___@localhost

� Once logged in (you will see a command prompt), echo the SSH_CONNECTION
environment variable. It shows the client and server ends of the SSH connection,
respectively. Both the client and server IP addresses should match that of the
SHARE system and the server port number (70xx) should match your sshd
daemon’s port.

prompt=> echo $SSH_CONNECTION
127.0.0.1 1055 127.0.0.1 70xx

� Exit from this ssh session.

prompt=> exit

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 16 of 23

How do I run ssh in debug mode?

� Run ssh with the –vvv option (i.e. debug mode), to see its progress. You will see
pages of verbose output. Running ssh in debug mode can be useful when debugging
problems.

Note: This ssh command will perform remote command execution of the id
command. Therefore, you will see the output from the id command within the
verbose ssh output. After the id command completes, ssh will automatically log you
out.

prompt=> ssh -vvv shar___@localhost id

How do I run sshd in debug mode?

For this lab, you can view sshd daemon log information by running sshd in debug mode.

� Kill your current sshd daemon, so you can reuse that port.

prompt=> kill -TERM $(cat $HOME/sshlab/sshd.pid)

� Open another PuTTY session, so you have one for the ssh client, and one for the sshd
daemon.

� From your original PuTTY session, start the sshd daemon as follows. Notice that it

doesn't fork itself into the background, and all output is written to standard error
(stderr). Enter the following command on one line.

prompt=> /usr/sbin/sshd -De -oLogLevel=DEBUG3 -f
$HOME/sshlab/sshd_config

� After you see the output "Server listening on ... ", ssh to your sshd daemon

from the other PuTTY session. In both PuTTY sessions you will see verbose output.

Information for the real world…

Logging with a debug level (e.g. DEBUG3), violates the privacy of users and
is not recommended. It should only be used to debug problems.

Information for the real world…

Rather than running sshd in debug mode, you would likely use the z/OS
UNIX syslog to gather sshd log information. This can be done by using the
sshd_config LogLevel and SyslogFacility keywords.

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 17 of 23

Note: You can ignore the sshd daemon output "Attempt to write login records

by non-root user (aborting) " since it is a result of your SHARE user ID not
having system administrator privileges

prompt=> ssh -vvv shar___@localhost

� Exit from your ssh session. We will leave the sshd daemon running for subsequent
exercises. When all lab exercises are complete, you can use Ctrl-C to end the sshd
daemon.

prompt=> exit

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 18 of 23

How do I restrict OpenSSH client access?

You can use the sshd_config DenyUsers keyword to have your SHARE user ID denied
OpenSSH client access to your sshd daemon. Also New in V1R2, you can use the
sshd_config Match and ForceCommand keywords to further limit OpenSSH client
access. These OpenSSH client restrictions apply to ssh, scp and sftp.

� Edit your sshd_config file to contain a DenyUsers entry. Substitute "___" below with

the last 3 characters of your SHARE user ID. First, go to your lab directory.

prompt=> cd $HOME/sshlab

� Back up your current sshd_config file.

prompt=> cp sshd_config sshd_config.bak

� Modify your sshd_config file. Your SHARE user ID must be in all uppercase
letters (e.g. SHARB04). This is important because the user ID must be in the
same alphabetical case as is stored in the user database.

prompt=> echo "DenyUsers SHAR___" >> sshd_config

� Send a SIGHUP signal to the sshd daemon process, so it re-reads the sshd_config file.

prompt=> kill -HUP $(cat $HOME/sshlab/sshd.pid)

� After you see the sshd daemon output "Server listening on ... " in your other
PuTTY session, attempt to ssh to your sshd daemon. You will be prompted for your
password. Enter it. It should be refused. In the sshd daemon window, you will see
(you may have to scroll back to see the message) “FOTS2306 User SHAR___ from

localhost not allowed because listed in DenyUsers ”. Continue entering
your password when prompted until the ssh session is ended.

prompt=> ssh shar___@localhost

� Restore you sshd_config file.

prompt=> cp sshd_config.bak sshd_config

Information for the real world…

The sshd_config ChrootDirectory keyword can also be used to restrict
OpenSSH client access. However, your SHARE user ID doesn't have the
appropriate privileges to use the keyword. For more information on
restricting OpenSSH client access refer to the “Limiting file system name
space for sftp users” section in the "IBM Ported Tools for z/OS: OpenSSH
User's Guide".

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 19 of 23

� Edit your sshd_config file to contain a Match and ForceCommand entry. Substitute
"___" below with the last 3 characters of your SHARE user ID. As indicated earlier,
your SHARE user ID must be in all uppercase letters (e.g. SHARB04).

The sshd_config Match keyword introduces a conditional block. If all of the criteria
on the Match line are satisfied, the keywords on the following lines override those set
in the global section of the config file, until either another Match line or the end of
the file. This keyword allows you to customize your sshd daemon configuration files
based on various match criteria such as users or groups.

prompt=> echo "Match User SHAR___" >> sshd_config
prompt=> echo " ForceCommand internal-sftp" >> sshd_config

� Send a SIGHUP signal to the sshd daemon process, so it re-reads the sshd_config file.

prompt=> kill -HUP $(cat $HOME/sshlab/sshd.pid)

� After you see the sshd daemon output "Server listening on ... " in your other
PuTTY session, attempt to ssh to your sshd daemon. Your connection will appear
hung. This is because you requested an ssh session but the sshd daemon forced you
to use an sftp session. Type Ctrl-C to exit the ssh session. Attempting to scp to your
sshd daemon will yield the same result.

prompt=> ssh shar___@localhost ls

� Attempt to sftp to your sshd daemon. Your connection should now succeed. Type
quit at the sftp prompt to exit the sftp session.

prompt=> sftp shar___@localhost
sftp> quit

� Undo your changes for the next exercise.

prompt=> cp sshd_config.bak sshd_config
prompt=> kill -HUP $(cat $HOME/sshlab/sshd.pid)
prompt=> cd

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 20 of 23

How do I share an OpenSSH client connection?

For this lab, you will use the New in V1R2 OpenSSH client connection sharing feature.
Connection sharing can improve the overall performance of OpenSSH client connections
by avoiding the overhead of the setup and authentication steps. This OpenSSH client
feature applies to ssh, scp and sftp.

� Start the master process to enable ssh connection sharing. This ssh connection does
go through the setup and authentication steps. We use the “&” /bin/sh shell syntax to
keep the master process running in the background.

prompt=> ssh -Nn -oControlMaster=yes -oControlPath=$HOME/sshlab/control
shar___@localhost &

� Check that the master process is active. This command should indicate that the
master process is running.

prompt=> ssh -O check -oControlPath=$HOME/sshlab/control
shar___@localhost

� Access the master process via the ssh connection sharing socket (which is specified
using the ssh_config ControlPath keyword). This ssh connection does not go through
the setup and authentication steps.

prompt=> ssh -oControlPath=$HOME/sshlab/control shar___@localhost id

� The following commands help illustrate that the master process was used above. The
first command doesn’t access the master process and authenticates using password
authentication. The second command accesses the master process and is thus able to
bypass the password authentication seen on the first command. In addition, the
second command should connect faster than the first command.

prompt=> ssh -oPubkeyAuthentication=no shar___@localhost id
prompt=> ssh -oPubkeyAuthentication=no
-oControlPath=$HOME/sshlab/control shar___@localhost id

� Exit the master process.

prompt=> ssh -O exit -oControlPath=$HOME/sshlab/control
shar___@localhost

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 21 of 23

Check the man pages and try different options

If you have extra time and want to try a few things, here are some other options that you
may want to try. Reminder, if you still have an sshd daemon running in debug mode, you
can use Ctrl-C to end it.

� Issue the man command for more information on the ssh and sshd options and the

ssh_config and sshd_config keywords.

prompt=> man ssh
prompt=> man sshd
prompt=> man ssh_config
prompt=> man sshd_config

ssh options to consider trying:
-c cipher � Try a different cipher for encryption.
-m mac � Try a different MAC for message authentication.
-V � Display the OpenSSH version information.

sshd options to consider trying:
-t � Test the validity of the sshd_config and zos_sshd_config files and the host keys.

ssh_config keywords to consider trying:
Ciphers � Try a different cipher for encryption.
LogLevel � Try a different logging level.
MACs � Try a different MAC for message authentication.
NumberOfPasswordPrompts � Limit the number of password prompts.
StrictHostKeyChecking � Try different values after removing your known hosts file.

sshd_config keywords to consider trying:
Banner � Have sshd display the contents of a banner file before authentication.
Ciphers � Try a different cipher for encryption.
MACs � Try a different MAC for message authentication.
MaxStartups � Limit the number of concurrent un-authenticated connections to sshd.
StrictModes � Have sshd skip checking file modes and ownership during authentication.

This is the end of the lab.
Hope you had fun!

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 22 of 23

Appendix

Shell command-line editing quick reference
Issue the following to enable vi command-line editing: set -o vi
Note: This has already been enabled by default on the SHARE system.

To leave insertion mode and enter command mode (so the characters you type are
understood as commands), press the Escape key [ESC]. Do this before using the
commands below. While in command mode, [ESC] will return you to insertion mode.

To do the following (after [ESC]): Type this command:
Recall previous command line k
Move cursor left h
Move cursor right l (this is a lowercase L)
Insert characters after cursor i
Append characters after cursor a
Replace characters R[type your text][ESC]
Replace 1 character r[type your character]
Delete 1 character x
Execute command line (while in command mode) Enter (when line is displayed)
Discard command line ^C (Ctrl-C)
Complete filename \

Documentation

IBM Publications for IBM Ported Tools for z/OS:
http://www.ibm.com/systems/z/os/zos/features/unix/ported/

OpenSSH Home Page:
http://www.openssh.org/

IETF Secure Shell (secsh) RFCs:
http://tools.ietf.org/wg/secsh/

SSH The Secure Shell, The Definitive Guide.
 Barret, Silverman & Byrnes. 2005 O'Reilly & Associates, Inc.

PuTTY download
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Configuring OpenSSH on z/OS: Hands-on-Lab

 Page 23 of 23

How to logon to TSO (3270 interface)
Start the emulator

1. Double click on SHARE System icon. This starts a PCOMM 3270 session using
mvs1.centers.ihost.com. Note: The Enter key is the right Ctrl key

2. You can skip this step for now, but for real use, you may want to configure
session parameters to use:
Screen Size: 43x80
Host Code Page: 1047 United States

Logon to TSO/E

1. When prompted for Userid/Password/Application, enter TSO in the Application
field and press the Enter key.

2. User ID: shar___
3. Password: [The lab presenter will provide the password.]
4. ISPF will be started
5. From ISPF, enter option 6
6. Enter: omvs esc('@')

This starts a login shell with an escape character of '@'. The escape character is
used to simulate the Ctrl key. The default is the cent sign, which would need to
be configured in the emulator. You can also configure the emulator so that
popular Ctrl keys (e.g. Ctrl-C, Ctrl-Z) generate the appropriate OMVS escape
sequence. With the above command, to interrupt a running command, you enter
@c on the command line.

For example, if you see:
[press Ctrl-D]

You will instead:
[press @D Enter]

The Enter key is required because a 3270 session is a line mode terminal.

