
COBOL performance:
Myths and Realities

Speaker Name: Tom Ross
Speaker Company: IBM

Date of Presentation: August 10, 2011
Session Number: 9655

Agenda

• Performance of COBOL compilers - myths and realities

• Performance improvements over the years

• Highlights of updates to Performance Tuning Paper

• Coding tips

Myths and Realities

• Performance of COBOL compilers - myths and realities
• IBM marketing materials imply performance improvements

• Improved generated code is available in PL/I and C/C++

• Wishful thinking adds to the misconception
• IBM COBOL compilers are extremely efficient!
• Dev process includes regular performance scrutiny
• COBOL does run faster on newer processors

? Compilers exploit new hardware instructions introduced by System z (z9? z10?)
? Code generated by the compilers is highly tuned for System z
? Boost in performance of applications running on System z

z/OS XL C/C++
? standards compliant C/C++ compilers to support porting code
? METAL C compiler option to support low-level programming

Enterprise COBOL for z/OS
? support for modernization of applications (XML support and

Java support)
? integration with middleware such as CICS, DB2, and IMS

Enterprise PL/I for z/OS
? facilitates repurposing of existing business processes into new

business models
? Integration with IBM middleware (CICS, DB2, and IMS)

? 135 new / changed Instructions (z196)

IBM Compilers exploit System z for Maximum Performance

Myths/facts about z196 and COBOL

• The 135 new and changed instructions were added or
changed for many reasons, not just for performance
• Examples:

• Cryptographic facility instructions
• Binary Floating Point (BFP) instructions
• Decimal Floating Point (DFP) instructions

• The z196 processor processes all instructions faster than
the z10 does, even old COBOL!

• IBM COBOL development is working on a new compiler
design to make it easier to exploit new hardware
instructions as they are introduced

Summary of new z196 instructions

• The IBM zEnterprise 196 provides a broad range of
new facilities to improve performance and function:
• High-word facility (30 instructions)
• Interlocked-access facility (12 instructions)
• Load/store-on-condition facility (6 instructions)
• Distinct-operands facility (22 instructions)
• Population-count facility (1 instruction)
• Enhanced-floating-point facility (25 new, 30 changed instructions)
• MSA-X4 facility (4 new, 3 changed instructions, new functions)
• Etc.

• Potential for:
• Significant performance improvement
• Enhanced capabilities
• Simpler code

Index

Performance improvements over the
years for COBOL compilers

• VS COBOL II
• Many performance improvements over 6 releases result in

very fast code produced by IBM COBOL compilers

• COBOL V2R2
• Significant performance improvement in processing binary

data with the TRUNC(BIN) compiler option

• COBOL V4R1
• Performance of COBOL application programs has been

enhanced by exploitation of new z/Architecture®
instructions. The performance of COBOL Unicode support
(USAGE NATIONAL data) has been significantly improved.

Performance tuning paper updated

• As the result of a SHARE requirement, we were able to
apply resources to get the COBOL Performance Tuning
Paper updated for COBOL V4R2

• The last time it was updated was for COBOL V3R1, 2001

• Online at:
http://www-01.ibm.com/software/awdtools/cobol/zos/library/

• New info since V3R1 version:
• BLOCK0, XMLPARSE, INTERRUPT

• Updated section
• CICS communication

Performance tuning paper updated

• BLOCK0 compiler option
• New V4R2 option to change default behavior for QSAM

output files
• For 40 years, no BLOCK CONTAINS clause meant:

• BLOCK CONTAINS 1 RECORD
• The slowest possible!
• Counterpoint: the file is always current

• BLOCK0 changes the compiler default for QSAM files from
unblocked to blocked (as if BLOCK CONTAINS 0 were
specified) and thus gain the benefit of system-determined
blocking for output files.

Performance tuning paper updated

• Specifying BLOCK0 activates an implicit BLOCK
CONTAINS 0 clause for each file in the program that
meets the following three criteria:
• The FILE-CONTROL paragraph either specifies

ORGANIZATION SEQUENTIAL or omits the
ORGANIZATION clause.

• The FD entry does not specify RECORDING MODE U.
• The FD entry does not specify a BLOCK CONTAINS clause.

Performance tuning paper updated

• BLOCK 0 compiler option…results?
• Performance considerations using BLOCK0 on a program

with a file that meets the criteria:
• One program using BLOCK0 was 88% faster than using

NOBLOCK0 and used 98% fewer EXCPs.

Performance tuning paper updated

• XMLPARSE compiler option
• There are 3 parsers in COBOL today

• COBOL V3 parser, available in V4 as XMLPARSE(COMPAT)
• Selected by compiler option

• XMLSS non-validating parser (COBOL V4R1)
• Selected by compiler option

• XMLSS validating parser (COBOL V4R2)
• Selected by compiler option + VALIDATING WITH clause

• Do not change to XMLSS from V3 (COMPAT) parser unless
you need the extra functionality!
• Customer feedback and testing show it is a lot slower

Performance tuning paper updated

• XMLPARSE compiler option…Results?
• Performance considerations for XML PARSE example:

• Five programs using XML PARSE were from 20% to 108%
slower when using XMLPARSE(XMLSS) compared to using
XMLPARSE(COMPAT).

Performance tuning paper updated

• INTERRUPT run-time option
• The 3R1 version of performance tuning paper did not

cover this option
• The INTERRUPT option causes attention interrupts to be

recognized by Language Environment. When you cause
an interrupt, Language Environment can give control to
your application or to Debug Tool.

• Performance considerations using INTERRUPT:
• On the average, INTERRUPT(ON) was 1% slower than

INTERRUPT(OFF), with a range of equivalent to 18%
slower

Performance tuning paper updated

• SIMVRD run-time option…removed support!
• The SIMVRD option specifies whether COBOL programs

use a VSAM KSDS to simulate variable-length relative
organization data set. This support is only available with VS
COBOL II through Enterprise COBOL Version 3 programs.
Starting with Enterprise COBOL Version 4 programs, this
support is no longer available.

• Performance considerations using SIMVRD:
• One VSAM test case compiled with Enterprise COBOL 3.4

was 5% slower when using SIMVRD compared to
NOSIMVRD.

• Those concerned with performance will not miss SIMVRD!

Performance tuning paper updated

• Program communication under CICS
• Choices: static CALL, dynamic CALL or EXEC CICS LINK
• In many cases EXEC CICS LINK can be replaced with

COBOL dynamic CALL (similar separate load module
characteristic)
• DYNAM compiler option is not allowed for programs with

EXEC CICS statements in CICS, so you must use CALL
identifier to do dynamic CALL in these cases

• In some cases dynamic CALL cannot replace CICS LINK:
• Cross systems EXEC CICS LINK
• If subprograms ABEND or STOP RUN, they will stop the

caller unless EXEC CICS LINK is used

Performance tuning paper updated

• Program communication under CICS
• Performance considerations using CICS (measuring call

overhead only):
• One test case was 446% slower using EXEC CICS LINK

compared to using COBOL dynamic CALL with
CBLPSHPOP(ON)

• The same test case was 7817% slower using EXEC CICS
LINK compared to using COBOL dynamic CALL with
CBLPSHPOP(OFF)

• The same test case was 1350% slower using COBOL
dynamic CALL with CBLPSHPOP(ON) compared to using
COBOL dynamic CALL with CBLPSHPOP(OFF)

Performance tuning paper updated

• To show the magnitude of the difference in CPU times
between the above methods, here are the CPU times
that were obtained from running each of these tests on
our system and may not be representative of the results
on your system.

0.006COBOL dynamic CALL
CBLPSHPOP(OFF)

0.087COBOL dynamic CALL
CBLPSHPOP(ON)

0.475EXEC CICS LINK

CPU Time (seconds)'call' type

Performance tuning paper updated

• COBOL normally either ignores decimal overflow
conditions or handles them by checking the condition code
after the decimal instruction. ILC triggers a switch to a
language-neutral or ILC program mask
• This ILC program mask enables decimal overflow

• (COBOL-only program mask ignores overflow)

• COBOL code also tests condition after decimal instructions
• Overflows cause program to use condition handling
• Overflows can be very common in COBOL
• Result: COBOL math can get bogged down

Performance tuning paper updated

• Performance considerations for a mixed COBOL with C or
PL/I application with COBOL using PACKED-DECIMAL
data types in 100,000 arithmetic statements that cause a
decimal overflow condition (100,000 overflows):
• Without C or PL/I: .040 seconds of CPU time
• With C or PL/I: 1.636 seconds of CPU time

Performance tuning paper updated

• XML GENERATE and XML PARSE result in bringing a C
signature into your module - ILC!

• Solutions?
• Ensure that your COBOL code does not encounter decimal

overflow conditions
• Larger data items

• If XML processing is a special case, move XML processing
into a different application

• Process XML in separate enclaves or processes if possible
• Examples: EXEC CICS LINK, SVC LINK

Performance tuning paper updated

• SEARCH - binary versus serial
• We got the question: Is there a point (a small enough

number of items searched) where a serial search is
faster than a binary SEARCH?

• Answer: it depends on your data! (or maybe NO…)
• Performance considerations for search example:

• Using a binary search (SEARCH ALL) to search a 100-
element table was 15% faster than using a sequential
search (SEARCH)

• Using a binary search (SEARCH ALL) to search a 1000-
element table was 500% faster than using a sequential
search (SEARCH)

Performance tuning paper updated

• UPPER and LOWER case conversion
• When converting data to upper or lower case, it is

generally more efficient to use INSPECT CONVERTING
than the intrinsic functions FUNCTION UPPER-CASE or
FUNCTION LOWER-CASE.

• Performance considerations for character conversions:
• One test case that does 1,000 uppercase conversions was

35% faster when using INSPECT CONVERTING compared
to using FUNCTION UPPER-CASE or FUNCTION
LOWER-CASE

• For this same test case, these intrinsic functions used 70%
more storage than INSPECT CONVERTING

Performance tuning paper updated

• Initializing Data
• The INITIALIZE statement sets selected categories of

data fields to predetermined values.
• However, it is inefficient to initialize an entire group unless

you really need all the items in the group to be initialized to
different value.

• If you have a group that contains OCCURS data items
and you want to set all items in the group to the same
character (for example, space or x'00'), it is generally
more efficient to use a MOVE statement instead of the
INITIALIZE statement.

Performance tuning paper updated

• Initializing Data
• Performance considerations for INITIALIZE on a program

that has 5 OCCURS clauses in the group:
• When each OCCURS clause in the group contained 100

elements, a MOVE to the group was 8% faster than an
INITIALIZE of the group.

• When each OCCURS clause in the group contained 1000
elements, a MOVE to the group was 23% faster than an
INITIALIZE of the group.

Coding tips from customer situations

• Avoid INITIALIZE unless the functionality is really
needed
• Much faster to MOVE SPACES or x'00' to the group
• If individual fields need to be set to spaces or different

types of zero (external decimal, packed-decimal, numeric-
edited) then by all means use INITIALIZE

• Rule: Don't use INITIALIZE just because it is there!

Coding tips from customer situations

* A customer had a suggestion for an improvement in our
implementation of INITIALIZE, which sounded like a good
idea

* When a table structure needs to be initialized, and you
want both performance and the flexibility to change the
structure without having to remember to change the code
that initializes it…

* Combine INITIALIZE with group moves!

INITIALIZE tip…before

1 Grp.
2 Struct OCCURS …

3 Item1 PIC S9(9) BINARY.
3 Item2 PIC S9(5) PACKED-DECIMAL.
etc

INITIALIZE Grp

INITIALIZE tip…after

1 Grp.
2 Struct OCCURS …

3 Item1 PIC S9(9) BINARY.
3 Item2 PIC S9(5) PACKED-DECIMAL.
etc

INITIALIZE Struct(1)

COMPUTE j = LENGTH OF GRP / LENGTH OF STRUCT

PERFORM j TIMES

MOVE Struct(1) To Struct(i)

END-PERFORM

INITIALIZE tip…wait a minute!

• I tested this out, and the compiler already generates a loop, and a
better one than the user suggestion!

• In my simple case, with this structure:
1 Grp.

2 Struct OCCURS 500 Times.
3 Item1 PIC S9(9) BINARY.
3 Item2 PIC S9(5) PACKED-DECIMAL.
3 Item3 PIC +BB9(5).99 DISPLAY.
3 Item4 COMP-2.

• INITIALIZE on GRP took:

.07 CPU Seconds

• INITIALIZE on Struct(1) with MOVE in PERFORM loop took:

.23 CPU Seconds

Coding tips from customer situations

• One customer got recommendation from consultant to
code in Java instead of COBOL

• Customer would have preferred to code in COBOL

• Customer complained of continued issues with slow
performance and missing Service Level
Agreements(SLAs) due to poor Java performance

• Solution: re-code in COBOL?

Coding tips from customer situations

• One customer found that COBOL performance was better
than PL/I and wanted to start using only COBOL for new
applications (they are 50/50 COBOL and PL/I)

• The customer wanted to have replacements for commonly
used PL/I functions:
• VERIFY
• TRIM
• INDEX

• When they tried to code these in COBOL they found they
were too slow

• They asked me to try to do better…

Coding tips from customer situations

* VERIFY PL/I function written in COBOL: slow

MOVE '02.04.2010' TO TEXT1

MOVE TEXT1 TO TEXT2
INSPECT TEXT2 REPLACING ALL '.' BY '0'

IF TEXT2 IS NOT NUMERIC
MOVE 'NOT DATE' TO TEXT1

END-IF

Coding tips from customer situations

* VERIFY PL/I function written in COBOL: 40% faster

SPECIAL-NAMES.
CLASS VDATE IS '0' thru '9' '.'.

. . .
MOVE '02.04.2010' TO TEXT1

IF TEXT1 IS Not VDATE Then
MOVE 'NOT DATE' TO TEXT1

END-IF

Coding tips from customer situations

* TRIM PL/I function written in COBOL: slow

MOVE ' This is string 1 ' TO TEXT1
COMPUTE POS1 POS2 = 0

INSPECT TEXT1
TALLYING POS1
FOR LEADING SPACES

INSPECT FUNCTION REVERSE(TEXT1)
TALLYING POS2
FOR LEADING SPACES

MOVE TEXT1(POS1:LENGTH OF TEXT1 - POS2 - POS1)
TO TEXT2

Coding tips from customer situations

* TRIM PL/I function written in COBOL: 31% faster

MOVE ' This is string 1 ' TO TEXT1
PERFORM VARYING POS1 FROM 1 BY 1

UNTIL TEXT1(POS1:1) NOT = SPACE
END-PERFORM

PERFORM VARYING POS2 FROM LENGTH OF TEXT1
BY -1 UNTIL TEXT1(POS2:1) NOT = SPACE

END-PERFORM

COMPUTE LEN = POS2 - POS1 + 1
MOVE TEXT1(POS1 : LEN) TO TEXT2 (1 : LEN)

Coding tips from customer situations

* INDEX PL/I function written in COBOL: slow

MOVE 'TestString1 TestString2' TO BUFFER

COMPUTE POS = 0

INSPECT BUFFER
TALLYING POS
FOR CHARACTERS
BEFORE INITIAL 'TestString2'

Coding tips from customer situations

* INDEX PL/I function written in COBOL: 83% faster

MOVE 'TestString1 TestString2' TO BUFFER

PERFORM VARYING POS FROM 1 BY 1
UNTIL BUFFER(POS:11) = 'TestString2'

END-PERFORM

Questions about variables in dumps

• One program with a large data division (about 1 million
items) using TEST(NOHOOK) took 330 times more CPU
time to produce a CEEDUMP with COBOL's formatted
variables compared to using NOTEST to produce a
CEEDUMP without COBOL's formatted variables.

• Do you use formatted dumps with COBOL variables?
• IE: Compile with TEST(NOHOOK) or TEST(NONE) for

production programs

• Do you care about DUMP performance?
• Usually not done in online environments

