
What’s new in z/OS XL C/C++ V1R13
and Enterprise PL/I 4.1

Visda Vokhshoori (visdav@ca.ibm.com)

Peter Elderon (elderon@us.ibm.com)Peter Elderon (elderon@us.ibm.com)
IBM Corproation

Monday, August, 8, 2011
Session Number 9651

Agenda

• z/OS XL C/C++ V1R13 Highlights

• Enterprise PL/I 4.1 Highlights

How many people are thinking to migrate to C/C++

z/OS XL C/C++ V1R13 Highlights

• Metal C features
• C++ and C++0X features
• Portability features
• Usability features
• Debugging support features
• Performance improvements

Metal C Features

What is Metal C

• The XL C compiler generated code requires Language Environment to
execute.

• There are requests to run C programs where Language Environment
is not available or undesirable.

• The System Programming C facility still require the existence of an
environment and there is no provision for user embedded assembler
statements.

• The V1R9 XL C compiler introduces a new mode of code generation
for system programming purposes.

• We call it Metal C.

Improved Metal C optimization

• To support more advanced
optimization for Metal C we
enabled IPA and HOT options

• IPA, Inter Procedural Analysis,
is a set of compiler optimizations
that analyzes and optimizes the
is a set of compiler optimizations
that analyzes and optimizes the
program as a whole to improve
its performance

• HOT, High Order
Transformation, performs loop
analysis to reduce their
execution time

Building Metal C programs with IPA in
USS

xlc –qmetal –c –qipa a.c

xlc –qmetal –c –qipa b.c

a.o

b.o

xlc –qmetal –S –o x.s a.o
b.o

IPA Compile IPA Link

x.s

x.o

•HLASM output is NOT
generated

•a.o and b.o contain IPA
object only,
IPA(OBJECT) is NOT
allowed

•LONGNAME option is
implicitly turned on

•The output file from IPA
Link is the one HLASM
source for the whole
program

•There could be multiple
HLASM structures, one
for each partition

•The output file’s default
name is a.s and is in the
cwd

PS- For Building Metal C Programs with IPA using JCL refer to the Back-up slides

The rest of the build process is similar to building programs with Metal C without IPA.
You need to assemble the a.s to produce the object file. Since the option LONGNAME is used in the compile step, you need to specify HLASM GOFF option
 as –mgoff a.s
Then you need to supply the object file produced by the assembler to the binder
ld –b case=mixed –e main a.o
Since LONGNAME is required by IPA, you need specify –b case=mixed on the ld utility command line

Building Metal C Programs with HOT in
USS

xlc –qMETAL –S –qHOT –o a.s f.c

as a.s

ld –o a.out a.o

Building Metal C programs with HOT is no different than building Metal C, except you specify –qHOT option on the Metal C compile step
xlc –qHOT –qMETAL –S a.c
When HOT is specified with no-optimization, the optimization level 2 is forced

Constraints

× Mixed addressing mode
× Compiler option:

× DEBUG
× REPORT

× IPA sub-options:× IPA sub-options:
× ATTRIBUTE
× GONUM
× PDF sub-options

× IPA control file directives
× EXPORT
× NOEXPORTS

The Metal C mixed addressing mode is not supported with IPA, Error message generated during IPA link.
Also there are compiler options and IPA sub-options that are not supported. Warning message generated compilation continues without that option being set
We don’t have any plans to support these, but do you think this is a useful feature to implement?

New option: DSAUSER

DSAUSER | NODSAUSER

Purpose: To allow users reserve space on the stack; it is
addressable in the user prolog code

Default:Default:
NODSAUSER

Usage:
/*Prolog code*/
&CCN_DSAUSER SETC ‘#USER_2-@@AUTO@2’
/*Initialize the field*/
STG 0,&CCN_DSAUSER.(,13)

The user field can be utilized by the HLASM code. This user field can be initialized by your PROLOG and/or EPILOG code.

Argument parsing

/*errorCounter.c*/
int main(int argc, char* argv[])

{
if (argc < 2) {

return 0;
}
int errorCount = 0;
for (int i = 1; i < argc;

• With V1R13 Metal C supports
the parsing of arguments which
is a standard C behavior

• This example program executes
properly in either USS or batch for (int i = 1; i < argc;

i++) {
if (argv[i][0] == 'E') {

errorCount++;
}

}
return errorCount;

}

properly in either USS or batch
mode when compiled with
V1R13 compiler

• If you want to disable this you
can set &CCN_APARSE set
symbol to 0 in your prolog code

The Metal C didn’t support this part of standard C behavior before
…whether the program is executed in batch or USS
You can disable argument parsing using the global set symbol &CCN_APARSE
GBLB &CCN_APARSE True to parse OS PARM 000000
&CCN_APARSE SETB 0 Disable argument parsing 000000

Function property block

• The Metal C code adds per-function property data that
can be used to identify the C function and the associated
properties by code scanning or dump reading. This data is
called Function Property Block(FPB) and can be found via
the new Function Entry Point Marker placed immediately
before each function's entry point.before each function's entry point.

• This feature enables Metal C users to find additional
information about a function in a final binary code.

When the -qCOMPRESS compile option is in effect the
function name fields will not be present in the FPB

C++ and C++0X features

New option: TEMPLATEDEPTH

TEMPLATEDEPTH

Purpose: To allow the user to specify their own value for how deep they
want the compiler to instantiate recursive template specializations.

Default:
TEMPLATEDEPTH(300)

Usage:
Setting this option to a high value can potentially cause an out-of-

memory error because of the complexity and amount of code
generated.

In 1994 during a meeting of the C++ standardization committee, Erwin Unruh discovered that templates can be used to compute something at compile time. He wrote a program that produced prime numbers. The intriguing part of this exercise, however, was that the production of the prime numbers was performed by the compiler during the compilation process and not at run time. Specifically, the compiler produced a sequence of error messages with all prime numbers from two up to a certain configurable value. Although this program wasn’t strictly portable (error messages aren’t standardized), the program did show that the template instantiation mechanism is a primitive recursive language that can perform nontrivial computations at compile time.

TEMPLATEDEPTH

• Before this feature, this code
would get
CCN5701 (S) The limit on
nested template
instantiations has been
exceeded while instantiating
"void f<100>()“

template <int n> void f() {
f<n-1>();

}

template <> void f<0>() {}
int main() {"void f<100>()“

• With V1R13 compiler and option
–qtemplatedepth=400 the program
will compile successfully

int main() {
f<400>();

}

Temporary lifetime extensions

• This feature is used to extend the lifetime of C++ temporaries beyond
that specified by the C++ language standard in 12.2 [class.temporary].

• When enabled, the lifetime of temporaries shall be treated as local
variables declared in the inner-most containing lexical scope where
possible. possible.

• This feature helps when
• a user porting an application from another compiler, which may

implement late temporary destruction, desires to extend the lifetime
of such temporaries in order to replicate the previous non-standard
compliant behavior.

• when a program incorrectly depends on resources, which may have
been previously released this feature might help.

Temporary lifetime extensions Example

#include<cstdio>
struct S {

S() { printf("S::S() ctor at
0x%lx.\n", this); }
S(const S& from) {
printf("S::S(const S&) copy ctor
at 0x%lx.\n", this); }

With
-qlanglvl=tempsaslocals a

temporary 's' created for
function argument is
destroyed after the lexical ~S() { printf("S::~S() dtor at

0x%lx.\n", this); }
} s1;
void f(S s) { }
int main() {

f(s1);
printf("hello world.\n");
return 0;

}

destroyed after the lexical
block of main. By default
's' is destroyed upon
returning from 'f‘

Temporaries are treated as local variables. Their lifetime is until the end of block contains them.
S1 is being passed by value. So we need to create a temporary for it.

Temporary lifetime extensions Example

#include<cstdio>
struct S {

S() { printf"S::S() ctor at
0x%lx.\n", this); }
S(const S& from) {
printf("S::S(const S&) copy ctor
at 0x%lx.\n", this); }

xlC –qlanglvl=tempsaslocals
–o a.out tempLife.cpp

a.out
S::S() ctor at 0x251208b8.
S::S(const S&) copy ctor at

0x251252b8.~S() { printf("S::~S() dtor at
0x%lx.\n", this); }

} s1;
void f(S s) { }
int main() {

f(s1);
printf("hello world.\n");
return 0;

}

0x251252b8.
hello world.
S::~S() dtor at 0x251252b8.
S::~S() dtor at 0x251208b8.

Temporaries are treated as local variables. Their lifetime is until the end of block contains them.
S1 is being passed by value. So we need to create a temporary for it.

rvalue bindings to a non-const reference

• Allow a non-const reference to bind to an rvalue only in
the declaration of a function parameter or function return
type where an initializer is not required and only for user-
defined types.

• Non-compliant compilers may allow a non-const reference
to be bound to an rvalue.

This feature permits also an rvalue to bind to a const-volatile
reference and it only applies to top-level CV qualifiers on reference
types. The option -qinfo=por will enable an informational message
indicating that this binding has taken place despite being illegal.

Standard only allows binding of const to rvalue, with this feature we allow binding the non-const to rvalue

rvalue bindings to a non-const reference
Example

struct hey{};
void func(hey& x){}
int main(void)
{
func(hey());
return 0;
}

• By default this will be rejected with error:
CCN5295 (S) A parameter of type "hey &" cannot be initialized
with an rvalue of type "hey".

• With -qlanglvl=compatrvaluebinding it will compile clean.

Intrinsic complex type

• The complex types, float _Complex, double _Complex and long
double _Complex are provided by C++ compiler as built-in types,
according to ISO/IEC 9899:1999 Standard.

• Programs with built-in complex types can now be compiled with C++.

• No need to convert intrinsic complex types to Complex class template
implementation.

The feature is normally enabled with -qlanglvl=c99complex.
The complex types and both unary operators __real__ and __imag__ can be
enabled with qlanglvl=gnu_complex, it superceeds -qlanglvl=c99complex.

C99 standard
Before they had to use the Complex class
Allows C source using complex intrinsic to compile with C++ compiler

Intrinsic complex type Example

#include <stdio.h>
#include <complex.h>
int main() {

float _Complex a, b;
a= 2.0f + 3.0f * _Complex_I;
b = 4.0f - 2.0f * _Complex_I;
a = a + b;a = a + b;
printf("a = %f + %f * I . \n", __real__(a), __imag__(a));

}

• Compiling with -qlanglvl=gnu_complex produces the following:

a = 6.000000 + 1.000000 * I

The operator __real__(a) and __imag__(a) is being used to extract the real and imaginary part

[C++0X] Trailing return type

Primary motivation behind Trailing Return Type feature is the ability
to declare function templates whose return type depends on the types
of the template arguments.

C++0X final draft, dated 11 April 2011
The implementation of C++0x is based on IBM's
interpretation of the draft C++0x standard and is subject to change at any time without notice. IBM
makes no attempt to maintain compatibility with earlier releases and therefore the C++0x language
extension should not be relied on as a stable programming interface.

template function declarations to benefit from this feature where the return type relies on the type of the parameters passed to the function
Given an expression such as a*b, where a and b are arbitrary types, we cannot say "type of a*b".
C++0x Trailing Return Type in conjunction with C++0x Decltype removes this limitation.

Trailing return type Example

template <class A, class B>
auto multiply(A a, B b)->decltype(a*b)
{

return a*b;

}

Compiler in R13 -qlanglvl=autotypededuction:decltype

Portability features

Binary and source compatibility

Suppress warning for text following
#else-#endif

• Allows text on the same line after the #endif and #else
preprocessing directives

• Code ported from other platforms may have this non-
standard extensionstandard extension

This is a deviation from the standard so the code will be less portable to other
platforms that do not have this extension.

C/C++
Text is allowed after the #else/#endif
Sun compiler to work with our compiler
Deviation from standard

Function attributes (gnu_inline, used,
malloc)

• gnu_inline: Uses pre-C99 GCC inline behaviour
• used: Marks a function as used so it is not removed
• malloc: Any non-null pointer returned cannot alias any

other pointer that is valid at the time of the function call.
Can help increase runtime performanceCan help increase runtime performance

• This is a deviation from the standard and hence the code
may be not be portable to other compilers.

C/C++
Gnu_inline: C99 gcc behavior
Used: marks function as used so binder does not remove it
Malloc: null ptr returned cannot alias w/ any other ptr

Function attributes Example

extern inline __attribute__((gnu_inline)) f() {…};
static inline __attribute__((gnu_inline)) b() {…};
__attribute__((used)) void f() { }
int main() { f(); }

void* f() __attribute__ ((__malloc__)) { ... }

Differences in inline behavior
Gnu_inline takes precedence
Malloc faster code

Addressable labels

• Add support for the Labels-as-values and Computed-goto
features that are implemented by GCC.

• Makes porting code over to our compiler from other ones
easier.easier.

This is a deviation from the standard and hence the code may be not be
portable to other compilers.

GCC feature

Addressable labels Example

/*mysource.c*/
#define good 0
#define bad 1
int main(void) {

void* la = &&label1;
goto *la;

Compile and run:
xlc mysource.c -o ./a.out
a.out
Returns with code 0

return bad;
label1:

return good;
}

Is IBM Extension -qlanglvl=extended

UsabilityUsability

New Hardware Built-ins

• Interlocked-storage-access instructions, available on models where
the interlocked-access-facility is installed, provide a means by which
a load, update and store operation can be performed with
interlocked update in a single instruction. Supported interlocked-
storage-access instructions are:

• Load and Add (LAA, LAAG)• Load and Add (LAA, LAAG)
• Load and Add Logical (LAAL, LAALG)
• Load and And (LAN, LANG)
• Load and Exclusive Or (LAX, LAXG)
• Load and Or (LAO, LAOG)
• Load Pair Disjoint (LPD, LPDG)

This is an offering for z196 hardware, it is implemented under ARCH(9)

HFP Multiply and Add/Subtract Facility

• The complier now can generate fused multiply and
add/subtract instructions for hexadecimal floating point
calculations.

• This was not allowed in previous releases due to run-time
performance reasons.performance reasons.

• With the use of ARCH(9) fused multiply and add/subtract
is enabled. This allows potential performance increases for
these calculations.

Using FLOAT(MAF) with FLOAT(HEX) in ARCH(9) should improve the run-
time performance of floating point application

Fused multiply and add instructions. We had this for ieee we didn’t have this for hex for performance reasons
Lower than 9, error message as in previous releases.
Moving up to arch(9) the error message is not generated anymore

Informational messages on by default on
USS

V1R12 and older releases

Defaults
ØFLAG(I)
ØFor the z/OS UNIX System Services
utilities, the default for a regular compile is
FLAG(W).

V1R13 and later release

Defaults
ØFLAG(I)

Any existing compilations that did not turn on FLAG(I) and used the INFO or
CHECKOUT may see the additional informational messages.

In USS, the default for the FLAG option was W (warnings and higher are displayed). This could cause users to miss potentially helpful diagnostics (especially using the INFO option).
Now FLAG(I) is the default in z/OS USS as it is in batch compilations
Potential problems can be seen without having to remember to change to FLAG(I) in USS

INFO/CHECKOUT defaults

• Some of the default sub-options for INFO and CHECKOUT
have changed to avoid emitting non-problem messages
and to make CHECKOUT more similar to INFO.

• Using ALL sub-option will no longer emit pre-processing
trace information, PPT, by default instead it will only emit trace information, PPT, by default instead it will only emit
the potential non-aliasing error cases, ALS.

• This should make the information emitted by default sub-
option of CHECKOUT and INFO similar and will aid
migration.

Users using INFO, INFO(ALL) or CHECKOUT will potentially get different
messages. This effects the #pragma options as well

Bigger impact on customers using INFO/Checkout, it’s a change in default
Warning default in USS, out of synch with batch, out of synch with other platforms like pSeries
Users may have missed some important informational messages
Find potential problems in their source code
They don’t have to remember to specify flag I
INFO and CHECKOUT option in USS whole lot messages … but potential help with source problems
Default sub-option for INFO/Checkout
INFO(ALL,NO,
Before: CHECKOUT(
NOW: CHECKOUT(more similar to INFO
We depercated CHECKOUT we want to make it more like INFO so when they move to INFO the transition is less painful
INFO(ALL) CHECKOUT(ALL) they may get more information
Affects the #pragma options as well

Debugging support features

Hookless Debug

• dbx added support for debugging programs compiled
without hooks

• Intended to allow you to debug programs whose sizes and
performance characteristics are more closely aligned with performance characteristics are more closely aligned with
production programs

Debug information for inline-d
procedures

• Ability to set entry breakpoints at all inline-d instances

• The support is invoked by option:
• DEBUG(FORMAT(DWARF)) + OPT

Inline at noopt
Inline debugability only at OPT? (Jian or Kendrick)

Performance enhancement features

Performance of C/C++ code on z196

• % improvement = (geometric mean of A)/(geometric mean of B), both
running on z196, where:
• A = programs compiled by V1R13
• B = programs compiled by V1R12

* This is based on internal IBM lab measurements using the * This is based on internal IBM lab measurements using the
following compiler options:
• For 31-bit: ILP32, XPLINK, HGPR, OPT(3), HOT,

IPA(LEVEL(2)), PDF, ARCH(9), TUNE(9)
• For 64-bit: LP64, XPLINK, HGPR, OPT(3), HOT, IPA(LEVEL(2)),

PDF, ARCH(9), TUNE(9)

Performance results for specific applications will vary; some
factors affecting performance are the source code and the
compiler options specified.

Performance of C/C++ code on z196

• Programs compiled with the V1R13 compiler may show significant
performance improvement* when compared to the same programs
compiled with V1R12

• 4% improvement was observed on a set of 31-bit CPU intensive
integer based programs

• 7% improvement was observed on a set of 64-bit CPU intensive
integer based programs

• 7% improvement was observed on a set of CPU intensive floating-
point based programs

(31-bit & 64-bit)

Performance of C/C++ code on z196

• For a detailed description of how to improve your
application’s performance see also

www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101796www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101796

Enterprise PL/I 4.1 Highlights

• Performance Enhancement Features
• Improved Debug Tool support
• XML validation
• New (sub)options for better quality
• Miscellaneous user requirements

Let’s talk about the features in the latest PL/I … 4.1 GA’d

Performance Enhancement Features

REFER

• Code that uses elements of structures with multiple REFERs can be
very expensive: each reference uses a costly library call to remap the
structure

• Now, for structures where all elements are byte-aligned, those calls
will be avoided and straightforward inline code generatedwill be avoided and straightforward inline code generated

• If all elements are byte-aligned, no padding is possible and thus the
address calculations are relatively simple

• To insure all elements are byte-aligned
• Specify UNALIGNED on the level-1 part of declared
• Declare any NONVARYING BIT as ALIGNED

REFER

E.g., consider these declares (and note the UNALIGNED):

dcl (first,middle,last) char(*) var;

dcl f_len fixed bin(31);
dcl m_len fixed bin(31);
dcl l_len fixed bin(31);dcl l_len fixed bin(31);
dcl q pointer;
dcl

1 name based UNALIGNED,
2 len_first fixed binary(31),
2 first char(f_len refer(len_first)),
2 len_middle fixed binary(31),
2 middle char(m_len refer(len_middle)),
2 len_last fixed binary(31),
2 last char(l_len refer(len_last));

REFER

• A library call is still made to map the structure for the
allocate, but the 6 library calls that would have been done
to make the assignments have been eliminated:

f_len = length(first);
m_len = length(middle);m_len = length(middle);
l_len = length(last);

allocate name set(q);

q->name.first = first;
q->name.middle = middle;
q->name.last = last;

The last three lines used to be 6 calls to the library functions. With the new PL/I 4.1 release there won’t be any calls to the libraries
That’s a significant performance improvement, in the order of 10x for applications that use REFER a lot.
IMS requested this.

INDEX

• The code generated for the INDEX built-in function has
been optimized by Enterprise PL/I when there are only 2
arguments

• The compilers before Enterprise PL/I permitted only 2 • The compilers before Enterprise PL/I permitted only 2
arguments, but Enterprise PL/I allows a third argument to
specify where the search should start

• This usage has now also been optimized when the second
argument is just a single byte, e.g. a semicolon or a blank

INDEX

• This can be very useful in code that processes some text
in semicolon delimited chunks, as in:

pos = 0;
pos = index(text, ‘;’, pos+1);pos = index(text, ‘;’, pos+1);
do while(pos > 0);

/* process text to semicolon */
pos = index(text, ‘;’, pos+1);

end;

Index builtin for string handling with 3 args was not inlined.
In PL/I 4.1 it will be inlined.

Improved Debug Tool support

Reduced object size

• DebugTool uses the statement number table generated by the
GONUMBER option (which is why TEST generally forces
GONUMBER to be on)

• With Enterprise V3, the GONUMBBER table was part of the generated
object code (and hence part of the linked load module) even if object code (and hence part of the linked load module) even if
TEST(SEPARATE) was used

• With Enterprise V4, if you specify TEST(SEP) and GONUMBER(SEP),
the compiler will place the statement number table in the side file and
thus significantly reduce the size of the generated object

• For compatibility, the default for GN is GN(NOSEP)

Debug info. in the object file, size issue
Statement number table still in the object
Options to remove debug information to in the side file

Improved automonitor support

• Under Enterprise V3, for its AUTOMONITOR, the compiler generated
information that specified only the name of the variable, but omitted
any subscripts or pointer qualifications

• Under Enterprise V4, when using TEST(SEPARATE), the compiler
generates information that names the fully qualified referencegenerates information that names the fully qualified reference

• E.g. for a statement of the form A(2) = B(2); A(2), and B(2) will be
listed in the monitor window (rather than all of A and all of B)

Automonitor prints the information in the statement, only information needed

Most support for implicit BASED

• Under Enterprise V3, the compiler generated a symbol table that
allowed implicit locator references for variables declared as BASED on
simple scalars

• With Enterprise V4, when using TEST(SEPARATE), the compiler will
generate information to identify complicated implicit locator references generate information to identify complicated implicit locator references
such as those for a variable is BASED on

• ADDR of array element or
• Other built-in functions (such as ADDRDATA, POINTERADD, etc)

DCL and XREF information

• Under Enterprise V4, when using TEST(SEPARATE), the compiler will
include in the side file, information identifying the source lines for

• Declares
• References (xref refs)
• Assignments (xref sets)• Assignments (xref sets)

• This will help enable DebugTool to provide information on these
declares and/or to allow you to search for these statements etc.

XML Validation

PLISAXD

• The new PLISAXD built-in subroutine is like PLISAXC except that it
will cause the incoming XML to be validated

• It requires an additional argument: an Optimized Schema
Representation

• Like PLISAXC, PLISAXD uses the System Services XML Parser

• And its arguments are much like PLISAXC

Validation of XML.
Checks against the schema to see if it is a valid.
The XML may be invalid, new argument address of the buffer where OSR (optimized Schema representative)
e.g. Canadian Insurance Company information about the claim contains image of the file

PLISAXD

• In order, its arguments are

• An event structure
• A token passed pack to the event functions
• The address of a buffer containing the XML
• The size of the buffer• The size of the buffer
• The address of the buffer containing the OSR
• An optional codepage identifier

• The only difference from PLISAXC is the 5th parameter

• The even structure is the same as PLISAXC

PLISAXD

• While the event structure is the same as for the PLISAXC, the
exception event may see some additional exceptions found by the
validation

• The z/OS Unix command xsdosrg will generate a file containing the
OSR for a given schemaOSR for a given schema

• You must do this before trying to run code using PLISAXD

• And the before invoking PLISAXD, you must read the OSR into a
buffer

• The Programming Guide has more details

New (sub)options for Better Quality

DEPRECATE (Racon – MR0427097311)

• The new DEPRECATE option will flag the usage of various include
files, built-in functions or variables that you wish to deprecate. It will
flag via:

• the BUILTIN suboption, any specified name declared as a BUILTIN

• the ENTRY suboption, any specified name declared as a level-1 ENTRY

• the INCLUDE suboption, any specified name used in an %INCLUDE
statement

• the VARIABLE suboption, any specified name declared as level-1 name
and not having the BUILTIN or ENTRY attribute

DEPRECATE (Racon – MR0427097311)

• So if you want to flag the usage of UNSPEC and any variable named
just I, J or N, you could specify

• DEPRECATE (BUILTIN(UNSPEC) VARIABLE(I,J,N))

• Specifying one of the suboptions does not change the setting of
any of the other suboptions specified previously. So the above
could also be specified as:

• DEPERCATE(BUILTIN(UNSPEC))
DEPRECATE(VARIABLE(I,J,N))

No effect on the code generation, it effects the messages generated

NOGLOBALDO (Telcordia –
MR1104096225)

• Under the new RULES(NOGLOBALDO) option, the compiler will flag
any DO statement where the loop control variable is declared in a
parent procedure –as in this code

a: proc;a: proc;
dcl jx fixed bin;
call b;
b: proc;
do jx = 17 to 29;

end;
end b;

end a;

NOGLOBALDO (Telcordia –
MR1104096225)

• This usage creates

• non-transparent code (it is rarely good when a subroutine changes
the value of a variable in a parent procedure) the value of a variable in a parent procedure)

• less optimized code

• So flagging it is good
• For compatibility, the default is RULES(GLOBALDO)

NOPADDING (Telcordia –MR1110093235)

• Under the new RULES(NOPADDING) option, the compiler will flag
any structure where it can tell that there will be padding bytes

• For compatibility, the default is RULES(PADDING)

• RULES(NOPADDING) would flag, for example

dcl
1 a aligned,
2 b fixed bin(31),
2 c char(3),
2 d fixed bin(31);

Miscellaneous User Requirements

Init of typed structures (Wuestenrot -
MR0312104052)

• In particular, the INIT attribute will now be allowed on leaf elements of
a DEFINE STRUCTURE statement

• However, INIT CALL, INIT TO, and VALUE will still not be allowed on
elements of a DEFINE STRUCTURE statementelements of a DEFINE STRUCTURE statement

• For example, the following is now allowed

define struct
1 b,

2 b1 fixed bin init(17),
2 b2 fixed bin init(19);

Init of typed structures (Wuestenrot -
MR0312104052)

• The new VALUE type-function may then be used to initialize or assign
to a variable having the corresponding structure type, e.g.

define struct
1 b,1 b,

2 b1 fixed bin init(17),
2 b2 fixed bin init(19);

define struct
1 c,

2 c1 type b init(value(: b :)),
2 c2 fixed bin init(23);

dcl x type c static init(value(: c :));
dcl y type c; y = value(: c :);

Allow init of the structure

Init of typed structures (Wuestenrot -
MR0312104052)

• The VALUE function has one mandatory argument that must be the
name of a typed structure, and it returns an instance of that typed
structure with its initial values

• If the VALUE function is used with a structure type that is only
partially initialized, uninitialized bytes and bits will be zeroed out

• The VALUE function may not be used with a structure type
containing no elements with the INITIAL attribute

SQL XREF (LVM -MR1112095051)

• The integrated SQL preprocessor will now accept
(NO)XREF as an option

• Under XREF, it will produce an XREF listing like that
produced by the old SQL precompilerproduced by the old SQL precompiler

• This means that the integrated SQL preprocessor provides
a full superset of the function available via the SQL
precompiler

SQL XREF option supported in PL/I

ONAREA (Telcordia-MR1217095934)

• If AREA has been raised, ONAREA will return a string specifying the
AREA reference for which the allocate failed

• So if ALLOCATE X IN(A) fails, ONAREA will return the string ‘‘A”• So if ALLOCATE X IN(A) fails, ONAREA will return the string ‘‘A”

• And if ALLOCATE X IN(A1.A2(N)) fails, ONAREA will return
“A1.A2(N)”

AREA condition raised when AREA is big enough.
ONAREA specifies which allocate caused the exception raised.

REENTRANT Proc’s (StateFarm -
MR102909480)

• Before Enterprise PL/I, specifying REENTRANT in the OPTIONS attribute of a
PROC statement changed the code that was generated and was required if
the code was supposed to be reentrant

• With Enterprise PL/I, it did nothing

• With 4.1, it will now cause the compile to issue a message unless you use • With 4.1, it will now cause the compile to issue a message unless you use
either

• the RENT option, or
• the DFT(NONASGN) option

• This is under the assumption that such proc’s are supposed to be reentrant
(and in that case, the compiler should flag any assign to static)

Message

VALUE in structures (MR0213091212)

• The VALUE attribute is now allowed in (non-typed) structures, but then

• All leaf elements of the structure must have the VALUE attribute

• The structure must not contain any unions or arrays

• This makes conversion of old declares using STATIC INIT to VALUE
easier (and the use of VALUE will let the compiler produce better
code)

• It also allows you to have “namespaces” of VALUE

Learn more at:
• IBM Rational software
• IBM Rational Software

Delivery Platform
• Process and portfolio

management

• Architecture management
• Rational trial downloads
• developerWorks Rational

• IBM Rational TVmanagement
• Change and release

management
• Quality management

• IBM Rational TV
• IBM Rational Partner

Community
• IBM Rational C/C++ Cafe

• IBM Rational PL/I Cafe

Back-up slides

Building Metal C Program with IPA with
JCL

//*IPA Compile
//COMPID1 EXEC EDCC,
// INFILE=‘VISDAV.METALIPA.SOURCE’,
// OUTFILE=‘VISDAV.METALIPA.OBJECT,DISP=SHR’,
// CRUN=‘’,
// CPARM=‘OPTFILE(DD:XOPTS)’
//XOPTS DD DATA,DLM=‘/>’
IPA(NOLINK) LONGNAME NOSEARCH
METALMETAL
/>
//*IPA Link
//IPALIN1 EXEC CBCI,
// IRUN=‘’,
// IPARM=‘OPTFILE(DD:OPTS)’
//OBJECT DD DSN=VISDAV.METALIP.IPA.OBJECT,DISP=SHR
//SYSIN DD DSN=‘VISDAV.METALIPA.OBJECT’,DISP=SHR’
//SYSLIN DD DSN=‘VISDAV.METALIPA.SOURCE’,DISP=SHR
//OPTS DD DATA,DLM=‘/>’
METAL GENASM
/>

Performance of C/C++ code on z196

• What if you don’t recompile?
• We compared the performance of the same binaries executing on z196

and z10.Binaries were built using the V1R11 compiler.

• On z196 we achieved overall improvements of:50% for a set of cpu
intensive integer based programs*.intensive integer based programs*.

• 125% for a set of cpu intensive floating point based programs*.
• This is based on internal IBM lab measurements using the following

compiler options:
• ILP32, XPLINK, HGPR, OPT(3), HOT, IPA(LEVEL(2), PDF, ARCH(8),

TUNE(8)
• Performance results for specific applications will vary; some factors

affecting performance are the source

• code and the compiler options specified.

